
LOCAL TERMINATION: THEORY AND PRACTICE

JÖRG ENDRULLIS, ROEL DE VRIJER, AND JOHANNES WALDMANN

Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
e-mail address: joerg@few.vu.nl

Vrije Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
e-mail address: rdv@cs.vu.nl

Hochschule für Technik, Wirtschaft und Kultur Leipzig, Fakultät IMN, PF 30 11 66, D-04251
Leipzig, Germany
e-mail address: waldmann@imn.htwk-leipzig.de

Abstract. The characterisation of termination using well-founded monotone algebras has
been a milestone on the way to automated termination techniques, of which we have seen
an extensive development over the past years. Both the semantic characterisation and
most known termination methods are concerned with global termination, uniformly of all
the terms of a term rewriting system (TRS). In this paper we consider local termination,
of specific sets of terms within a given TRS.

The principal goal of this paper is generalising the semantic characterisation of global
termination to local termination. This is made possible by admitting the well-founded
monotone algebras to be partial. We also extend our approach to local relative termination.

The interest in local termination naturally arises in program verification, where one is
probably interested only in sensible inputs, or just wants to characterise the set of inputs
for which a program terminates. Local termination will be also be of interest when dealing
with a specific class of terms within a TRS that is known to be non-terminating, such as
combinatory logic (CL) or a TRS encoding recursive program schemes or Turing machines.

We show how some of the well-known techniques for proving global termination, such
as stepwise removal of rewrite rules and semantic labelling, can be adapted to the local
case. We also describe transformations reducing local to global termination problems.
The resulting techniques for proving local termination have in some cases already been
automated.

One of our applications concerns the characterisation of the terminating S-terms in
CL as regular language. Previously this language had already been found via a tedious
analysis of the reduction behaviour of S-terms. These findings have now been vindicated
by a fully automated and verified proof.

1. Introduction

An important contribution to the development of automated methods for proving ter-
mination has turned out to be the characterization of termination using well-founded mono-
tone algebras. Both the semantic characterization and most known termination methods
are concerned with global termination, uniformly of all the terms of a TRS. This is remark-
able, as termination is prima facie a property of individual terms. More generally, one may

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© LOCAL TERMINATION: THEORY AND PRACTICE
Creative Commons

1

consider the termination problem for an arbitrary set of terms of a TRS. We call this the
local termination problem.

A typical area where termination techniques are applied is that of program verification.
The termination problems naturally arising in program verification are local termination
problems: the central interest is termination of a program when started on a valid input.
A simple example of a program that is not globally terminating is the factorial function:

fac(0) = 1

fac(n) = n · fac(n− 1)

This function terminates for all integers n ≥ 0. However, when started on a negative number
this function is caught in an infinite recursion. (This program will be used as an illustration
in Examples 3.8 and 5.3.)

In logic programming (e.g. Prolog), local termination has been a central field of research
over the past years. Local termination problems of Haskell programs have been considered
in [PSS97] and [GSTSK06]. In [PSS97], a tableau calculus is devised to show termination
of sets of terms of the form f a1 . . . an where the ai’s are in normal form. In [GSTSK06],
a transformation from Haskell programs into dependency pair problems [AG00] is given,
which then in turn are solved using methods for global termination.

Surprisingly, for TRSs not much work is known about local termination. We mention
the method of match-bounded string rewriting [GHW04], which can be used to prove local
termination for sets of strings generated by a regular automaton. Indeed, this method can
be viewed as an instance of the semantic framework we develop in this paper.

Local termination is of special interest when dealing with specific classes of terms within
a TRS that is known to be non-terminating. Examples of such TRSs are combinatory logic
(CL) [Cur30] and encodings of recursive program schemes or Turing machines. The well-
known halting problem for Turing machines is a local termination problem. Clearly, this
holds for the blank tape halting problem which just asks for termination on the blank tape.
On the first glance the uniform halting problem – asking for termination on all inputs –
might seem to be global. However, this is a local termination problem as well, since Turing
machines are started in a distinguished initial state and admit only one head to work on
the tape. In this paper we will use CL and the halting problem for Turing machines to
illustrate some of our results (Examples 3.7, 6.5, 7.9, 7.10, 9.6 and 9.7).

Outline and Contribution. In Section 3 we generalize the semantic characterization
from global termination to local termination based on well-founded, monotone partial Σ-
algebras. This establishes a first, important step towards the development of automatable
techniques for proving local termination. In Section 4 we extend this to relative termination,
obtaining a characterization using extended monotone partial Σ-algebras.

For global termination it is common practice to stepwise simplify the proof obligation
by removing rules. For local termination (the strictly decreasing) rules cannot simply be
removed as they influence the set of reachable terms. We need to impose weak conditions
on the ‘removed’ rules, see Section 5.

Having developed the general framework, in the remaining sections we look for fruitful
instances of partial monotone algebras, suitable for automation.

In Section 6 we consider the case that the family of the set of terms for which we want
to prove local termination can be described by a partial model. A variant of semantic

2

labeling [Zan95] can then be used to transform the local termination problem into a global
termination problem, and the available provers for global termination can be applied.

In Section 7 we consider TRSs with the property that strong and weak normalization
coincide. In particular, this holds for orthogonal, non-erasing TRSs. In case the language
of normalizing terms happens to be regular, we show how a tree automaton (partial model)
can be found accepting exactly the normalizing terms. Then we label the TRS with the
obtained partial model, and employ the theory developed in Section 6 to transform the local
termination problem for the set of normalizing terms to global termination of the labeled
TRS. We automated the search for the tree automaton as well as the labeling.

We apply this method to two well-known combinators from CL: S and δ with the rewrite
rules Sxyz → xz(yz) and δ xy → y(xy), respectively. Determining the language N of nor-
malizing S-terms has been open until the year 2000 [Wal00]. Using the method from Sec-
tion 7 we can now automatically find the partial model forN , and we obtain a labeled system
whose global termination coincides with local termination on N . Global termination of this
labeled system (containing 1800 labeled rules) has been proven by TTT2 (1.0) [KSZM09]
and the proof has been verified by CeTA (1.05) [TS09].

In Section 8 we demonstrate that the local termination method proposed in Section 6
can also be applied for proving global termination. To that end, we transform the global
termination into local termination for the set of right-hand sides of forward closures [Der81].
Then we transform the obtained system back into a global termination problem using the
transformation from Section 6. We show the applicability of this method by solving an
example that remained unsolved in the last termination competition [Ter08]. After the
transformation, the system allows for a simple termination proof using linear polynomial
interpretations.

In Section 9 we combine the partial variant of the quasi-models of [Zan95] with mono-
tone algebras to obtain partial monotone algebras. Roughly speaking, partial quasi-models
are deterministic tree automata [CDG+07] equipped with a relation ≥ on the states which
guarantees that the language of the automaton is closed under rewriting. Thereby we
obtain partial monotone algebras that can be applied successfully for proofs of local termi-
nation. Indeed, this method can be automated and, as a matter of fact, we have devised
an implementation.

A preliminary version of this paper has appeared in [EdVW09]; our additional contri-
bution is as follows:

• For TRSs where strong and weak normalization coincide and where the language
of normalizing terms N is regular, we describe an algorithm for constructing a
tree automaton (a partial model) accepting exactly the language N . For example,
this method is applicable for (fully automatically) determining the language of
normalizing S-terms.
• We show that methods for local termination can fruitfully be employed for proving

global termination, classically the main focus of termination analysis for TRSs.
Employing the RFC method (right-hand sides of forward closures) in combination
with the transformation from local to global termination from Section 6, we give a
new proof for a string rewrite system (SRS) for which no proof had been found in
the termination competition so far.

3

2. Preliminaries

Term rewriting. A signature Σ is a non-empty set of symbols, each having a fixed arity,
given by a map] : Σ → N. Let Σ be a signature and X a set of variable symbols. The
set Ter(Σ,X) of terms over Σ and X is the smallest set satisfying: X ⊆ Ter(Σ,X), and
f(t1, . . . , tn) ∈ Ter(Σ,X) if f ∈ Σ with arity n and ∀i(1 ≤ i ≤ n) : ti ∈ Ter(Σ,X). We use
x, y, z, . . . to range over variables. The set of positions Pos(t) ⊆ N∗ of a term t ∈ Ter(Σ,X)
is defined as follows: Pos(f(t1, . . . , tn)) = {⊥} ∪ {ip | 1 ≤ i ≤](f), p ∈ Pos(ti)} and
Pos(x) = {⊥} for variables x ∈ X .

A substitution σ is a map σ : X → Ter(Σ,X). For a term t ∈ Ter(Σ,X) we define tσ
as the result of replacing each x ∈ X in t by σ(x). Formally, tσ is inductively defined by
xσ = σ(x) for variables x ∈ X and otherwise f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ). Let [] be a
fresh symbol, [] 6∈ Σ ∪ X . A context C is a term from Ter(Σ,X ∪ {[]}) containing precisely
one occurrence of []. By C[s] we denote the term Cσ where σ([]) = s and σ(x) = x for all
x ∈ X .

A term rewriting system (TRS) R over Σ and X is a set of pairs 〈`, r〉 ∈ Ter(Σ,X),
called rewrite rules and written as ` → r, for which the left-hand side ` is not a variable
(` 6∈ X), and all variables in the right-hand side r occur in ` as well (Var(r) ⊆ Var(`)). Let
R be a TRS. For terms s, t ∈ Ter(Σ,X) we write s→R t (or briefly s→ t) if there exists a
rule `→ r ∈ R, a substitution σ and a context C ∈ Ter(Σ,X ∪{[]}) such that s = C[`σ] and
t = C[rσ]. The reflexive–transitive closure of → is denoted by �. We call → the one-step
rewrite relation induced by R and � the many-step rewrite or reduction relation. If t� t′

then we call t′ an (R)-reduct of t.

Definition 2.1. Let R be a TRS over Σ and T ⊆ Ter(Σ,X) a set of terms. The family
FamR(T) of T is the set of (not necessarily proper) subterms of R-reducts of terms t ∈ T
(that is, the least set containing t that is closed under reduction and taking subterms).

