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Abstract—We consider infinite sequences of symbols, also
known as streams, and the decidability question for equality of
streams defined in a restricted format. (Some formats lead to un-
decidable equivalence problems.) This restricted format consists
of prefixing a symbol at the head of a stream, of the stream
function ‘zip’, and recursion variables. Here ‘zip’ interleaves
the elements of two streams alternatingly. The celebrated Thue–
Morse sequence is obtained by the succinct ‘zip-specification’

M = 0 : X X = 1 : zip(X,Y) Y = 0 : zip(Y,X)

The main results are as follows. We establish decidability
of equivalence of zip-specifications, by employing bisimilar-
ity of observation graphs based on a suitably chosen coba-
sis. Furthermore, our analysis, based on term rewriting and
coalgebraic techniques, reveals an intimate connection between
zip-specifications and automatic sequences. This leads to a new
and simple characterization of automatic sequences. The study of
zip-specifications is placed in a wider perspective by employing
observation graphs in a dynamic logic setting, yielding yet
another alternative characterization of automatic sequences.

By the first characterization result, zip-specifications can be
perceived as a term rewriting syntax for automatic sequences.
For streams σ the following are equivalent: (a) σ can be specified
using zip; (b) σ is 2-automatic; and (c) σ has a finite observation
graph using the cobasis 〈hd, even, odd〉. Here even and odd are
defined by even(a : s) = a : odd(s), and odd(a : s) = even(s).
The generalization to zip-k specifications (with zip-k interleaving
k streams) and to k-automaticity is straightforward.

As a natural extension of the class of automatic sequences, we
also consider ‘zip-mix’ specifications that use zips of different
arities in one specification. The corresponding notion of automa-
ton employs a state-dependent input-alphabet, with a number
representation (n)A = dm . . . d0 where the base of digit di is
determined by the automaton A on input di−1 . . . d0.

Finally we show that equivalence is undecidable for a simple
extension of the zip-mix format with projections analogous to
even and odd. But it remains open whether zip-mix specifications
without the extension have a decidable equivalence problem.

Index Terms—Automatic sequences, term rewriting, coalgebra,
dynamic logic.

I. INTRODUCTION

Infinite sequences of symbols, also called ‘streams’, are a
playground of common interest for logic, computer science
(functional programming, formal languages, combinatorics on
infinite words), mathematics (numerations and number theory,
fractals) and physics (signal processing). For logic and theo-
retical computer science this interest focuses in particular on
unique solvability of systems of recursion equations defining
streams, expressivity of specification formats, and productivity
(does a stream specification indeed unfold to its intended
infinite result without stagnation). In addition, there is the
‘infinitary word problem’: when do two stream specifications
over a first-order signature define the same stream? And, is that
question decidable? If not, what is the logical complexity?

Against this general background, we can now situate the
actual content of this paper. In the landscape of streams there
are some well-known families, with automatic sequences [2]
as a prominent family, including members such as the Thue–
Morse sequence [1]. Such sequences are defined in first-order
signature that includes some basic stream functions such as
hd (head), tl (tail), ‘:’ (prefixing a symbol to an infinite
stream), even, odd; all these are familiar from any functional
programming language.

One stream function in particular is frequently used in
stream specifications. This is the zip function, that ‘zips’ the
elements of two streams in alternating order, starting with
the first stream. Now there is an elegant definition of the
Thue–Morse sequence M using only this function zip, next
to prefixing an element, and of course recursion variables:

M = 0 : X X = 1 : zip(X,Y) Y = 0 : zip(Y,X) (1)

For general term rewrite systems, stream equality is easily
seen to be undecidable [18], just as most interesting prop-
erties of streams. But by adopting some restrictions in the
definitional format, decidability may hold.
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Fig. 1: Observation graph for the specification (1)
of the Thue–Morse sequence M.

Thus we consider the problem whether definitions like the
one of M, using only zip next to prefixing and recursion, are
still within the realm of decidability. Answering this question
positively turned out to be rewarding. In addition to solving
the technical problem, the analysis leading to the solution
had a useful surprise in petto: it entailed a new and simple
characterization of the important notion of k-automaticity of
streams. (The same ‘aha-insight’ was independently obtained
by Kupke and Rutten, preliminary reported in [15].)

The remainder of the paper is devoted to an elaboration of
several aspects concerning zip-specifications and automaticity.
First, we treat a representation of automatic sequences in a
framework of propositional dynamic logic, employing cobases
and the ensuing observation graphs (used before for the
decidability of equivalence) as the underlying semantics for
a dynamic logic formula characterizing the automaticity of a
stream. Second, we are led to a natural generalization of au-
tomatic sequences, corresponding to mixed zip-specifications
that contain zip operators of different arities. The correspond-
ing type of automaton employs a state-dependent alphabet.
Third, we show that stream equality for a slight extension of
zip-specifications is Π0

1; the latter via a reduction from the
halting problem of Fractran programs [7].

Let us now describe somewhat informally the key method
that we employ to solve the equivalence problem for zip-
specifications. To that end, consider the specification (1) above
with root variable M. This specification is productive [20], [8],
[10] and defines the Thue–Morse sequence:

M→ω 0 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 : 0 : . . . ,

that is, by repeatedly applying rewrite rules that arise by
orienting the equations for M, X and Y from left to right,
M rewrites in the limit to the Thue–Morse sequence [1].

We will construct so-called ‘observation graphs’ based on
the stream cobasis 〈hd, even, odd〉 where all nodes have a
double label: inside, a term corresponding to a stream (such
as M and 0 : X in Figure 1) and outside, the head of that
stream. The nodes have outgoing edges to their even- and
odd-derivatives. An example is shown in Figure 1.

So, the problem of equivalence of zip-specifications reduces
to the problem of bisimilarity of their observation graphs,
which we prove to be finite. This does not hold for observation
graphs of zip-specifications with respect to the cobasis 〈hd, tl〉:
for this cobasis, the above specification would yield an infinite
observation graph. (The same would hold for any stream which
is not eventually periodic.)

The observation graph in Figure 1 evokes the ‘aha-insight’

mentioned above: it can be recognized as a DFAO1 (determin-
istic finite automaton with output) that witnesses the fact that
M is a 2-automatic sequence [2].

For a full version of this extended abstract, including proofs
that are omitted here, we refer to the technical report [11].

II. ZIP-SPECIFICATIONS

For term rewriting notions see further [22]. For k ∈ N we
define N<k = {0, 1, . . . , k− 1}. Let ∆ be a finite alphabet of
at least two symbols, and X a finite set of recursion variables.

Definition 1. The set ∆ω of streams over ∆ is defined by
∆ω = {σ | σ : N→ ∆}.