Partial functions. For partial functions f : A1× . . .×An ⇀ A and a1 ∈ A1, . . . , an ∈ An
we call f(a1, . . . , an) defined and write f(a1, . . . , an)

y whenever 〈a1, . . . , an〉 is in the domain

of f . Otherwise f(a1, . . . , an) is called undefined and we write f(a1, . . . , an)
x. We use

the same terminology and notation for composite expressions involving partial functions.
Between such expression we use Kleene equality:

exp1 ' exp2 ⇐⇒def . (exp1↑ and exp2↑) or (exp1↓ and exp2↓ and exp1 = exp2)

Note that an expression can only be defined if all its subexpressions are.

Definition 2.2. Let A be a set and R a relation on A. We define two properties of an
n-ary partial function f with respect to R.

(i) f is closed if for every a, b ∈ A we have:

f(. . . , a, . . .)
y & a R b ⇒ f(. . . , b, . . .)

y
(ii) f is monotone if for every a, b ∈ A we have:

f(. . . , a, . . .)
y & f(. . . , b, . . .)

y & a R b ⇒ f(. . . , a, . . .) R f(. . . , b, . . .)

4

The functions that we consider will be typically both closed and monotone, which can
be rendered briefly as:

f(. . . , a, . . .)
y & a R b ⇒ f(. . . , a, . . .) R f(. . . , b, . . .)

By writing something like exp1 R exp2 we imply that exp1 and exp2 are defined.

Partial Σ-algebras. We give the definition of a partial algebra:

Definition 2.3. A partial Σ-algebra 〈A, [[·]]〉 consists of a non-empty set A and for each
n-ary f ∈ Σ a partial function [[f]] : An ⇀ A, the interpretation of f . A Σ-algebra 〈A, [[·]]〉
is a partial Σ-algebra 〈A, [[·]]〉 where all interpretations [[f]] for f ∈ Σ are total.

Given a partial Σ-algebra A = 〈A, [[·]]〉 and a (partial) assignment of the variables,
α : X ⇀ A, we can give an interpretation [[t, α]] of terms t ∈ Ter(Σ,X), which, however, will
not always be defined. So the interpretation is a partial function from terms and partial
assignments to A, inductively defined by:

[[x, α]] = α(x)

[[f(t1, . . . , tn), α]] = [[f]]([[t1, α]], . . . , [[tn, α]])

For ground terms t ∈ Ter(Σ,∅) we write [[t]] for short.

Whenever a term t is defined, that is, [[t]]
y, then all subterms of t are defined as

well. This is a consequence of the usual definition of the composition of partial functions
(functional relations); ‘undefined’ is not an element of the domain. We say that a set of
terms T is defined if all terms in T are defined:

Definition 2.4. A set T ⊆ Ter(Σ,∅) is called defined if for all t ∈ T we have [[t]]
y.

Partial models. First, we generalise the models from [Zan95] to partial models.

Definition 2.5. A model for a TRS R is a Σ-algebra 〈A, [[·]]〉 such that [[`, α]] = [[r, α]] for
every rule `→ r ∈ R and every interpretation α : Var(`)→ A of the variables.

Definition 2.6. Let R be a TRS over Σ. A partial model A = 〈A, [[·]]〉 for R is a partial
Σ-algebra A, such that

[[`, α]]
y ⇒ [[`, α]] = [[r, α]]

for every `→ r ∈ R and α : Var(`)→ A.

Thus the condition [[`, α]] = [[r, α]] of models is only required if the interpretation of the
left-hand side is defined, that is, [[`, α]]

y. Observe that a left-hand side ` may be undefined
while the corresponding right-hand side r is defined; the other way around is not permitted.
This asymmetry is crucial, since rewriting may turn an undefined (non-terminating) term
into a defined (terminating) term, but not the other way around.

Definition 2.7. Let A = 〈A, [[·]]〉 be a partial model. The language L(A) of A is:

L(A) = {t ∈ Ter(Σ,∅) | [[t]]
y}

We further generalise the concept of partial models to relations:

5

Definition 2.8. Let R be a TRS over Σ, A = 〈A, [[·]]〉 be a partial Σ-algebra, and � ⊆ A×A
a binary relation. We say that 〈A, [[·]],�〉 is a partial model for R if:

[[`, α]]
y ⇒ [[`, α]] � [[r, α]]

for all `→ r ∈ R and every assignment α : Var(`)→ A. If additionally 〈A, [[·]]〉 is a (total)
Σ-algebra, then 〈A, [[·]],�〉 is called a model for R. Whenever the partial Σ-algebra A is
clear from the context, we say ‘� is a partial model for R’ for short.

Note that 〈A, [[·]]〉 is a partial model if and only if 〈A, [[·]],=〉 is a partial model.

Remark 2.9. The notion of partial models 〈A, [[·]],�〉 is closely related quasi-models [Zan95].
In particular, a quasi-models for a TRS R is a (total) monotone model 〈A, [[·]],≥〉 for R.

Remark 2.10. In Definition 2.6 and 2.8 we could as well quantify over partial assignments
α : X ⇀ A in place of total assignment α : X → A. This gives rise to an equivalent
definition as an undefined value for a variable in the left-hand side ` (and Var(r) ⊆ Var(`))
would result in [[`, α]] being undefined, and thereby invalidate the precondition [[`, α]]

y of
the implication.

3. Local Termination

We devise a complete characterization of local termination based on an extension of the
monotone algebra approach of [EWZ08, Zan94]. The central idea is the use of monotone
partial algebras, that is, the operations of the algebras are allowed to be partial functions.
This idea was introduced in [EGH+09], where these algebras have been employed to ob-
tain a complete characterization of local infinitary strong normalization. First we give the
definition of local termination:

Definition 3.1. Let A be a set and → ⊆ A×A a binary relation on A. Then → is called
terminating on B ⊆ A if no b ∈ B admits an infinite sequence

b = b1 → b2 → . . .

Note that b = b1 ∈ B. The elements b2, b3, . . . , however, may or may not be in B.

Definition 3.2. A TRS R over Σ is called terminating (or strongly normalizing) on T ⊆
Ter(Σ,X), denoted SNR(T), if →R is terminating on T . We write SNR for termination on
the set of all terms Ter(Σ,X).

We introduce the concept of monotone partial Σ-algebras. In contrast with [EdVW09]
we do not require well-foundedness of �. We think that it is conceptually cleaner to distin-
guish the two concepts. Monotone partial Σ-algebras 〈A, [[·]],�〉 for which well-foundedness
of � holds, will be called well-founded.

Definition 3.3. A monotone partial Σ-algebra 〈A, [[·]],�〉 is a partial Σ-algebra 〈A, [[·]]〉
equipped with a binary relation �⊆ A×A on A such that for every f ∈ Σ the function [[f]]
is closed and monotone with respect to �.

A monotone partial Σ-algebra 〈A, [[·]],�〉 is called well-founded if � is well-founded.

Remark 3.4. One could also work with monotone, total algebras instead of partial algebras,
by adding an “undefined” element ⊥ to the domain. Then defining ⊥ to be maximal, ⊥ � a
for every a ∈ A \ {⊥}, monotonicity of a function will automatically entail closedness. In

6

order to get full correspondence with our framework of partial algebras, we would in this
set-up only consider strict functions (that is, the value of the function is ⊥ whenever one of
the arguments is ⊥).

The following theorem gives a complete characterization of local termination in terms
of monotone partial algebras.

Theorem 3.5. Let R be a TRS over Σ, and T ⊆ Ter(Σ,∅). Then SNR(T) holds if and
only if there exists a well-founded monotone partial Σ-algebra A = 〈A, [[·]],�〉 such that T
is defined, and � is a partial model for R.

Proof. Theorem 3.5 is proved in the same way as Theorem 4.6 (using Remark 4.2).

To keep the presentation simple, the theorem characterizes local termination for sets
of ground terms T ⊆ Ter(Σ,∅) only. Indeed, the theorem can easily be generalized to
sets of open terms by, instead of just a well-founded monotone partial algebra, additionally
requiring a variable assignment α. A set of terms T is then called defined if for that α we
have [[t, α]]

y for every t ∈ T .

Remark 3.6. In case T = Ter(Σ,∅) is the set of all ground terms, Theorem 3.5 basi-
cally coincides with the usual theorem for proving termination using (total) well-founded
monotone Σ-algebras. More precisely, the subalgebra of A containing all elements that are
interpretations of ground terms (leaving out the junk) is a (total) well-founded monotone
Σ-algebra proving termination of R.

Example 3.7. We consider the S combinator with the rewrite rule

Sxyz → xz(yz)

from combinatory logic. That is:

@(@(@(S, x), y), z)→ @(@(x, z),@(y, z))

in first order notation. The @(M,N) is abbreviated by MN .
The S combinator is known to be globally non-terminating. For example the term

S(SS)(SS)(S(SS)(SS)) admits an infinite reduction, see further [Zac78]. We have, however,
local termination on certain sets of terms, for example the set of “flat” S-terms:

T = {Sn | n ∈ N, n ≥ 1}

where S1 = S and Sn+1 = @(Sn, S).
We prove strong normalization on T using the well-founded monotone partial Σ-algebra

A = 〈A, [[·]],�〉, where A = {s} ∪ N and the interpretation [[·]] is given by:

[[S]] = s [[@]](s, s) = 0 [[@]](0, n) = n+ 1 [[@]](n, s) = 2 · n+ 1

for all n ∈ N and [[@]](x, y)
x for all other cases. Let � be the natural order on N; that is,

s is neither source nor target of a � step. Then well-foundedness of � and monotonicity of
[[@]] are obvious, and T is defined. We have [[Sxyz, α]]

y only if α(x) = s and α(z) = s; then
we obtain:

[[Sxyz, α]] = 3 � 1 = [[xz(yz), α]] for α(y) = s

[[Sxyz, α]] = 2 · α(y) + 3 � 2 · α(y) + 2 = [[xz(yz), α]] for α(y) ∈ N
Hence � is a partial model for Sxyz → xz(yz) and we conclude termination on T .