We write a : σ for the stream τ defined by τ(0) = a and
τ(n+ 1) = σ(n) for all n ∈ N. We define hd : ∆ω → ∆ and
tl : ∆ω → ∆ω by hd(x : σ) = x and tl(x : σ) = σ.

We mix notations for syntax (term rewriting) and semantics
(‘real’ functions), but sometimes use fonts fun , and fun to
distinguish between functions, and term rewrite symbols.

Definition 2. For k ∈ N>0, the function zipk : (∆ω)k → ∆ω

is defined by the following rewrite rule:

zipk(x : σ0, σ1, . . . , σk−1)→ x : zipk(σ1, . . . , σk−1, σ0)

Thus zipk interleaves its argument streams:

zipk(σ0, . . . , σk−1)(kn+ i) = σi(n) (0 ≤ i < k)

Definition 3. The set Z(∆,X ) of zip-terms over 〈∆,X〉 is
defined by the grammar:

Z ::= X | a : Z | zipk(Z, . . . , Z︸ ︷︷ ︸
k times

) (X ∈ X , a ∈ ∆, k ∈ N)

A zip-specification S over 〈∆,X〉 consists of a distinguished
variable X0 ∈ X called the root of S , and for every X ∈ X a
pair 〈X, t〉 with t ∈ Z(∆,X ) a zip-term. We treat these pairs
are term rewrite rules, and write them as equations X = t.

Definition 4. For k ∈ N, the set Zk(∆,X ) of zip-k terms is
the restriction of Z(∆,X ) to terms where for every occurrence
of a symbol zip` (` ∈ N) it holds that ` = k.

A zip-k specification is a zip-specification such that for all
equations X = t it holds that t ∈ Zk(∆,X ).

We always assume for zip-specifications S that every recur-
sion variable is reachable from the root X0.

A. Unique Solvability, Productivity and Leftmost Cycles

Definition 5. A valuation is a mapping α : X → ∆ω . Such a
valuation α extends to J·Kα : Z(∆,X )→ ∆ω as follows:

JXKα = α(X)

Ja : tKα = a : JtKα
Jzipk(t1, . . . , tk)Kα = zipk(Jt1Kα, . . . , JtkKα)

A solution for a zip-specification S is a valuation α : X → ∆ω,
denoted α |= S, such that JXKα = JtKα for all X = t ∈ S.

1The bisimulation collapse of the graph in Fig. 1 identifies the states labeled
M and 0 : X, giving rise to the familiar (minimal) DFAO for M.



A zip-specification S is uniquely solvable if there is a unique
solution α for S; then we let J·KS = α denote this solution.

Definition 6. Let S and S ′ be zip-specifications with roots X0

and X′0, respectively. Then S is called equivalent to S ′ if they
have the same set of solutions for their roots:

{ JX0Kα | α |= S } = { JX′0Kα′ | α′ |= S ′ }

Definition 7. A zip-specification S with root X0 is productive
if there exists a reduction of the form X0 →∗ a1 : . . . : an : t
for all n ∈ N. If a zip-specification S is productive, then S is
said to define the stream JX0KS where X0 is the root of S.

Note that if a specification is productive, then by confluence
of orthogonal term rewrite systems [22], there exists a rewrite
sequence of length ω that converges towards an infinite stream
term a1 : a2 : a3 : . . . in the limit.

While productivity is undecidable [9], [21] for term rewrite
systems in general, zip-specifications fall into the class of
‘pure stream specifications’ [8], [10] for which (automated)
decision procedures exist. However, the latter would be taking
a sledgehammer to crack a nut. For zip-specifications, produc-
tivity boils down to a simple syntactic criterion.

Definition 8. Let S be a zip-specification. A step in S is pair
of terms 〈s, t〉, denoted by s ; t, such that (a) s → t ∈ S,
(b) s = a : t, or (c) s = zipk(. . . , t, . . .). A guard is a step of
form (b). A left-step s ;` t in S is a step s ; t of the form
(a), (b) or (c’) s = zipk(t, . . .).

A cycle in S is a sequence t1, t2, . . . , tn such that t1 = tn ∈
X and ti ; ti+1 for 1 ≤ i < n. A leftmost cycle in S is a
cycle t1, t2, . . . , tn such that ti ;` ti+1 for 1 ≤ i < n.

Example 9. Consider the following specification

X = zip(1 : X,Y)

Y = zip(Z,X)

Z = zip(Y, 0 : Z)

visualized as the cyclic term graph on the
right. The leftmost cycle Y ;` zip(Z,X) ;`

Z ;` zip(Y, 0 :Z) ;` Y is not guarded.

zip

X

zip
Y

zip
Z

1

0

For orthogonal term rewriting systems, productivity im-
plies the uniqueness of solutions, but unique solvability is
not sufficient for productivity. For zip-specifications it turns
out that both concepts coincide. Here we need that ∆ is
not a singleton — otherwise every specification has a unique
solution.

Theorem 10. For zip-specifications S these are equivalent:
(i) S is uniquely solvable.

(ii) S is productive.
(iii) S has a guard on every leftmost cycle.

B. Evolving and Solving Zip-Specifications

The key to the proof of Theorem 10 consists of a trans-
formation of zip-specifications by (i) simple equational logic
steps, and (ii) internal rewrite steps.

Definition 11. For zip-specifications S,S ′ we say S evolves
to S ′, denoted by S � S ′, if one of the conditions holds:

(i) S contains an equation X = a : t with X 6= X0 and S ′ is
obtained from S by: let X′ be fresh and

(a) exchange the equation X = a : t for X′ = t, then
(b) replace all X in all right-hand sides by a : X′, and
(c) finally rename X′ to X (X is no longer used).

(ii) S contains an equation X = t such that t rewrites to t′

via a zip-rule (Definition 2), and S ′ is obtained from S
by replacing the equation X = t with X = t′.

The condition X 6= X0 in clause (i) guarantees that the
meaning (its solution) is preserved under evolving. It prevents
transforming a specification like X0 = 0 : 1 : X0 into X0 =
1 : 0 : X0 which clearly has a different solution.

Lemma 12. Let S � S ′. Then for every α : X → ∆ω it holds
that α is a solution of S if and only if α is a solution of S ′.
Moreover, if S is productive then so is S ′.

Definition 13. A zip-specification S is said to have a free root
if the root X0 of S does not occur in any right-hand side of S.

Lemma 14. Every zip-specification can be transformed into
an equivalent one with free root.

The following lemma relates rewriting to evolving:

Lemma 15. Let S be a zip-specification with free root X0.
There exists a reduction X0 →∗ a1 : . . . : an : t in S if and
only if there exists a zip-specification S ′ such that S �∗ S ′ and
S ′ contains an equation of the form X0 = a1 : . . . : an : t′.