7

Example 3.8. We recall the Haskell program from the introduction:

fac(0) :: Integer→ Integer

fac(0) = 1

fac(n) = n · fac(n− 1)

We remark that the standard Haskell data type Integer allows for negative numbers. For this
reason the program is not globally terminating, but only locally on non-negative integers.
The usual implementation of the factorial function as TRS makes use of Peano numerals for
encoding natural numbers using a constant ‘0’ and a unary symbol ‘s’ for successor. Then
the problem of negative numbers does not occur.

For the purpose of modeling the Haskell program as close as possible, we have chosen
for a different encoding of the factorial function as TRS. For encoding negative numbers we
extend Peano numerals with a unary symbol ‘−’. Since standard term rewriting does not
allow for a priority order on rules, we need to dissolve ambiguities, that is, overlaps between
the rules, by instantiating the variables; e.g. for the factorial function fac the variable n
needs to be instantiated with s(n) and −(n) to match exactly the integers (in this case 0)
not covered by the first rule. As the result of the translation we obtain the TRS R:

fac(0)→ s(0) (ρ1)

fac(s(x))→ mul(s(x), fac(x)) (ρ2)

fac(−(x))→ mul(−(x), fac(−(s(x)))) (ρ3)

mul(x, 0)→ 0 (ρ4)

mul(0, y)→ 0 (ρ5)

mul(x, s(y))→ add(mul(x, y), x) (ρ6)

mul(s(x),−(y))→ −(mul(s(x), y)) (ρ7)

mul(−(x),−(y))→ mul(x, y) (ρ9)

add(x, 0)→ x (ρ10)

add(0, y)→ y (ρ11)

add(x, s(y))→ s(add(x, y)) (ρ12)

add(s(x),−(s(y)))→ add(x,−(y)) (ρ13)

add(s(x),−(0))→ s(x) (ρ14)

add(−(x),−(y))→ −(add(x, y)) (ρ15)

This TRS is globally non-terminating due to the rewrite sequence:

fac(−(x))→ mul(−(x), fac(−(s(x))))

→ mul(−(x),mul(−(x), fac(−(s(s(x))))))→ . . .

We prove local termination on the set T = {fac(sn(0)) | n ∈ N}. Let A = 〈N, [[·]], >〉 where
> is the natural order on N, and the interpretation [[·]] is given by:

[[0]] = 0 [[s]](n) = n+ 1 [[fac]](n) = (2n+ 2)!

[[mul]](n,m) = 2(n+ 1)(m+ 1) [[add]](n,m) = n+ 2m+ 1 [[−]](n,m)
x

8

for all n,m ∈ N. For all left-hand sides ` of (ρ3), (ρ7), (ρ9), (ρ13), (ρ14), (ρ15) and all
α : X → N we have [[`, α]]

x; thus > is a partial model for these rules. For the remaining
rules we have:

[[fac(0), α]] = 2 > 1 = [[s(0), α]]

[[fac(s(x)), α]] = (2α(x) + 4)! = (2α(x) + 4) · (2α(x) + 3)! >

2((2α(x) + 2)! + 1)(α(x) + 2) = [[mul(fac(x), s(x)), α]]

[[mul(x, 0), α]] = 2(α(x) + 1) > 0 = [[0, α]]

[[mul(0, y), α]] = 2(α(y) + 1) > 0 = [[0, α]]

[[mul(x, s(y)), α]] = 2(α(x) + 1)(α(y) + 2) >

2(α(x) + 1)(α(y) + 1) + α(x) + 1 = [[add(mul(x, y), x), α]]

[[add(x, 0), α]] = α(x) + 1 > α(x) = [[x, α]]

[[add(0, y), α]] = 2α(y) + 1 > α(y) = [[y, α]]

[[add(x, s(y)), α]] = α(x) + 2(α(y) + 1) + 1 > α(x) + 2α(y) + 2 = [[s(add(x, y)), α]]

for all α : X → N. Hence > is a partial model for all rules in R. Moreover, T is defined
(that is, T↓) since [[fac(sn(0))]] = (2n+ 2)! ∈ N. By Theorem 3.5 we conclude SNR(T), that
is, R is terminating on T .

4. Local Relative Termination

We define local relative termination.

Definition 4.1. Let A be a set and →1, →2 ⊆ A×A binary relations. Then →1 is called
terminating relative to →2 on B ⊆ A, denoted SN→1/→2

(B), if →1 /→2 = �2 · →1 ·�2

is terminating on B. We write SN→1/→2
for relative termination on A.

Let R, S be TRSs over Σ, and T ⊆ Ter(Σ,X). Then the TRS R is called terminating (or
strongly normalizing) relative to S on T , denoted SNR/S(T), if →R is terminating relative
to →S on T . We write SNR/S for relative termination on all terms Ter(Σ,X).

Remark 4.2. Termination of R relative to S on T is equivalent to: no term t ∈ T that
admits an infinite rewrite sequence t = t1 →R∪S t2 →R∪S . . . containing an infinite number
of →R steps. Furthermore we have SNR(T) if and only if SNR/∅(T).

Definition 4.3. An extended well-founded monotone partial Σ-algebra 〈A, [[·]],�,w〉 consists
of monotone partial Σ-algebras 〈A, [[·]],�〉 and 〈A, [[·]],w〉 such that SN�/w holds.

Note that SN�/w implies that 〈A, [[·]],�〉 is well-founded. The usual condition ‘� · w ⊆ �
and well-foundedness of �’ is a special case of our condition ‘SN�/w’:

Lemma 4.4. Let A be a set and w, � ⊆ A×A binary relations such that � is well-founded.
Then � · w ⊆ � implies SN�/w.

Proof. Assume that SN�/w would not hold. Then there exists an infinite (� ∪ w)-sequence
containing infinitely many � steps. Using � · w ⊆ � we can remove all intermediate w-
steps giving rise to an infinite �-sequence, contradicting well-foundedness of �.

9

Lemma 4.5. Let 〈A, [[·]],�,w〉 be an extended well-founded monotone partial Σ-algebra and
let R and S be TRSs over Σ such that � is a partial model for R, and w is a partial model
for S. Furthermore, assume for s ∈ Ter(Σ,∅) that [[s]]

y. Then we have the implications:

(i) s→R t ⇒ [[s]] � [[t]], and
(ii) s→S t ⇒ [[s]] w [[t]].

Proof. The proofs of (i) and (ii) are identical, we just prove (ii). Let s→S t, that is, we have
a rule ` → r ∈ S, substitution σ and context C such that s = C[`σ] and t = C[rσ]. Since
[[s]]

y and `σ is a subterm of s, we also have [[`σ]]
y, so [[`, α]] w [[r, α]], as w is a partial model

for S. Then using closedness and monotonicity of the interpretations [[f]] of all function
symbols f ∈ Σ we obtain [[s]] w [[t]].

We give a complete characterization of local relative termination in terms of extended
monotone partial algebras.

Theorem 4.6. Let R and S be TRSs over Σ, and T ⊆ Ter(Σ,∅). Then SNR/S(T) holds if
and only if there is an extended well-founded monotone partial Σ-algebra A = 〈A, [[·]],�,w〉
such that the set T is defined, � is a partial model for R, and w is a partial model for S.

Proof. For the ‘only if’-part assume that SNR/S(T) holds. Let A = 〈A, [[·]],�,w〉 where A =
FamR∪S(T) and the interpretation of a function symbol f ∈ Σ is defined by [[f]](t1, . . . , tn) =
f(t1, . . . , tn) if f(t1, . . . , tn) ∈ A, and [[f]](t1, . . . , tn)

x otherwise. The relations w and � are
defined by w = �R∪S ∩ (A×A) and � = (→R ·�R∪S) ∩ (A×A).

We verify that A is an extended well-founded monotone partial Σ-algebra. Suppose
� would not be well-founded. Then there exists t ∈ FamR∪S(T) admitting an infinite
→R · �R∪S rewrite sequence, contradicting SNR/S(T). We have � · w ⊆ � by definition,
and consequently SN�/w by Lemma 4.4. For f ∈ Σ we show that [[f]] is closed and monotone
with respect to � (for w the reasoning is the same). Consider s, t ∈ A with s � t. Whenever
[[f]](. . . , s, . . .)

y we have also [[f]](. . . , t, . . .)
y (since the family FamR∪S(T) is closed under

rewriting), and hence [[f]](. . . , s, . . .) � [[f]](. . . , t, . . .) as a consequence of the closure of
rewriting under contexts. Hence A is an extended well-founded monotone partial Σ-algebra.

The set T is defined, since for every term s ∈ T we have [[s]]
y by definition. It remains to

be proved that � is a partial model for R, and w a partial model for S. We only consider �,
as the reasoning for w is the same. Let `→ r ∈ R and α : X → A such that [[`, α]]

y. Then
[[`, α]] = `α→R rα = [[r, α]]. Then [[`, α]] � [[r, α]] because both [[`, α]] ∈ A and [[r, α]] ∈ A.

For the ‘if’-part assume thatA = 〈A, [[·]],�,w〉 fulfilling the requirements of the theorem
is given. Assume that SNR/S(T) would not hold. Then there exists t0 ∈ T which admits
an infinite →R ∪→S rewrite sequence t0 → t1 → . . . containing an infinite number of →R-
steps. By Lemma 4.5 this sequence then would give rise to an infinite � ∪ w sequence:
[[t0]] (� ∪w) [[t1]] (� ∪w) . . . containing infinitely many �-steps, contradicting SN�/w.

Example 4.7. We consider a simple example to illustrate the method:

R = {a→ b} S = {b→ b, f(b)→ f(a)} T = {a}
Global relative termination SNR/S does not hold, e.g. not on f(a). However on T the rule
a → b is terminating relative to the other rules. We can prove this using the extended
well-founded monotone partial Σ-algebra A = 〈{0, 1}, [[·]], >,≥〉. The interpretations are
given by: [[a]] = 1, [[b]] = 0 and [[f]](x)

x for all x ∈ A. Then T is defined, � is a partial
model for R ([[a]] = 1 > 0 = [[b]]), and w is a partial model for S ([[b]] = 0 ≥ 0 = [[b]] and
[[f(b)]]

x). Hence we conclude SNR/S(T) by an application of Theorem 4.6.
10

See further Example 9.6 in Section 9 for a non-trivial example.

5. Stepwise Removal of Rules

For termination proofs it is common practice to weaken the proof obligation stepwise
by removing rules. The idea is to find interpretations such that a part R′ ⊆ R of the rules is
decreasing (�) and the remaining rules are weakly decreasing (w). Then for termination of
R it suffices to prove termination of the rules in the complement R \R′. We would also like
to have this possibility for proofs of local termination. However, for local termination we
cannot simply remove (and then forget about) the strictly decreasing rules, as the following
example illustrates.

Example 5.1. Consider the set T = {a} in the TRS with the following rules:

a→ b b→ b

We define a monotone partial Σ-algebra 〈N, [[·]], >〉 by [[a]] = 1 and [[b]] = 0. Then the rule
a→ b is decreasing (> is a partial model) since [[a]] > [[b]], and for b→ b we have [[b]] = [[b]].
However, removing the strictly decreasing rule a→ b is not sound, since the resulting TRS
is terminating on T .

Let us briefly elaborate on the following theorem which enables us to remove rules
stepwise. Assume that the goal is proving that R is terminating relative to S on T , that
is, SNR/S(T). We start with zero knowledge: SN∅/R∪S(T). We search for an interpretation
that makes a part R′ ⊆ R of the rules decreasing (�) and the remaining rules in R∪S weakly
decreasing (w). Then the rules in R′ can only be applied finitely often: SNR′/((R\R′)∪S)(T).
But how to proceed? As we have seen above, we cannot simply forget about the rules R′,
but need to take into account their influence on the family FamR∪S(T). A possible and
theoretically complete solution would be to require these rules to be weakly decreasing (w).
However, for practical applicability this requirement seems too strict as it imposes heavy
restrictions on the termination order. We propose a different approach, which allows the
‘removed’ rules R′ to change arbitrarily, even increase, the interpretation of the rewritten
terms, as long as rewriting defined terms yields defined terms again. For this purpose we
introduce a relation ; on A, which is a partial model for the already removed rules, and
thereby guarantees that these rules preserve definedness.

Theorem 5.2. Let R, R′ and U be TRSs over Σ, and T ⊆ Ter(Σ,∅) a set of terms such
that SNU/(R∪R′)(T) holds. Then SN(U∪R′)/R(T) holds if and only if there exists an extended
well-founded monotone partial Σ-algebra A = 〈A, [[·]],�,w〉 and a relation ; on A such
that:

(i) the set T is defined,
(ii) 〈A, [[·]],;〉 is a monotone partial Σ-algebra, and

(iii) �, w and ; are partial models for R′, R and U , respectively.

Proof. Straightforward extension of the proof of Theorem 4.6. The ‘only if’-part follows
immediately by taking ; = �. For the ‘if’-part consider an infinite reduction t1 → t2 → . . .
with t1 ∈ T . Then since ; is a partial model for U , we conclude ∀i ∈ N. [[ti]]

y. Moreover,
as a consequence of SNU/(R∪R′)(T) we can cut off the prefix of the sequence containing the
finitely many U steps.

11

Example 5.3. We reconsider Example 3.8, and prove termination of R on T . The usage
of Theorem 5.2 allows for a simpler stepwise termination proof. In particular, for removing
the rules for fac we can employ the standard interpretation mul as · and add as +. Let
A = 〈N, [[·]], >,≥〉 where > is the natural order on N, and [[·]] is given by:

[[0]] = 0 [[s]](n) = n+ 1 [[fac]](n) = (n+ 2)!

[[mul]](n,m) = n ·m [[add]](n,m) = n+m [[−]](n,m)
x

for all n,m ∈ N. Then > is a partial model for (ρ1) and (ρ2):

[[fac(0), α]] = 2 > 1 = [[s(0), α]]

[[fac(s(x)), α]] = (α(x) + 3)! > (α(x) + 1)(α(x) + 2)! = [[mul(fac(x), s(x)), α]]

and obviously≥ is a partial model for the other rules. Let U1 = {(ρ1), (ρ2)}, andR1 = R\U1.
Then by Theorem 5.2 it suffices to show SNU1/R1

(T) to conclude SNR(T).
As second step, we remove the mul rules. Let A = 〈N, [[·]], >,≥〉 with:

[[0]] = 0 [[s]](n) = n+ 1 [[fac]](n) = n

[[mul]](n,m) = (n+ 1) · (m+ 1) [[add]](n,m) = n+m [[−]](n,m)
x

for all n,m ∈ N. Recall that the rules from U1 have to be taken into consideration as they
have an impact on the set of reachable terms (otherwise the set of terms T would consist
only of normal forms). Nevertheless, the rule (ρ2) from U1 is not (weakly) decreasing, that
is, ≥ is not a partial model for (ρ2) with respect to the above interpretation:

[[fac(s(x)), α]] = α(x) + 1 6≥ (α(x) + 1) · (α(x) + 2) = [[mul(fac(x), s(x)), α]]

This is also not necessary. It suffices that U1 is decreasing with respect to any other relation
; guaranteeing that all reachable terms are defined. For the current example we can choose
the ‘total’ relation ; = {(n,m) | n,m ∈ N} relating all pairs of natural numbers. Then ;

is a partial model for U1, and all [[f]] for f ∈ Σ are closed and monotone with respect to ;.
The rules (ρ4), (ρ5), and (ρ6) are decreasing (> is a partial model), for all α : X → N:

[[mul(x, 0), α]] = α(x) + 1 > 0 = [[0, α]]

[[mul(0, y), α]] = α(y) + 1 > 0 = [[0, α]]

[[mul(x, s(y)), α]] = (α(x) + 1) · (α(y) + 2) >

(α(x) + 1) · (α(y) + 1) + α(x) = [[add(mul(x, y), x), α]]

The remaining rules in R1 are weakly decreasing (that is, ≥ is a partial model). We define
U2 = U1∪{(ρ4), (ρ5), (ρ6)}, and let R2 = R1\U2. Then by Theorem 5.2 SNU2/R2

(T) implies
SNU1/R1

(T).
Finally, we employ the algebra A = 〈N, [[·]], >,≥〉 with:

[[0]] = 0 [[s]](n) = n+ 1 [[fac]](n) = n

[[mul]](n,m) = n+m [[add]](n,m) = n+ 2m [[−]](n,m)
x

for all n,m ∈ N, together with ; = {(n,m) | n,m ∈ N}. Thereby > is a partial model for
all rules from R2, and ; is a partial model for U2. Hence, we conclude SNU2/R2

(T), and
thus SNR(T).

For other applications of the theorem see Examples 9.6 and 9.7 in Section 9.

12

6. Via Models from Local to Global Termination

In this section we describe an easy transformation from local to global termination
based on an adaptation of semantic labeling [Zan95]. For this purpose we generalise the
concept of models from [Zan95] to partial models. Whenever the language T for which we
are interested in termination can be described by a partial model, that is, T = {t | [[t]]

y},
then semantic labeling allows for a simple, complete transformation from local to global
termination. Here complete means that the original system is locally terminating on T if
and only if the transformed, labeled system is globally terminating.

We define a variant of semantic labeling where each symbol is labeled by the tuple of
the values of its arguments.

Definition 6.1. Let Σ be a signature, and let A = 〈A, [[·]]〉 be a partial Σ-algebra. For
t ∈ Ter(Σ,X) and α : Var(t)→ A such that [[t, α]]

y, the labeling labA(t, α) of t with respect
to α is defined as follows:

labA(x, α) = x

labA(f(t1, . . . , tn), α) = f [[t1,α]],...,[[tn,α]](labA(t1, α), . . . , labA(tn, α)) .

over the signature labA(Σ) = {fλ | f ∈ Σ, λ ∈ A](f) such that [[f]](λ)
y}

In order to obtain a complete transformation we need to restrict the models to their
core, that is, those elements that are interpretations of ground terms.

Definition 6.2. Let A = 〈A, [[·]]〉 be a partial Σ-algebra. Then the core Ac ⊆ A of A is
the smallest set such that [[f]](a1, . . . , an) ∈ Ac whenever f ∈ Σ and a1, . . . , an ∈ Ac with
[[f]](a1, . . . , an)

y. We say that A is core if A = Ac.

By construction of the core we have Ac = {[[t]] | t ∈ Ter(Σ,∅), [[t]]
y}. The restriction

of a model to its core does not change its language, thus in the sequel we can without loss
of generality assume that all models are core.

We have arrived at the transformation from local to global termination. The rules are
labeled as known from semantic labeling with the exception that labeled rules are thrown
away if the interpretation of their left-hand side is undefined.

Definition 6.3. Let R be a TRS over Σ, and A = 〈A, [[·]]〉 a partial Σ-algebra. We define
the labeling of R as the TRS labA(R) over the signature labA(Σ) by:

labA(R) = {labA(`, α)→ labA(r, α) | `→ r ∈ R, α : Var(`)→ A such that [[`, α]]
y} .

A TRS is collapsing if it contains rules of the form `→ x with x ∈ X . Such collapsing
rules can be eliminated by replacing them with all instances `σf → xσf for every f ∈ Σ
where σf (x) = f(x1, . . . , xn) with x1, . . . , xn pairwise different, fresh variables.

Theorem 6.4. Let R be a non-collapsing TRS over Σ, and A = 〈A, [[·]]〉 a core partial model
for R. Then R is locally terminating on L(A) if and only if labA(R) is globally terminating.