Example 16. We evolve the following specification:

X= zip(1 :X,Y) Y= 0 : tl(zip(Z,X)) Z= zip(Y, 0 :Z)

X= zip(1 :X, 0 :Y) Y= tl(zip(Z,X)) Z= zip(0 :Y, 0 :Z)

. . . Y= tl(zip(Z,X)) Z= 0 : zip(0 :Z,Y)

. . . Y= tl(zip(0 :Z,X)) Z= zip(0 : 0 :Z,Y)

. . . Y= tl(0 : zip(X,Z)) Z= zip(0 : 0 :Z,Y)

X= zip(1 :X, 0 :Y) Y= zip(X,Z) Z= zip(0 : 0 :Z,Y)

Note that the contracted redexes are underlined and the created
symbols are overlined. Also note that invoking a free root is
not needed for the evolution above.

Strictly speaking, the last step in the above example is
not covered by Definition 11 since the rule for ‘tl’ is not
included. We have chosen this example to demonstrate another
principle. The specification we started from is obtained from
Example 9 by inserting 0 : tl(. . .) on an unguarded leftmost
cycle. Evolving has resulted in a productive zip-specification
(now every leftmost cycle is guarded) that represents a solution
of the original specification. Similarly, by inserting 1 : tl(. . .),
we obtain the solution:

X= zip(1 :X, 1 :Y) Y= zip(X,Z) Z= zip(0 : 1 :Z,Y)

The insertion of 0 : tl(. . .) and 1 : tl(. . .) corresponds to
choosing whether we are interested in a solution for Y starting



with head 0 or 1. To see that the result of the insertions are
valid solutions it is crucial to observe that the symbol ‘tl’ in
the inserted a : tl(. . .) disappears by consuming a ‘descendant’
of the element a ∈ ∆. In general we have:

Lemma 17. Let S be a zip-specification. Define the set
{Y1, . . . ,Ym} to contain precisely one recursion variable from
every unguarded leftmost cycle from S.

Let ~a = 〈a1, . . . , am〉 ∈ ∆m and define S~a to be obtained
from S by replacing each equation Yi = ti by Yi = ai : tl(ti).
Subsequently, we can by the evolving procedure eliminate the
occurrences of the symbol tl as in Example 16. Then S~a is
productive, and the unique solution J·KS~a : X → ∆ω is a
solution of S. Hence, {S~a | ~a ∈ ∆m} is the set of all solutions
of S, in particular, S has |∆|m different solutions.

C. Formats of Zip-Specifications

Definition 18. A zip-specification S is called flat if each of its
equations is of the form:

Xi = ci,1 : . . . : ci,mi
: zipki(Xi,1, . . . ,Xi,ki) (0 ≤ i < n)

for mi, ki ∈ N, ki ≥ 2, recursion variables Xi,Xi,1, . . . ,Xi,ki
and data constants ci,1, . . . , ci,mi

.

Zip-free cycles correspond to periodic sequences, and these
can be specified by flat zip-k specifications. Together with
unfolding and introduction of fresh variables we then obtain:

Lemma 19. Every productive zip-k specification can be trans-
formed into an equivalent productive, flat zip-k specification.

III. ZIP-SPECIFICATIONS AND OBSERVATION GRAPHS

For the decidability result and the connection with auto-
maticity we need to observe streams and compare them. This is
done with observations in terms of a cobasis and bisimulations
to compare the resulting graphs.

A. Cobases, Observation Graphs, and Bisimulation

For general introductions to coalgebra we refer to [4], [19].
We first introduce the notion of ‘cobasis’ [17], [14]. For the
sake of simplicity, we restrict to the single observation hd.

Definition 20. A stream cobasis B = 〈hd, 〈γ1, . . . , γk〉〉 is a
tuple consisting of operations γi : ∆ω → ∆ω (1 ≤ i ≤ k)
such that for all σ, τ ∈ ∆ω it holds that σ = τ whenever

hd(γi1(. . . (γin(σ)) . . .)) = hd(γi1(. . . (γin(τ)) . . .))

for all n ∈ N and 1 ≤ i1, . . . , in ≤ k.

As hd is integral part of every stream cobasis, we suppress
hd and write 〈γ1, . . . , γk〉 as shorthand for 〈hd, 〈γ1, . . . , γk〉〉.

Definition 21. For i ∈ N, k ∈ N>0 define πi,k : ∆ω → ∆ω:

π0,k(x : σ)→ x : πk−1,k(σ) πi+1,k(x : σ)→ πi,k(σ)

For every k ≥ 2 we define two stream cobases:

Nk = 〈π0,k, . . . , πk−1,k〉 Ok = 〈π1,k, . . . , πk,k〉

Note that πi,k(σ) selects an arithmetic subsequence of σ; it
picks every k-th element beginning from index i: πi,k(σ)(n) =
σ(kn + i). The πi,k are generalized even and odd functions,
in particular we have: tl = π1,1, even = π0,2 and odd = π1,2.

Observe that Nk and Ok are cobases, that is, every element
of a stream can be observed. The main difference between Nk
and Ok is that Nk has an ambiguity in naming stream entries:
hd(σ) = hd(even(σ)). On the other hand, Ok is an orthogonal
basis, names of stream entries are unambiguous.

We employ the following simple coinduction principle.

Definition 22. Let B = 〈γ1, . . . , γk〉 be a cobasis. A
B-bisimulation is a relation R ⊆ ∆ω × ∆ω s.t. 〈σ, τ〉 ∈ R
implies hd(σ) = hd(τ) and 〈γi(σ), γi(τ)〉 ∈ R for 1 ≤ i ≤ k.

Lemma 23. For all σ, τ ∈ ∆ω it holds that σ = τ if and only
if there exists a B-bisimulation R such that 〈σ, τ〉 ∈ R.

We now further elaborate the coalgebraic perspective. The
following definition formalizes ‘B-observation graphs’ where
B = 〈γ1, . . . , γk〉 is a cobasis. Every node n will represent the
stream JnK ∈ ∆ω , and if the i-th outgoing edge of n points to
node m then γi(JnK) = JmK.

Definition 24. Let B = 〈hd, 〈γ1, . . . , γk〉〉 be a stream cobasis,
and let F be the functor F (X) = ∆×Xk.

A B-observation graph is an F -coalgebra G = 〈S, 〈o, n〉〉
with a distinguished root element r ∈ S, such that there exists
an F -homomorphism J·K : S → ∆ω from G to the F -coalgebra
〈∆ω,B〉 of all streams with respect to B:

S

∆× Sk

∆ω

∆× (∆ω)k

J·K

〈o, n〉 B
id× J·Kk

The observation graph G is said to define the stream JrK ∈ ∆ω .
(We note that J·K is unique by Lemma 25, below.)