Proof. We introduce types for labA(R) over the sorts A. For every symbol fλ ∈ labA(Σ)
with λ = 〈a1, . . . , a](f)〉 we define fλ to have input sorts 〈a1, . . . , an〉 and output sort
[[f]](a1, . . . , an). Then [Ohl02, Proposition 5.5.24] with non-collapsingness of labA(R) yields
that labA(R) is terminating if and only if all well-sorted terms are terminating. Since A is
core there exists a well-sorted ground term for every sort in A. Thus by application of a
ground substitution we can assume that all rewrite sequences contain only ground terms,
and the set of well-sorted ground terms is exactly the language L(A) of the model A.

13

To apply Theorem 6.4 for proving local termination of R on a set of terms T we have
to find a partial model A for R such that T ⊆ L(A). Then global termination of labA(R)
implies local termination of R on T . If moreover we have Fam(T) = L(A), then the
transformation is complete, that is, the converse implication holds as well.

Example 6.5. We revisit Example 3.7 on the S combinator with T = {Sn | n ∈ N}.
We choose the partial model A = 〈A, [[·]]〉, where A = {0, 1, 2} and the interpretation
is defined by: [[S]] = 0, [[@]](0, 0) = 1, [[@]](1, x) = 2 for all x ∈ A, [[@]](2, 0) = 2, and
↑ otherwise. Then T ⊆ L(A) and a short proof even shows that Fam(T) = L(A). The
labeling labA({Sxyz → xz(yz)}) is:

@2,0(@1,0(@0,0(S, x), y), z)→ @1,1(@0,0(x, z),@0,0(y, z))

@2,0(@1,1(@0,0(S, x), y), z)→ @1,2(@0,0(x, z),@1,0(y, z))

@2,0(@1,2(@0,0(S, x), y), z)→ @1,2(@0,0(x, z),@2,0(y, z)) .

The other labeled rules are thrown out as their left-hand side is undefined. Global termi-
nation of the transformed system can be shown by the recursive path order [Der82].

7. Starling and Owl

In this section we consider TRSs with the property that strong and weak normalisation
coincide. In case the language of normalising terms happens to be regular, we show how
a tree automaton (partial model) can be found accepting exactly the (closed) normalising
terms. We automated this procedure. Then we label the TRS with the obtained partial
model, and employ Theorem 6.4 to transform the local termination problem for the set of
normalising terms to global termination of the labelled TRS.

Since in orthogonal, non-erasing term rewriting systems strong and weak normalisation
coincide, these form a typical area where the method can be applied. In this section we illus-
trate this construction with two well-known examples from combinatory logic (CL) [Cur30].
We use Smullyan’s bird nicknames of the combinators [Smu90].

(i) The Owl, corresponding to the rewrite rule:

δ xy → y(xy)

(ii) The Starling

S xyz → xz(yz),

also known as the fragment CL(S) of combinatory logic consisting of all terms solely
built from application and the S-combinator.

The termination problem of Smullyan’s Owl has been solved in [Klo07]. Here, it serves as
illustrating example.

The termination problem of CL(S) is non-trivial, and its word problem is still open.
In [Wal00] decidability of strong normalisation of terms in CL(S) has been shown, and we
are aiming at a formal verification of the following proposition:

Proposition 7.1 ([Wal00]). The set of normalising ground S-terms is a rational language.

We now turn to the construction of the partial models.

Definition 7.2. For a tree language L, its Nerode congruence ∼L is the relation on ground
terms given by t1 ∼L t2 ⇐⇒ ∀ground C[] : C[t1] ∈ L ⇐⇒ C[t2] ∈ L.

14

The next lemma follows easily by considering the Nerode congruence [CDG+07].

Lemma 7.3. If a TRS R has the property that every ground term is weakly normalising if
and only if it is strongly normalising, and N is the language of normalising ground terms,
then

• each congruence class of ∼N is closed under R-rewriting and closed R-expansion,
• the complement of N occurs as one of the ∼N congruence classes.

Proof. Note that under the assumptions on R, for each term t ∈ N and each subterm s of
a term in N we have s ∈ N . In other words, s /∈ N implies C[s] /∈ N . Also, for all ground
terms t1, t2 with t1 →R t2 we have t1 ∈ N ⇐⇒ t2 ∈ N . The claims follow.

In particular weak and strong normalisation of terms coincide for every orthogonal and
non-erasing TRS; this applies for CL(S) as well as Smullyan’s Owl. We note that the set of
congruence classes of ∼N can in general be infinite, even for orthogonal, non-erasing TRSs.

Example 7.4. We consider an example of an orthogonal, non-erasing TRS where the set
of congruence classes of ∼N is infinite. Let R consist of the rules:

a(b(x))→ x c(c(d))→ c(c(d))

over the signature Σ = {a, b, c, d} with d a constant. Here, terms of the from c(an(bn(c(d))))
are non-terminating, while all terms of the form c(an(bm(c(d)))) with n 6= m are terminating.
Hence none of the terms bn(c(d)) for n ∈ N can be in the same congruence class of ∼N .

Corollary 7.5. If the set of congruence classes of ∼N is finite, then the minimal complete
deterministic bottom-up tree automaton for N is finite and a model for R.

Thus, if the set of congruence classes of ∼N is finite, then the set of normalising terms
is a regular language. Assume that we are lucky and the set of congruence classes is finite.
How can we find the regular automaton accepting the set of normalising terms?

A manual analysis and construction of the automaton as in [Wal00] can be tedious and
error-prone. The reference contains a hand-made tree grammar (top-down non-determinis-
tic tree automaton A) and claims:

• the S rule is locally terminating on L(A),
• L(A) contains all normal forms,
• A is closed under inverse application of the S rule.

Starting from that grammar, we can indeed compute a bottom-up minimal deterministic tree
automaton B with L(B) = L(A) (strangely, it has 39 states, and not 43, as claimed in the
reference).

We propose a different, automatable approach for finding a regular automaton accepting
the language of all normalising terms. The idea is to employ the definition of the Nerode
congruence for ‘guessing’ the congruence classes. Here we use the word ‘guess’ in place of
‘compute’ since we need to check whether a term C[s] is terminating. This property is in
general undecidable. We can, however, make an educated guess by choosing a large enough
d and checking whether C[s] admits a rewrite sequence of length d with respect to some
strategy ;. Note that the strategy ; can be chosen arbitrarily since we assume that weak
and strong normalisation coincide.

Definition 7.6. [TeR03] A strategy ; for a TRS R is a relation ; ⊆ →R on Ter(Σ,X)
having the same normal forms as →R. A strategy ; is called deterministic if every term t
has at most one reduct s, that is, t; s.

15

The following algorithm searches for a partial model for the language of normalising
terms. The algorithm depends on a strategy ; for R and parameters c, d ∈ N where c is the
maximal depth of contexts C, and d is the length of ;-reductions used to guess whether a
term is normalising.

Instead of the full Nerode congruence of the set of R-normalizing terms, which might
be undecidable, we use an decidable equivalence relation ∼ on terms given by s ∼ t iff for
each context C[] of height ≤ c, either both C[s] and C[t] have a ;-derivation of length at
least d, or both don’t.

Algorithm 7.7. Starting from the full relation ∼0 that relates all pairs of terms, we com-
pute successive refinements ∼0 ⊃ ∼1 ⊃ Each ∼i is given as a finite set of representatives
Ti = {ti,1, . . . , ti,|Ti|} with k 6= l ⇒ ti,k 6∼ ti,l, where ∼ is the Nerode-like relation defined
above. The ∼i-equivalence class of non-normalizing terms is not explicitly represented. By
Lemma 7.3, this is no loss of information. The full relation ∼0 is given by T0 = ∅. We set
Ti+1 = Ti ∪ {s} where s = f(s1, . . . , sa), for a choice of function symbol f of arity a, and
terms (s1, . . . , sa) ∈ T ai , such that the ;-derivation of s has length < d, and s 6∼ t for each
t ∈ Ti. The algorithm stops if no such s can be found.

We remark that T1 consists of one element, which is a term containing a nullary symbol
only. Each ∼i computed by this algorithm constitutes a partial algebra (on the carrier Ti),
since each step of the algorithm defines one part of the interpretation of a function symbol.

The goal is that the output algebra is a partial model for R, exactly capturing the
Nerode congruence. This may fail, for two reasons. If d is chosen too small, then a nor-
malising term C[s] may mistakenly be considered non-normalising. If c is too small, then
terms may accidentally be identified, although they behave differently when put into larger
contexts.

Nevertheless, it can be shown that if the language of normalising terms is regular,
then there exist appropriate parameters c and d such that the algorithm will compute the
correct partial model, see Lemma 7.8. The case of having chosen c or d too small can be
detected after running the algorithm as follows. Let A be the algebra computed by the
algorithm. It can be effectively checked whether A is a partial model for R, and whether all
undefined terms [[t]]

x contain a redex with respect to R. Then it automatically follows that
all undefined terms are non-normalising. Finally we can employ Theorem 6.4 to transform
the termination problem for all defined terms [[t]]

y into an equivalent global termination
problem of labA(R). If we find a termination proof for labA(R), then the partial model A is
correct and accepts exactly the language of normalising terms.

Lemma 7.8. Let R be a TRS such that every ground term is weakly normalising if and
only if it is strongly normalising. If the language N of normalising terms is regular, then
there exist appropriate parameters c and d such that Algorithm 7.7 computes the correct
partial model accepting exactly N .

Proof. If the languages N is regular, then the set of congruence classes of ∼N is finite. Let
n = |Ter(Σ,∅)/∼N |, and let T ⊆ Ter(Σ,∅) be the set of all ground terms of height ≤ n+ 1.
Then T contains at least one representative tD ∈ T for every D ∈ Ter(Σ,∅)/∼N . For every
pair 〈tD1 , tD2〉 of representatives with tD1 6= tD2 we pick a ‘discriminating’ context C such
that C[tD1] ∈ N 6⇔ C[tD2] ∈ N . Let C be the set of these (finitely many) contexts. We
choose for c the maximal depth of all contexts in C ∈ C, and for d the maximal length of
a ;-reduction of all normalising C[t] ∈ N with C ∈ C and t ∈ T . Then the choice of d

16

guarantees that terms C[t] will not accidentally be identified as non-terminating, and the
choice of c guarantees that all non-equivalent terms in Ti will be distinguished.

We have implemented Algorithm 7.7; the Haskell source can be downloaded from:

http://infinity.few.vu.nl/local/

We have applied the algorithm on Smullyan’s Owl and CL(S), obtaining in both cases the
minimal partial algebra accepting the language of all normalising terms. Further details,
including the respective partial models, are given below.

Example 7.9 (Smullyan’s Owl). Smullyan’s Owl serves as illustrating example. The set
of normalising Owl-terms has been found in [Klo07]. The Owl corresponds to the following
rewrite rule:

δ xy → y(xy)

or, equivalently, in first order notation:

@(@(δ, x), y)→ @(y,@(x, y)) (7.1)

Applied to Rule (7.1), Algorithm 7.7 computes the partial model A = 〈{0, 1}, [[·]]〉 where
[[δ]] = 0, and the interpretation of @ is given in Table 1.

0 1
0 1 1
1 1 -

Table 1: Interpretation [[@]](x, y) for the Owl with x on the left and y on the top.

Examples for terms t ∈ L(A), that is, normalising terms, are

δδδ . . . δ, δ(δδ . . . δ)δ . . . δ, and δ(δ(δδ)δδ)δδδ

For an example of a non-normalising term take δδ(δδ). In words, the set of undefined
(non-normalising) terms can be described as follows: a term is undefined if it contains two
distinct occurrences of δδ. Note that the term δδδ . . . δ = (. . . ((δδ)δ) . . .)δ contains only one
occurrence of δδ (or @(δ, δ) in first-order notation).

First, we check that A is a partial model for R:

[[δ xy, α]] = 1 = [[y(xy), α]] for α(x) = 0, α(y) = 0

[[δ xy, α]]
x and [[y(xy), α]]

x for α(x) = 0, α(y) = 1

[[δ xy, α]] = 1 = [[y(xy), α]] for α(x) = 1, α(y) = 0

[[δ xy, α]]
x and [[y(xy), α]]

x for α(x) = 1, α(y) = 1

Second, we use induction on the term structure to show that every undefined term contains
a redex. Let t ∈ Ter(Σ,∅) be a term such that [[t]]

x. Then by definition of [[·]] the

term t is of the form t = @(t1, t2) and either [[t1]] = [[t2]] = 1, or [[t1]]
x, or [[t2]]

x. In the
latter two cases it suffices to apply the induction hypothesis to t1 or t2, respectively. Thus,
let [[t1]] = [[t2]] = 1. We use induction on the term structure of t1. Again, by definition of [[·]]
the term t1 is of the form t1 = @(t′1, t

′
2) with [[t′1]] = 0, or [[t′1]] = 1. If [[t′1]] = 0, then t′1 = δ

and t = @(@(δ, t′2), t2), and hence t contains a redex. For [[t′1]] = 1 we finish by applying the
second induction hypothesis.

17

Third, we prove termination for all defined terms. An application of Theorem 6.4 yields
the following labelled TRS:

@1,0(@0,0(δ, x), y)→ @0,1(y,@0,0(x, y)) for α(x) = 0, α(y) = 0

@1,0(@0,1(δ, x), y)→ @0,1(y,@1,0(x, y)) for α(x) = 1, α(y) = 0

Termination of this system can easily be proven; for example AProVE [GTSKF04] finds a
termination proof using the recursive path order.

Thus, indeed, A is a partial model accepting exactly the normalising δ-terms.

Example 7.10 (The set of normalising S-terms). For CL(S), Algorithm 7.7 returns
the partial model A = 〈A, [[·]]〉 where A = {0, 1, . . . , 37}, [[S]] = 4, and the interpretation of
@ is given in Table 2. Indeed, it can be checked that A is equivalent to the grammar given
in [Wal00].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
0 36 36 36 27 1 36 37
1 34 35 35 32 2 36 37 37 37 36 37 36 36 37
2 36 36 36 33 2 37
3 2 2 2 1 0 9 8 10 8 9 10 12 12 14 14 16 16 24 18 19 20 21 22 26 24 25 26 27 28 29 30 31 32 33 34 35 36 37
4 6 7 7 5 3 11 18 18 18 13 18 15 15 18 18 18 18 28 28 23 26 26 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28
5 32 32 32 17 19 27 33 33 33 33 33 33 33 33 33 33 33 33 33 33 31 31 33 33 33 33 33 33 33 31 31 31 33 33 36 36 36 37
6 34 34 34 29 20 36 37
7 35 35 35 30 21 36 37
8 36 36 36 31 20 37
9 36 36 36 33 19 37

10 36 36 36 31 21 37
11 36 36 36 22 25 36 37 37 37 36 37 36 36 37 37 37 37 37 37 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
12 36 36 36 33 25 37
13 36 36 36 31 30 36 37 37 37 36 37 36 36 37 37 37 37 37 37 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
14 36 36 36 31 30 37
15 36 36 36 31 31 36 37 37 37 36 37 36 36 37 37 37 37 37 37 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
16 36 36 36 31 31 37
17 36 36 36 35 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
18 37 37 37 37 36 37
19 37 37 37 36 27 37
20 37 32
21 37 33
22 37 37 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
23 36 36 36 36 36 36 37 37 37 36 37 36 36 37
24 36 36 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
25 37 37 37 37 36 37
26 36 36 36 36 36 37
27 37
28 37
29 37 34
30 37 36
31 37 37
32 37 37 37 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
33 37
34 35
35 36
36 37
37

Table 2: Transition table for [[@]](x, y) with x left, y top.

We have formally verified (using the proof assistant Coq [Coq]) that A is a partial
model for CL(S) and that the language of A contains all normalising terms.

For proving that CL(S) is terminating on the language of A we have transformed the lo-
cal into a global termination problem using Definition 6.3. The resulting TRS contains 1800
rules which are globally terminating, as can be shown using the DP transformation with SCC
decomposition [AG00] together with simple projections and the subterm criterion [HM04].
The termination proof can be found automatically, and formally verified using the current
versions of CeTA (1.05) [TS09] and TTT2 (1.0) [KSZM09].

18

8. The RFC Method

We show that the method proposed in Section 6 is not only useful for local termination,
but can fruitfully be employed for global termination as well. In [Der81], Dershowitz reduces
global termination of right-linear TRSs to local termination on the set RFC(R), called the
right-hand sides of forward closures of R. The set RFC(R) ⊆ Ter(Σ,X) is a subset of all
terms, weakening the proof obligation, and often allowing for simpler termination proofs.
Previously, the only automated method employing this transformation for proving global
termination has been the method of match-bounded string rewriting [GHW04]. In the
present paper we advocate an alternative approach.

We propose a combination of the RFC-method with the transformation from Section 6.
More precisely, we first reduce the global termination problem to a local termination problem
on RFC(R), and then we transform this problem back into a global termination problem. We
show that this method can successfully be applied to obtain proofs for global termination;
see further Example 8.3 for a rewrite system that remained unsolved in the termination
competition [Ter08].

A string rewriting systems (SRS) R is a TRS R where all symbols f ∈ Σ of the signature
are unary. We then use words a1 . . . an to denote terms an(. . . a1(x)).

For SRSs R the set RFC(R) can be defined as follows:

Definition 8.1 ([Der81]). Let R be a SRS over Σ. The right-hand sides of forward closures
of R, denoted RFC(R), are defined as the smallest set F ⊆ Σ∗ such that:

• rhs(R) ⊆ F ,
• if u ∈ F and u→ v, then v ∈ F (rewriting), and
• if u`1 ∈ F and `1`2 → r ∈ R with `1 6= ε, then ur ∈ F (right extension).

We have the following well-known theorem:

Theorem 8.2 ([Der81]). A string rewriting system R is terminating on Σ∗ if and only if
R is terminating on RFC(R).

The set RFC(R) can be (over-)approximated by using the system

R# = {u#→ r# | (u · v → r) ∈ R, u 6= ε, v 6= ε}
over Σ# = Σ∪{#}, where # acts as an end marker. Then RFC(R)# = (R∪R#)∗(rhs(R)#),
and we can reduce the global termination problem of R to local termination of R ∪R# on
rhs(R)#. More generally we have the following observation: whenever M ⊇ rhs(R)# is
closed w.r.t. R∪R#, then RFC(M)# ⊆M . The closure under rewriting can be proven by
giving a partial model A (M is the language of a partial Σ#-algebra A).

Example 8.3. Take Σ = {a, b, c} and

R = {a→ ε, b→ ε, cc→ a, ba→ cacbb}.
This is the mirrored version of SRS/Waldmann07b/size-12-alpha-3-num-223 which has
not been solved automatically in previous termination competitions. We present a partial
Σ#-algebra A with 3 elements A = {1, 2, 3} and interpretations of function symbols:

a : 1 7→ 1, 2 7→ 2; b : 1 7→ 1, c : 1 7→ 2, 2 7→ 1,# : 1 7→ 3, 2 7→ 3,

and b(2) as well as all transitions from 3 are undefined. Note: we consider the right end of
the string to be the top symbol of the term. It can be checked that A is a partial model for
R∪R#, and its language contains rhs(R)#. As a consequence we have L(A) ⊆ RFC(R)#.

19

Formally, for the existence of ground terms, we add a fresh constant e with interpretation
[[e]] = 1. This constant does not harm the property of A being a partial model for R ∪R#,
and does not affect the termination behaviour: since SRSs are linear, R∪R# is terminating
on rhs(R)# if and only if R ∪R# is terminating on {an(. . . a1(e)) | a1 . . . an ∈ rhs(R)#}.

We obtain the following labelled system:

RA = {a1 → ε, a2 → ε, b1 → ε, c1c2 → a1, c2c1 → a2, b1a1 → c1a2c2b1b1},
termination of which is equivalent to termination of R. Indeed RA is easily seen to be
terminating. E.g., Torpa [Zan05] finds the following termination proof:

[A] Choose polynomial interpretation

a1 c1: lambda x.x+1,

rest identity

remove: a1 ->

remove: c2 c1 -> a2

[AC] Reverse every lhs and rhs and choose polynomial

interpretation:

a1 and c1: lambda x.10x,

rest lambda x.x+1

remove: a2 ->

remove: b1 a1 -> c1 a2 c2 b1 b1

remove: b1 ->

remove: c1 c2 -> a1

Terminating since no rules remain.