Let σ ∈ ∆ω . The canonical B-observation graph of σ
is defined as the sub-coalgebra of the F -coalgebra 〈∆ω,B〉
generated by σ, that is, the observation graph 〈T ,B〉 with root
σ where T ⊆ ∆ω is the least set containing σ that is closed
under γ1, . . . , γk. The set ∂B(σ) of B-derivatives of σ is the
set of elements of the canonical observation graph of σ.

Lemma 25. For every B-observation graph the mapping J·K
is unique whenever it exists.

For the cobasis Ok, the existence of J·K is guaranteed; this
result is mentioned without proof in [16, Ex. 6.2(1)]. See our
extended version [11] for a proof.

Proposition 26. The stream coalgebra 〈∆ω,Ok〉 is final for
the functor F (X) = ∆×Xk. As a consequence, we have that
every F -coalgebra is an Ok-observation graph.

In contrast, the existence of J·K is not guaranteed for Nk.
The coalgebra 〈∆ω,Nk〉 is final for a subset of F -coalgebras,
called zero-consistent, see further [15].



Definition 27. Let B = 〈hd, 〈γ1, . . . , γk〉〉 be a stream cobasis.
A bisimulation between B-observation graphs G = 〈S, 〈o, n〉〉
and G′ = 〈S′, 〈o′, n′〉〉 is a relation R ⊆ S×S′ such that for all
〈s, s′〉 ∈ R we have that o(s) = o′(s′) and 〈ni(s), n′i(s′)〉 ∈ R
for all 1 ≤ i ≤ k, where ni denotes the i-th projection on n.
Two observation graphs are bisimilar if there is a bisimulation
relating their roots.

For deterministic transition systems, such as observation
graphs, bisimilarity coincides with trace equivalence. As a con-
sequence, the algorithm of Hopcroft–Karp [12] is applicable.

Proposition 28. Bisimilarity of finite B-observation graphs is
decidable (in linear time with respect to the sum of the number
of vertices).

Proposition 29. Let B be a stream cobasis. Two B-observation
graphs define the same stream if and only if they are bisimilar.

B. From Zip-k Specifications To Observation Graphs

We construct observation graphs for zip-k specifications.

Definition 30. Let X = {X0, . . . ,Xn−1} be a set of recursion
variables and ∆ a finite alphabet (here regarded as a set of
data-constants). Let k ∈ N, and S be a zip-k specification
over 〈∆,X〉. We define the orthogonal term rewrite system
Rk(S) to consist of the following rules:

hd(a : σ)→ a

π0,k(a : σ)→ a : πk−1,k(σ)

πi+1,k(a : σ)→ πi,k(σ) (0 ≤ i < k + 1)

hd(zipk(σ0, . . . , σk−1))→ hd(σ0)

πi,k(zipk(σ0, . . . , σk−1))→ σi (0 ≤ i < k)

and additionally for every equation Xj = t of S the rules

hd(Xj)→ hd(t) πi,k(Xj)→ πi,k(t) (0 ≤ i ≤ k + 1)

where the Xj are treated as constant symbols.

Whenever S is clear from the context, then by t↓ we denote
the unique normal form of term t with respect to Rk(S).

Definition 31. Let S be a productive, flat zip-k specification
with root X0. The set δk(S) is the least set containing X0 that
is closed under λt.(πi,k(t)↓) for every 0 ≤ i < k.

Definition 32. Let S be a productive, flat zip-k specification
with root X0. The Nk-observation graph G(S) is defined as:

G(S) = 〈δk(S), 〈o, n〉〉 o(t) = hd(t)↓
n(t) = 〈π0,k(t)↓, . . . , πk−1,k(t)↓〉

with root X0. In words: every node t has
(i) the observation hd(t)↓ (the label), and

(ii) outgoing edges to π0,k(t)↓, . . . , πk−1,k(t)↓ (in this order).

Lemma 33. Let S be a productive, flat zip-k specification with
root X0. There exists m ∈ N such that every term in δk(S) is
of the form d0 : . . . : d`−1 : Xj with ` ≤ m, d0, . . . , d`−1 ∈ ∆
and Xj ∈ X . As a consequence δk(S) and G(S) are finite.

Proof Sketch: The equations of S are of the form:

Xj = cj,0 : . . . : cj,mj−1 : zipk(Xj,0, . . . ,Xj,k−1) (0 ≤ j < n)

Let m := max {mi | 0 ≤ i < n }. It suffices that the claimed
shape is closed under λs.πi,k(s)↓ for 0 ≤ i < k. This follows
by a straightforward application of Definition 30 together with
a precise counting of the ‘produced’ elements.

We need to ensure that the rewrite system from Definition 30
implements (is sound for) the intended semantics; recall that
S has a unique solution J·KS : X → ∆ω due to productivity:

Lemma 34. Let S be a productive, flat zip-k specification with
root X0. For every t ∈ δk(S) and 0 ≤ i < k we have that
hd(t) →∗ hd(JtK) and Jπi,k(t)↓K = πi,k(JtK). Hence, the
graph G(S) is an Nk-observation graph defining JX0KS .

Proof: The extension of J·Kα from Definition 5, interpret-
ing the symbols πi,k by the stream function πi,k : ∆ω → ∆ω

for every 0 ≤ i < k, is a model of Rk(S).
As an application of Lemmas 19 and 34 we get

Lemma 35. For every productive zip-k specification with
root X0 we can construct an Nk-observation graph defining
the stream JX0KS .

We arrive at our first main result:

Theorem 36. Equivalence of zip-k specifications is decidable.

Proof: Lemma 17 allows to reduce the equivalence prob-
lem for unproductive zip-k specifications to a finite number
of equivalence problems for productive zip-k specifications.
Propositions 29, 28 and Lemma 35 imply decidability of
equivalence for productive zip-k specifications.

Proposition 37. Equivalence of productive, flat zip-specifica-
tions is decidable in quadratic time.

Example 38. Consider the zip-2 specification with root N:

N = 0 : zip(1 : W, 1 : U) U = 1 : zip(V,U)

V = 0 : zip(V, 1 : U) W = zip(N,V)

M0

0 : X 0 1 : Y1

even odd

even

odd

even

odd

N 0

0 : 1 : U 0 1 : W1

1 : V 1

even odd
even

odd
even

odd

even

odd

Its N2-observation graph is depicted on the right above. The
dashed lines indicate a bisimulation with the observation graph
from Fig. 1 here depicted on the left.