For automating this method, the challenge is to find a partial model such that the resulting
labelled total termination problem is easier than the original one. In particular, the domain
of the partial algebra must be a proper subset of the full algebra (Σ∗). In our example, the
domain excludes all words containing the factor bcb.

9. Monotone-models for Local Termination

In Sections 3–5 we have devised a characterisation of local termination in terms of
monotone partial algebras. While this gives the general method, for the purpose of obtaining
automatable methods we strive for fruitful classes of these algebras. For global termination,
instances of monotone algebras are well-known. This raises the natural question whether
we can transform a given monotone algebra for global termination in such a way that we
obtain a partial monotone algebra for local termination.

In this section we present one such approach. We combine monotone partial models
with (ordinary) monotone algebras. The monotone partial models are roughly deterministic
tree automata that are closed under rewriting; they describe the language of term on which
we proof termination. We search for such an automaton that accepts the starting language
T together with a monotone algebra such that the rewrite rules decrease on the language
of the automaton. In this way monotone algebras for global termination carry over to local
termination, and we obtain an automatable method that is applicable for proofs of local
termination.

First we give the definition of extended µ-monotone algebras as known from global
termination of context-sensitive TRSs, see [Luc98, EWZ08]. A mapping µ : Σ → 2N is
called a replacement map (for Σ) if for all f ∈ Σ we have µ(f) ⊆ {1, . . . ,](f)}. Let 〈A, [[·]]〉

20

be a Σ-algebra and µ a replacement map. For symbols f ∈ Σ we say that the interpretation
[[f]] : A](f) → A is µ-monotone with respect to � if for every a, b ∈ A and i ∈ µ(f) with
a � b we have: f(. . .︸︷︷︸

i−1

, a, . . .︸︷︷︸
](f)−i

) � f(. . . , b, . . .) .

Definition 9.1. Let µ be a replacement map for Σ.
An extended well-founded µ-monotone Σ-algebra 〈A, [[·]],�,w〉 is a Σ-algebra 〈A, [[·]]〉 with
two binary relations �, w on A for which the following conditions hold:

(i) SN�/w, and
(ii) for every f ∈ Σ the function [[f]] is µ-monotone with respect to � and w.

A partial model A = 〈A, [[·]],≥〉 may contain elements a ∈ A for which [[t]] = a implies
that t is a normal form. For a given partial model the set of these, which we denote byAnf (R),
can be computed (see below Definition 9.2). We can exploit this knowledge as follows: if
a certain argument of a symbol f ∈ Σ is always a normal form, then its interpretation [[f]]
does not need to be monotonic for this argument position. The following definition gives an
algorithm for computing the set Anf (R). Elements that are interpretations [[`, α]] of left-hand
sides in R cannot belong to this set. Moreover if a 6∈ Anf (R) and b = [[f]](. . . , a, . . .) then we
conclude b 6∈ Anf (R). This is formalised as follows:

Definition 9.2. Let R be a TRS over the signature Σ, and A = 〈A, [[·]]〉 a partial Σ-algebra.
The normal forms Anf (R) of A are the largest set Anf (R) ⊆ Ac such that [[`, α]] 6∈ Anf (R) for
every `→ r ∈ R and every α : Var(`)→ Ac, and [[f]](a1, . . . , an) 6∈ Anf (R) for every f ∈ Σ,
ai 6∈ Anf (R) and a1, . . . , an ∈ Ac.

Then by construction we obtain the following lemma:

Lemma 9.3. Anf (R) consists of all a ∈ Ac for which every term t ∈ Ter(Σ,∅) with [[t]] = a
is a normal form with respect to R.

As mentioned above the interpretations do not need to be monotonic in argument
positions which are normal forms. We formalise this by defining a replacement map for the
labelling labA(R) of R which does not contain argument positions that are in normal form.

Definition 9.4. Let R be a TRS over Σ, and A = 〈A, [[·]]〉 a partial Σ-algebra. Let the

replacement map µnf (R) be defined for every symbol fλ ∈ labA(Σ) with λ = 〈a1, . . . , a](f)〉
as follows: µnf (R)(fλ) = {1, . . . ,](f)} \ {i | ai ∈ Anf (R)}.

As an instance of Theorem 5.2 we obtain a method for stepwise rule removal for lo-
cal termination that is based on a combination of monotone partial models and extended
monotone algebras.

Theorem 9.5. Let R, R′ and U be TRSs over Σ, and T ⊆ Ter(Σ,∅) a set of terms such
that SNU/R∪R′(T) holds. Furthermore let A = 〈A, [[·]],≥〉 be a monotone partial model for

R ∪ R′ ∪ U with T ⊆ L(A), and B = 〈B, [[·]]B,�,w〉 an extended well-founded µnf (R∪R
′)-

monotone (labA(Σ))-algebra such that:

(i) 〈B,�〉 is a model for labA(R′),
(ii) 〈B,w〉 is a model for labA(R), and

(iii) for all f ∈ Σ, ~a1 a~a2 ∈ A](f), a ≥ a′ ∈ A, and b1, . . . , b](f) ∈ B:

[[f~a1 a~a2]]B(b1, . . . , b](f)) w [[f~a1 a
′ ~a2]]B(b1, . . . , b](f)) .

21

Then SN(U∪R′)/R(T) holds.

Proof. We construct an extended well-founded monotone partial Σ-algebra C = 〈C, [[·
]]C ,�C ,wC〉 fulfilling the requirements of Theorem 5.2. Let C = A×B, and define 〈a1, b1〉 �C
〈a2, b2〉 ⇐⇒ a1 6∈ Anf (R∪R′) & a1 ≥ a2 & b1 � b2 and 〈a1, b1〉 wC 〈a2, b2〉 ⇐⇒ a1 6∈
Anf (R∪R′) & a1 ≥ a2 & b1 w b2. Note that the µnf (R∪R

′)-monotonicity is implemented by
excluding elements 〈a1, b1〉 with a1 ∈ Anf (R∪R′) from being sources of � ∪ w steps. Then for
every f ∈ Σ: [[f]]C(〈a1, b1〉, . . . , 〈a](f), b](f)〉) = 〈[[f]]A(a1, . . . , a](f)), [[f

a1,...,a](f)]]B(b1, . . . , b](f))〉
if [[f]]A(a1, . . . , a](f))

y, and ↑ otherwise. Finally, we define the relation ; on C by 〈a1, b1〉;
〈a2, b2〉 ⇐⇒ a1 ≥ a2. Now it is straightforward to check that all requirements of Theorem 5.2
are fulfilled, and we conclude SN(U∪R′)/R(T).

Let us briefly elaborate on the theorem. As an instance of Theorem 5.2, Theorem 9.5
is applicable for proving local termination as well as local relative termination. We start
without knowledge SN∅/R∪S(T) and stepwise ‘remove’ rules, more precisely, we move rules
from the right side to the left side of the slash ‘/’. If we reach the goal SNR/S(T), then the
proof has been successful.

The use of partial monotone partial models for R ∪ R′ ∪ U with T ⊆ L(A) guarantees
that the language we consider is closed under rewriting. The set R′ is the set of strictly
decreasing rules that we are aiming to remove. The µnf (R∪R

′)-monotone labA(Σ)-algebra B
then has the task to make all labelled rules stemming from R′ strictly decreasing (�), and
from R weakly decreasing (w). Then we conclude that R′ ∪ U is terminating relative to R
on T .

Example 9.6 (Klop, see [Bar84], Exercise 7.4.7). Example 3.7 can be generalised to include
the combinator K, which has the reduction rule Kxy → x. The initial language of flat S,K-
terms is T = (S|K)∗; for example SSKS = (((SS)K)S). The partial model presented in
Example 6.5 can be extended to a monotone partial model for this generalised example by
fixing [[K]] = 0 and 2 > 0, 2 > 1. Note that this is not a model due to [[Kxy, α]] = 2 > 0 =
[[x, α]] for α = λz.0. For the complete proof, employing this model, we refer to:

http://infinity.few.vu.nl/local/.

The second example illustrates the stepwise rule removal.

Example 9.7. We use a Turing-machine-like TRS which does the following. Starting with
its head between two symbols 1, the tape containing a finite string of 1’s and further blanks
(0), it initially puts two boxes 2 left and right of its head and afterwards alternately runs
left and right between the boxes, each time moving them one position further, until the
blanks are reached:

1121R11111211 � 112111111R211

→ 112111111L121 � 112L111111121

→ 121R111111121 � . . .

This is implemented by the TRS R consisting of the following rules:

1S1→ 2R2 R1→ 1R R21→ L12 R20→ F20

1L→ L1 12L→ 21R 02L→ 02R

1F → F1 12F → 21R 02F → finish

22

where all symbols apart form finish (which is a constant) are unary, but have been written
without parenthesis for the purpose of compactness. Note that the construction of the TRS
is similar to the standard translation of Turing machines to string rewriting systems as
given in [TeR03].

While the Turing machine is terminating on every input, the TRS R fails to be globally
terminating. The reason is that R allows for configurations with multiple heads working at
the same time on the same tape:

02R21F20→ 02L12F20→ 02L21R20→2 02R21F20→ . . .

We will prove that R is locally terminating on all terms containing arbitrary occurrences
of the symbols 0, 1 and at most one occurrence of S, that is, the language given by T =
{0, 1}∗ S {0, 1}∗finish. As the first step we remove the rules 1S1→ 2R2 and 02F → finish.
We do this by using a monotone model A consisting of only one element, accepting all terms.
We combine this model with the labA(Σ)-algebra B where B = N and [[1]]B(x) = [[0]]B(x) =
x+ 1, all other symbols are interpreted as λx.x. This makes the above two rules decreasing
(� is a model for them).

In the second step, we use a partial model A = 〈A, [[·]],≥〉 where A = {0, 1}, 0 ≥ 0,
1 ≥ 1 (but not 1 ≥ 0), [[finish]] = 0 and the other interpretations are given in Table 3:

x [[1]](x) [[2]](x) [[R]](x) [[L]](x) [[F]](x) [[0]](x) [[S]](x)

0 0 1 ↑ ↑ ↑ 0 0

1 1 0 1 1 1 ↑ ↑

Table 3: Symbol interpretations.

As required by the theorem A is a monotone partial model for R including the two
removed rules U = {1S1 → 2R2, 02F → finish} (without them T would consist of
normal forms). We use this partial model together with the extended well-founded monotone
labA(Σ)-algebra B = 〈N, [[·]]B,�,w〉 where � and w are the usual orders > and ≥ on N,
respectively. The interpretation [[·]]B is [[finish]]B = 7, [[10]]B(x) = 2 · x+ 1, [[11]]B(x) = 2 · x,
[[20]]B(x) = [[21]]B(x) = x, [[R1]]B(x) = 2 · x, [[L1]]B(x) = 2 · x + 1, [[F 1]]B(x) = 2 · x,
[[00]]B(x) = 2 · x, and [[S0]]B(x) = 5 · x+ 6. Then R′ consists of the following rules: R21→
L12, 1L → L1, 12L → 21R, 02L → 02R, and 12F → 21R. Then 〈B,�〉 is a model for
labA(R′). For instance consider the rule R21 → L12. The labelling R12010 → L11120 is
in labA(R′) and its interpretation in B is: R12010(x) = 4 · x + 2 > 4 · x + 1 = L11120(x).
The labelling R02111 → L01021 is not in labA(R′) since its left-hand side is undefined with
respect to A, thus we can ignore this rule. Analogously it can be verified 〈B,w〉 is a model
for labA(R \ R′). Since > is the empty relation on A the third condition of Theorem 9.5
holds trivially.

The three remaining rules R1 → 1R, 1F → F1, and R20 → F20 are even globally
terminating. This corresponds to taking a model which has only one state and accepts all
terms together with the corresponding termination order which proves global termination.
Hence we have proven SNR(T) by three consecutive applications of Theorem 9.5.

Finally, we give a theorem that allows us to remove rules and forget about them. We
need to be sure that these rules do not influence the family, that is, the set of reachable
terms. This is guaranteed if all terms in the family are normal forms with respect to these
rules.

23

Theorem 9.8. Let R, R′ and S be TRSs over Σ, and T ⊆ Ter(Σ,∅). Let A = 〈A, [[·]],≥〉
be a monotone partial model for R∪R′∪S with T ⊆ L(A) such that for all rules `→ r ∈ R′
and α : Var(`) → A we have [[`, α]]

x (the left-hand side is undefined). Then SNR/S(T)
implies SNR∪R′/S(T).

Proof. From FamR∪R′∪S(T) ⊆ L(A) together with [[`, α]]
x for all ` → r ∈ R′ and α it

follows that the rules in R′ are not reachable. All terms in Fam(T) are normal forms with
respect to R′. Hence we can ignore these rules.

Example 9.9. Consider the TRS R consisting of the following four rules:

f(s(s(x)))→ f(o(x)) o(s(s(x)))→ s(s(o(x))) o(0)→ 0 o(s(0))→ s(s(s(0)))

The TRS is not terminating: f(s(s(s(0)))) → f(o(s(0))) → f(s(s(s(0)))) → However,
the function f is terminating when applied to an even number, that is, the language T =
{f(s2·n(0)) | n ∈ N}. We choose A = 〈{0, 1}, [[·]],≥〉 where [[0]] = 0, [[s]](0) = 1, [[s]](1) = 0,
[[o]](0) = 0, [[o]](1)

x, [[f]](0) = 0 and [[f]](1)
x. Then A is a monotone partial model with

T ⊆ L(A). We have [[o(s(0)), α]]
x (for all α), thus the rule o(s(0)) → s(s(s(0))) is never

applicable and can be removed.

10. Conclusion and Future Work

We have implemented some of the methods proposed in this paper. More information and
the source code of the implementations can be found on the website:

http://infinity.few.vu.nl/local/

In particular, we have implemented the method from Section 7. The program automatically
finds the minimal partial model A for the language of normalizing S-terms, and transforms
the local termination problem into a global termination problem. We have formally verified
the model property, and that all terms that are not in the language ofA are non-terminating.
Global termination of the transformed system has been proven by TTT2 (1.0) [KSZM09]
and formally verified by CeTA (1.05) [TS09]. Thereby we have automated one of the central
contributions of [Wal00].

We intend to generalize the characterization of local termination to context-sensitive
rewriting [Luc98], using µ-monotonic, partial Σ-algebras; and also to top termination, using
weakly extended, monotone, partial Σ-algebras [AG00, EWZ08].

Methods using transformations from certain properties, like liveness properties [Kop08]
or outermost termination [RZ09], to termination usually give rise to local termination prob-
lems. That is, termination is of interest only for those terms which are in the image of the
transformation. For example, we noted that the transformation in [RZ09] gives rise to a
language which can be described by a partial model. Then it suffices to show complete-
ness of the transformation to local termination, and employing Theorem 6.4 we obtain a
complete transformation to global termination for free.

Acknowledgements. We than Vincent van Oostrom and the anonymous referees for
valuable suggestions for improving the presentation of the paper.

24

References

[AG00] T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical Com-
puter Science, 236:133–178, 2000.

[Bar84] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundation of Mathematics. Elsevier, 1984.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree Automata Techniques and Applications. Available at
http://www.grappa.univ-lille3.fr/tata, 2007.

[Coq] The Coq Proof Assistant. Available at http://coq.inria.fr/.
[Cur30] H.B. Curry. Grundlagen der kombinatorischen Logik. American Journal of Mathematics,

52:509–536, 789–834, 1930.
[Der81] N. Dershowitz. Termination of linear rewriting systems. In Proc. Colloquium on Automata,

Languages and Programming (ICALP), pages 448–458. Springer, 1981.
[Der82] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17:279–

301, 1982.
[EdVW09] J. Endrullis, R. C. de Vrijer, and J. Waldmann. Local Termination. In Proc. Conf. on Rewriting

Techniques and Applications (RTA), volume 5595 of LNCS, pages 270–284. Springer, 2009.
[EGH+09] J. Endrullis, C. Grabmayer, D. Hendriks, J.W. Klop, and R.C. de Vrijer. Proving infinitary

normalization. In Proc. Conf. on Types for Proofs and Programs (TYPES), Revised Selected
Papers, volume 5497 of LNCS, pages 64–82. Springer, 2009.

[EWZ08] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination of
term rewriting. Journal of Automated Reasoning, 40(2-3):195–220, 2008.

[GHW04] A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting systems. Applicable
Algebra in Engineering, Communication and Computing, 15(3):149–171, 2004.

[GSTSK06] J. Giesl, S. Swiderski, R. Thiemann, and P. Schneider-Kamp. Automated termination analy-
sis for Haskell: From term rewriting to programming languages. In Proc. Conf. on Rewriting
Techniques and Applications (RTA), volume 4098 of LNCS, pages 297–312. Springer, 2006.

[GTSKF04] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated termination proofs with
AProVE. In V. van Oostrom, editor, Proc. Conf. on Rewriting Techniques and Applications
(RTA), volume 3091 of Lecture Notes in Computer Science, pages 210–220. Springer, 2004.

[HM04] N. Hirokawa and A. Middeldorp. Dependency pairs revisited. In Proc. Conf. on Rewriting
Techniques and Applications (RTA), volume 3091 of LNCS, pages 249–268. Springer, 2004.

[Klo07] J.W. Klop. New fixed point combinators from old. In Reflections on Type Theory, λ-Calculus,
and the Mind. Essays Dedicated to Henk Barendregt on the Occasion of his 60th Birthday.,
pages 197–210. 2007.

[Kop08] A. Koprowski. Termination of Rewriting and Its Certification. PhD thesis, Eindhoven University
of Technology, 2008.

[KSZM09] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termination tool 2. In Proc.
Conf. on Rewriting Techniques and Applications (RTA), volume 5595 of LNCS, pages 295–304.
Springer, 2009.

[Luc98] S. Lucas. Context-Sensitive Computations in Functional and Functional Logic Programs. Jour-
nal of Functional and Logic Programming, 1998(1), 1998.

[Ohl02] E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, New York, 2002.
[PSS97] S.E. Panitz and M. Schmidt-Schauß. TEA: Automatically proving termination of programs in

a non-strict higher-order functional language. In In Proc. Static Analysis Symposium (SAS),
volume 1302 of LNCS, pages 345–360. Springer, 1997.

[RZ09] M. Raffelsieper and H. Zantema. A transformational approach to prove outermost termination
automatically. Electronic Notes in Theoretical Computer Science, 237:3–21, 2009.

[Smu90] R.M. Smullyan. To Mock a Mockingbird. Oxford University Press, 1990.
[TeR03] TeReSe. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.
[Ter08] Termination Portal. http://www.termination-portal.org/, 2008. Termination Competition

and Termination Problems Data Base (TPDB).
[TS09] R. Thiemann and C. Sternagel. Certification of termination proofs using ceta. In Proc. Conf.

on Theorem Proving in Higher Order Logics (TPHOL), pages 452–468. Springer, 2009.

25

[Wal00] J. Waldmann. The combinator S. Information and Computation, 159:2–21, 2000.
[Zac78] E. Zachos. Kombinatorische Logik und S-Terme. PhD thesis, ETH Zürich, 1978.
[Zan94] H. Zantema. Termination of term rewriting: Interpretation and type elimination. Journal of

Symbolic Computation, 17:23–50, 1994.
[Zan95] H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta Informaticae,

24:89–105, 1995.
[Zan05] H. Zantema. Termination of String Rewriting Proved Automatically. Journal of Automated

Reasoning, 34(2):105–139, 2005.

26