C. From Observation Graphs To Zip-k Specifications

Lemma 39. The canonical Ok-observation graph of a stream
σ ∈ ∆ω is finite if and only if σ can be defined by a zip-k
specification consisting of equations of the form:

Xi = ai : zipk(Xi,1,Xi,2, . . . ,Xi,k)



Proof: For the translation forth and back, it suffices to
observe the correspondence between an equation Y = a :
zipk(Y1, . . . ,Yk) and its semantics hd(JYK) = a, π1,k(JYK) =
JY1K, . . . , πk,k(JYK) = JYkK.

Lemma 40. The canonical Nk-observation graph of a stream
σ ∈ ∆ω is finite if and only if σ can be defined by a zip-k
specification consisting of pairs of equations of the form:

Xi = ai : X′i X′i = zipk(Xf(i,1), . . . ,Xf(i,k−1),X
′
f(i,0))

over recursion variables X ∪X ′ where X = {X0, . . . ,Xn−1}
and X ′ = {X′i | Xi ∈ X}, and f : N<n × N<k → N<n such
that af(i,0) = ai for all i ∈ N<n.

Proof: If Y = a : Y′ and Y′ = zipk(Y1, . . . ,Yk−1,Y
′
0)

then hd(JYK) = a, π0,k(JYK) = a : JY′0K, and πi,k(JYK) =
JYiK (1 ≤ i < k). Since there also is an equation Y0 = a : Y′0,
it holds that JY′0K = tl(JY0K) and hence π0,k(JYK) = JY0K.

IV. AUTOMATICITY AND OBSERVATION GRAPHS

After our first main result (Theorem 36) we proceed with
connecting zip-k specifications to k-automatic sequences.

A. Automatic Sequences

Definition 41 ([2]). A deterministic finite automaton with
output (DFAO) is a tuple 〈Q,Σ, δ, q0,∆, λ〉 where

– Q is a finite set of states with q0 ∈ Q the initial state,
– Σ a finite input alphabet, ∆ an output alphabet,
– δ : Q× Σ→ Q a transition function, and
– λ : Q→ ∆ an output function.

We extend δ to words over Σ as follows:

δ(q, ε) = q for q ∈ Q
δ(q, wa) = δ(δ(q, a), w) for q ∈ Q, a ∈ Σ, w ∈ Σ∗

and we write δ(w) as shorthand for δ(q0, w).

For n, k ∈ N, k ≥ 2, we use (n)k to denote the representa-
tion of n with respect to the base k (without leading zeros).
More precisely, for n > 0 we have (n)k = nmnm−1 . . . n0
where 0 ≤ nm, . . . , n0 < k, nm > 0 and n =

∑m
i=0 nik

i; for
n = 0 we fix (n)k = ε.

Definition 42. A k-DFAO A is a DFAO 〈Q,Σ, δ, q0,∆, λ〉
with input alphabet Σ = N<k. For q ∈ Q, we define a stream
ζ(A, q) by: ζ(A, q)(n) = λ(δ(q, (n)k)) for every n ∈ N.

We write ζ(A) as shorthand for ζ(A, q0). Moreover, we say
that the automaton A generates the stream ζ(A).

Definition 43. A stream σ : ∆ω is called k-automatic if there
exists a k-DFAO that generates σ. A stream is called automatic
if it is k-automatic for some k ≥ 2.

The exclusion of leading zeros in the number representation
(n)k is not crucial for the definition of automatic sequences.
Every k-DFAO can be transformed into an equivalent k-DFAO
that ignores leading zeros:

Definition 44. A k-DFAO 〈Q,Σ, δ, q0,∆, λ〉 is called invari-
ant under leading zeros if for all q ∈ Q: λ(q) = λ(δ(q, 0)).

Lemma 45 ([2, Theorem 5.2.1 with Corollary 4.3.4]). For
every k-DFAO A there is a k-DFAO A′ that is invariant under
leading zeros and generates the same stream (ζ(A) = ζ(A′)).

Automatic sequences can be characterized in terms of their
‘kernels’ being finite. Kernels of a stream σ are sets of
arithmetic subsequences of σ, defined as follows.

Definition 46. The k-kernel of a stream σ ∈ ∆ω is the set of
subsequences {πi,kp(σ) | p ∈ N, i < kp}.

Lemma 47 ([2, Theorem 6.6.2]). A stream σ is k-automatic
if and only if the k-kernel of σ is finite.

B. Observation Graphs and Automatic Sequences

There is a close correspondence between observation graphs
with respect to the cobasis Nk and k-DFAOs. For k-DFAOs A
that are invariant under leading zeros an edge q → p labeled
i implies that the stream generated by p is the πi,k-projection
of the stream generated by q, that is, ζ(A, p) = πi,k(ζ(A, q)).
The following lemma treats the case of general k-DFAOs.

Lemma 48. Let A = 〈Q,Σ, δ, q0,∆, λ〉 be a k-DFAO. Then
for every q ∈ Q we have: tl(ζ(A, δ(q, 0))) = tl(π0,k(ζ(A, q)))
and for all 1 ≤ i < k:

ζ(A, δ(q, i)) = πi,k(ζ(A, q)) (2)

Hence, if A is invariant under leading zeros, then property (2)
holds for all 0 ≤ i < k.

Proof: Follows immediately from (kn+ i)k = (n)ki for
all n ∈ N and 0 ≤ i < k such that n 6= 0 or i 6= 0.

As a consequence of Lemma 48 we have that k-DFAOs, that
are invariant under leading zeros, are Nk-observation graphs
for the streams they define, and vice versa. Formally, this is
just a simple change of notation2:

Definition 49. Let A = 〈Q,Σ, δ, q0,∆, λ〉 be a k-DFAO that
is invariant under leading zeros. We define the Nk-observation
graph G(A) = 〈Q, 〈o, n〉〉 with root q0 where for every q ∈ Q:
o(q) = λ(q), ni(q) = δ(q, i) for i < k, and JqK = ζ(A, q).

Let G = 〈S, 〈o, n〉〉 be an Nk-observation graph over ∆
with root r ∈ S. Then we define a k-DFAO A(G) as follows:
A(G) = 〈Q,N<k, δ, q0,∆, λ〉 where Q = S, q0 = r, and for
every s ∈ S: λ(s) = o(s), and δ(s, i) = ni(s) for i < k.

Proposition 50. For every k-DFAO A that is invariant under
leading zeros, the Nk-observation graph G(A) defines the
stream that is generated by A.

Conversely, we have for every Nk-observation graph G, that
the k-DFAO A(G) is invariant under zeros and generates the
stream defined by G.

Another way to see the correspondence between automatic
sequences and their finite, canonical Nk-observation graphs is
the following. The elements of the canonical observation graph
of a stream σ, that is, the set of {π0,k, . . . , πk−1,k}-derivatives

2Note that even this small change of notation can be avoided by introducing
k-DFAOs as coalgebras over the functor F (X) = ∆ ×Xk as well.



of σ, coincide with the elements of the k-kernel of σ. This is
used in the proof of the following theorem.

Proposition 51. For streams σ ∈ ∆ω the following properties
are equivalent:

(i) The stream σ is k-automatic.
(ii) The canonical Nk-observation graph of σ is finite.

Proof: The equivalence of (i) and (ii) is a consequence
of Lemma 47 in combination with the observation that the set
of functions {πi,kp | p ∈ N, i < kp} coincides with the set of
functions obtained from arbitrary iterations of functions π0,k,
. . . , πk−1,k (that is, function compositions γ1 · . . . · γn with
n ∈ N and γi ∈ {π0,k, . . . , πk−1,k}).

Proposition 51 gives a coalgebraic perspective on automatic
sequences. Moreover, it frequently allows for simpler proofs or
disproofs of automaticity than existing characterizations. For
example, in the following sections we will derive observation
graphs for streams that are specified by zip-specifications.
Then it is easier to stepwise iterate the finite set of functions
{π0,k, . . . , πk−1,k} than to reason about infinitely many sub-
sequences in the kernel {πi,kp(σ) | p ∈ N, i < kp}.

Proposition 51 was independently found by Kupke and
Rutten, see Theorem 8 in their recent report [15].

We arrive at our second main result:

Theorem 52. For streams σ ∈ ∆ω the following properties
are equivalent:

(i) The stream σ is k-automatic.
(ii) The stream σ can be defined by a zip-k specification.

(iii) The canonical Nk-observation graph of σ is finite.
(iv) The canonical Ok-observation graph of σ is finite.

Proof: We have that (i)⇔ (iii) by Theorem 51, (iii)⇒
(ii) by Lemma 40, and (ii)⇒ (iii) by Lemma 35. Moreover,
it holds that (iv)⇒ (ii) by Lemma 39.

Finally, we show (iii) ⇒ (iv). Assume G = 〈S, 〈o, n〉〉
is a finite Nk-observation graph with root r defining σ and
let J·KG : S → ∆ω be the unique F -homomorphism into
〈∆ω,Nk〉. Let n = 〈n1, . . . , nk〉. Then o(s) = hd(JsKG) and
Jni(s)KG = πi−1,k(JsKG) for all 1 ≤ i ≤ k and s ∈ S. We
define G′ = 〈S′, 〈o′, n′〉〉 where S′ = S ∪ {tl(s) | s ∈ S},
o′(s) = o(s), o′(tl(s)) = o(n2(s)) n′i(s) = ni+1(s) for
1 ≤ i < k, n′k(s) = tl(n1(s)), n′i(tl(s)) = ni+2(s) for
1 ≤ i ≤ k − 2, n′k−1(tl(s)) = tl(n1(s)) and n′k(tl(s)) =
tl(n2(s)) with root r ∈ S′. Let J·KG′ : S′ → ∆ω be defined by
JsKG′ = JsKG and Jtl(s)KG′ = tl(JsKG). It can be checked that
J·KG′ is an F -homomorphism into 〈∆ω,Ok〉 with σ = JrKG′ .
Hence G′ is an Ok-observation graph defining σ.

V. A DYNAMIC LOGIC REPRESENTATION
OF AUTOMATIC SEQUENCES

This section connects automatic sequences with expressivity
in a propositional dynamic logic (PDL) derived from the
cobases Nk and Ok. For simplicity, we shall restrict attention
to the case of ∆ = {0, 1} and N2 = 〈hd, even, odd〉.

The set of sentences ϕ and programs π of our version of
PDL is given by the following BNF grammar:

ϕ ::= 0 | 1 | ¬ϕ | ϕ ∧ ϕ | [π]ϕ

π ::= even | odd | π;π | π t π | π∗

We interpret PDL in an arbitrary F -coalgebra G = 〈S, 〈o, n〉〉.
Actually, we can be more liberal and interpret PDL in models
of the form G = 〈S, 0, 1, even, odd〉 where 0 ⊆ S, 1 ⊆ S,
even ⊆ S2, and odd ⊆ S2. These are more general than F -
coalgebras because we do not insist that 0∩1 = ∅, or that even
and odd be interpreted as functions. Nevertheless, these extra
properties do hold in the intended model 〈∆ω, 0, 1, even, odd〉
where 0 is the set of streams whose head is the number 0, and
similarly for 1; (σ, τ) ∈ even iff τ = (σ0, σ2, σ4, . . .), and
similarly for odd.

The interpretation of each sentence ϕ is a subset of S; the
interpretation of each program π is a relation on S, that is, a
subset of S × S. The definition is as usual for PDL:

[[0]] = {x ∈ S : x ∈ 0} [[even]] = even

[[1]] = {x ∈ S : x ∈ 1} [[odd]] = odd

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]] [[π1;π2]] = [[π1]]; [[π2]]

[[¬ϕ]] = S \ [[ϕ]] [[π1 t π2]] = [[π1]] ∪ [[π2]]

[[π∗]] = [[π]]∗

[[[π]ϕ]] = {x : (∀y)(〈x, y〉 ∈ [[π]]→ y ∈ [[ϕ]])}

In words, we interpret even and odd by themselves that
correspond in the given model. We interpret ; by relational
composition, t by union of relations, ∗ by Kleene star (=
reflexive-transitive closure) of relations, and we use the usual
boolean operations and dynamic modality [π]ϕ.

We use the standard boolean abbreviations for ϕ→ ψ and
ϕ↔ ψ, and of course we use the standard semantics. We also
write 〈π〉ϕ for ¬[π]¬ϕ; again this is standard.

For example, let χ be the sentence [(even t odd)∗](0 ↔
¬1). Then in any model G, a point x has x |= χ iff for all
points y reachable from x in zero or more steps in the relation
even ∪ odd, y satisfies exactly one of 0 or 1.

Proposition 53. If f : M → N is a morphism of models and
x |= ϕ in M , then f(x) |= ϕ in N .

Proposition 54. For every finite pointed model 〈G, x〉 there
is a sentence ϕx of PDL so that for all (finite or infinite)
F -coalgebras 〈H, y〉, the following are equivalent:

(i) y |= ϕx in H.
(ii) There is a bisimulation between G and H relating x to y.

We call ϕx the characterizing sentence of x.

For infinitary modal logic, this result was shown in [4], and
the result here for PDL is a refinement of it.

For example, we construct a characterizing sentence for the
Thue–Morse sequence M, see Fig. 1. Let ϕ and ψ be given by

ϕ = 0 ∧ ¬1 ∧ 〈even〉0 ∧ [even]0 ∧ 〈odd〉1 ∧ [odd]1

ψ = ¬0 ∧ 1 ∧ 〈even〉1 ∧ [even]1 ∧ 〈odd〉0 ∧ [odd]0



Then ϕM = ϕ ∧ [(even t odd)∗](ϕ ∨ ψ) is a characteristic
sentence of the top node in Fig. 1; ϕM also characterizes M in
the following sense: the only stream σ such that σ |= ϕM is M.

Proposition 55. The following finite model properties hold:
(i) If a sentence ϕ has a model, it has a finite model [13].

(ii) If ϕ has a model in which even and odd are total func-
tions, then it has a finite model with these properties [5].

Remark 56. Our statement of the second result is a slight
variation of what appears in [5].

We arrive at our third main result:

Theorem 57. The following are equivalent for σ ∈ ∆ω:
(i) σ is 2-automatic.

(ii) There is a sentence ϕ such that for all τ ∈ ∆ω , τ |= ϕ
in 〈∆ω, 〈hd, even, odd〉〉 iff τ = σ.

Proof: (i) ⇒ (ii): Let σ be automatic, and let M be
a finite F -coalgebra and x ∈ M be such that the unique
coalgebra morphism f : M → ∆ω has f(x) = σ. Let ϕx be
the characterizing sentence of x in M , using Proposition 54.
By Proposition 53, σ |= ϕx in ∆ω . Now suppose that τ |= ϕx
in ∆ω . Since ϕx is a characterizing sentence, there is a
bisimulation on ∆ω relating σ to τ . By Lemma 23, σ = τ .

(ii)⇒ (i): Let ϕ be a sentence with the property that σ is
the only stream which satisfies ϕ. Since σ has a model, it has
a finite model, by Proposition 55. Moreover, this model M
may be taken to be a finite F -coalgebra with a distinguished
point x. By [15, Theorem 5] let ϕ : M → ∆ω be the unique
coalgebra morphism. Let τ = ϕ(x). Since M is finite, τ
is automatic. By Proposition 54, τ |= ϕ in ∆ω . But by the
uniqueness assertion in part (2) of our theorem, we must have
τ = σ. Therefore σ is automatic.

VI. MIX-AUTOMATICITY

The zip-specifications considered so far were uniform, all
zip-operations in a zip-k specification have the same arity k.
Now we admit different arities of zip in one zip-specification
(Definition 3). To emphasize the difference with zip-k spec-
ifications we will here speak of zip-mix specifications. This
extension leads to a proper extension of automatic sequences
and some delicate decidability problems.

Definition 58. A state-dependent-alphabet DFAO is a tuple
〈Q,Σ, δ, q0,∆, λ〉, where

– Q is a finite set of states with q0 ∈ Q the initial state,
– Σ = {Σq}q∈Q a family of input alphabets,
– δ = {δq : Σq → Q}q∈Q a family of transition functions,
– ∆ an output alphabet, and
– λ : Q→ ∆ an output function.

We write δ(q, i) for δq(i) iff i ∈ Σq , and extend δ to words as
follows: Let q ∈ Q and w = an−1 . . . a0 where ai ∈ Σri (0 ≤
i < n) with ri ∈ Q defined by: r0 = q and ri+1 = δ(ri, ai).
Then we let δ(q, w) = rn.

A state-dependent-alphabet DFAO can be seen as a DFAO
whose transition function is a partial map δ : Q×

⋃
Σ ⇀ Q

such that δ(q, a) is defined iff a ∈ Σq .

We use this concept to generalize k-DFAOs where the input
format are numbers in base k by the following two-tiered
construction. We define P -DFAOs where P is a DFAO de-
termining the base of each digit depending on the digits read
before. Thus P can be seen as fixing a variadic numeration
system. For example, for ordinary base k numbers, we define
P to consist of a single state q with output k and edges
0, . . . , k − 1 looping to itself.

Definition 59. A base determiner P is a state-dependent-
alphabet DFAO of the form P = 〈Q, {N<β(q)}q, δ, q0,N, β〉.
The base-P representation of n ∈ N is defined by

(n)P = (n)P,q0 where (n)P,q = (n′)P,δ(q,d) · d

with n′ = b n
β(q)c and d = [n]β(q), the quotient and the

remainder of division of n by β(q), respectively.
A P -DFAO A is a state-dependent-alphabet DFAO

A = 〈Q′, {N<β′(q′)}q′∈Q′ , δ′, q′0,∆, λ〉

compatible with P , i.e. 〈Q′, {N<β′(q′)}q′∈Q′ , δ′, q′0,N, β′〉 and
P are bisimilar.

A mix-DFAO is a P -DFAO for some base determiner P .

Note that the output alphabet of a base determiner can be
taken to be finite as the range of β. The compatibility of A with
P entails that A reads the number format defined by P . More-
over, every mix-DFAO A = 〈Q, {N<β(q)}q∈Q, δ, q0,∆, λ〉 is
a PA-DFAO where PA = 〈Q, {N<β(q)}q∈Q, δ, q0,N, β〉.

These DFAOs introduce a new class of sequences, which
we call ‘mix-automatic’ in order to emphasize the connection
with zip-mix specifications.

Definition 60. Let P be a base determiner, and A =
〈Q, {N<β(q)}q∈Q, δ, q0,∆, λ〉 a P -DFAO. For states q ∈ Q,
we define ζ(A, q) ∈ ∆ω by: ζ(A, q)(n) = λ(δ(q, (n)P )) for
all n ∈ N. We define ζ(A) = ζ(A, q0), and say A generates
the stream ζ(A).

A sequence σ ∈ ∆ω is P -automatic if there is a P -DFAO A
such that σ = ζ(A). A stream is called mix-automatic if it is
P -automatic for some base determiner P .

Example 61. Consider the following mix-DFAO A:

q0/a q1/b q2/b

0 1 2

1 0

0

1

We note that A is a P -DFAO where P is the base determiner
obtained from A by redefining the output for q0, q1 and q2 as
the number of their outgoing edges 2, 3 and 2, respectively.

As an example, we compute (5)A, and (23)A as follows:

(5)q0 = (2)q11 = (0)q221 = 21

(23)q0 = (11)q11 = (3)q121 = (1)q2021 = (0)q01021 = 1021

where (n)q denotes (n)A,q . The sequence ζ(A) begins with
a:b:b:a:b:b:a:a:b:b:b:a:a:a:a:b:b:b:b:b:b:a:a:a:a:b:a:b: . . . with
entries 5 and 23 underlined. E.g. λ(δ(q0, 1021)) = a since



starting from q0 and reading 1021 from right to left brings
you back at state q0 with output a.

Mix-automaticity properly extends automaticity: Let σ and
τ be 2- and 3-automatic, but not ultimately periodic sequences.
If zip(σ, τ) were m-automatic, then so would be σ and τ , but
then, by Cobham’s Theorem [6], 2a = 3b for some a, b > 0.
Hence zip(σ, τ) is mix-automatic, but not automatic.

Proposition 62. The class of mix-automatic sequences prop-
erly extends that of automatic sequences.

Definition 63. Let κ : ∆ω → N>1, and let G be the functor
G(X) =

∑∞
k=2 ∆×Xk. We define the cobasis

Nκ = 〈hd, λσ.〈π0,κ(σ)(σ), . . . , πκ(σ)−1,κ(σ)(σ)〉〉
An Nκ-observation graph is a G-coalgebra G = 〈S, 〈o, n〉〉
with a distinguished root element r ∈ S, such that there exists
a G-homomorphism J·K : S → ∆ω from G to the G-coalgebra
〈∆ω,Nκ〉 of all streams with respect to Nκ:

S

∑∞
k=2 ∆× Sk

∆ω

∑∞
k=2 ∆× (∆ω)k

J·K

〈o, n〉 Nκ∑∞
k=2 id× J·Kk

The observation graph G defines the stream JrK ∈ ∆ω . A
mix-observation graph is an Nκ-observation graph for some κ.

The following result is a generalization of Theorem 52. The
key idea is to adapt Definition 32 by computing the derivatives
π0,k(t)↓, . . . , πk−1,k(t)↓ of a zip-term t where now k is the
arity of the first zip-symbol in the tree unfolding of t. More-
over, we note that mix-DFAOs yield mix-observation graphs
by collapsing states that generate the same stream (for each
of the equivalence classes one representative and its outgoing
edges is chosen). This collapse caters for mix-DFAOs which
employ different bases for states that generate the same stream.

Theorem 64. For streams σ ∈ ∆ω the following properties
are equivalent:

(i) The stream σ is mix-automatic.
(ii) The stream σ can be defined by a zip-mix specification.

(iii) There exists a finite mix-observation graph defining σ.

Example 65. The zip-mix specification corresponding to the
mix-automaton from Example 61 is:

X0 = a : X′0 X′0 = zip2(X1,X
′
0)

X1 = b : X′1 X′1 = zip3(X0,X1,X
′
2)

X2 = b : X′2 X′2 = zip2(X0,X
′
1)

We have seen that equivalence for zip-k specifications is
decidable (Theorem 36), and it can be shown that comparing
zip-k with zip-mix is decidable as well. In the next section
we show that equivalence becomes undecidable when zip-mix
specifications are extended with projections πi,k. But what
about zip-mix specifications?

Question 66. Is equivalence decidable for zip-mix specifica-
tions?

VII. STREAM EQUALITY IS Π0
1-COMPLETE

In this section, we show that the decidability results for the
equality of zip-k specifications are on the verge of undecid-
ability. To this end we consider an extension of the format of
zip-specifications with the projections πi,k.

Definition 67. The set Zπ(∆,X ) of zipπ-terms over 〈∆,X〉
is defined by the grammar:

Z ::= X | a : Z | zipk(

k times︷ ︸︸ ︷
Z, . . . , Z) | πi,k(Z)

where X ∈ X , a ∈ ∆, i, k ∈ N. A zipπ-specification consists
for every X ∈ X of an equation X = t where t ∈ Zπ(∆,X ).

The class of zipπ-specifications forms a subclass of pure
specifications [10], and hence their productivity is decidable.
In contrast, the equivalence of zipπ-specifications turns out to
be undecidable (even for productive specifications).

Theorem 68. The problem of deciding the equality of streams
defined by productive zipπ-specifications is Π0

1-complete.

For the proof of the theorem, we devise a reduction from the
halting problem of Fractran programs (on the input 2) to an
equivalence problem of zipπ-specifications. Fractran [7] is a
Turing-complete programming language. As intermediate step
of the reduction we employ an extension of Fractran programs
with output (and immediate termination):

Definition 69. A Fractran program with output consists of:
– a list of fractions p1

q1
, . . . , pkqk (k, p1, q1, . . ., pk, qk ∈N>0),

– a partial step output function λ : {1, . . . , k}⇀ Γ

where Γ is a finite output alphabet. A Fractran program is a
Fractran program with output for which λ(1)↑, . . . , λ(k)↑.

Let F be a Fractran program with output as above. Then we
define the partial function 〈 · 〉 : N⇀ {1, . . . , k} that for every
n ∈ N selects the index 〈n〉 of the first applicable fraction by:

〈n〉 = min { i | 1 ≤ i ≤ k, n · pi
qi
∈ N }

where we fix (min∅)↑. We define fF : N→ N∪Γ∪{⊥} by:

fF (n) =


n · p〈n〉

q〈n〉
if 〈n〉↓ and λ(〈n〉)↑

λ(〈n〉) if 〈n〉↓ and λ(〈n〉)↓
⊥ if 〈n〉↑

for all n ∈ N. The first case is a computation step, the latter
two are termination with and without output, respectively.

We define the output function λ∗F : N⇀ Γ ∪ {⊥} of F by

λ∗F (n) =

{
γ if γ = f iF (n) ∈ Γ ∪ {⊥} for some i ∈ N
↑ if no such i exists

If λ∗F (n)↓ then F is said to halt on n with output λ∗F (n). Then
F is called universally halting if F halts on every n ∈ N>0,
and F is decreasing if pi < qi for every 1 ≤ i ≤ k with λ(i)↑.

For convenience, we denote Fractran programs with output
by lists of annotated fractions where λ(i)↑ is represented by
the empty word (no annotation): p1

q1
λ(1), . . . , pkqk λ(k).

In [7] it is shown that Fractran programs can simulate



register machines. The next lemma is an easy consequence.

Lemma 70. The problem of deciding on the input of a
Fractran program whether it halts on 2 is Σ0

1-complete.

We transform Fractran programs F into two decreasing (and
therefore universally halting) Fractran programs F0 and F1

with output such that F halts on input 2 if and only if there
exists n ∈ N such that the outputs of F0 and F1 differ on n.

Definition 71. Let F = p1
q1
, . . . , pkqk be a Fractran program. Let

a1 < . . . < am be the primes occurring in the factorizations
of p1, . . . , pk, q1, . . . , qk. Let z1, z2, c be primes such that
z1, z2, c >

∏
0≤i≤k pi · qi, and z1 > z2 and z1 > 2 · c.

We define the Fractran program F 0 with output as:

simulate F︷ ︸︸ ︷
p1

q1 · z2
, . . . ,

pk
qk · z2

,

cleanup︷ ︸︸ ︷
1

a1
, . . . ,

1

am
,

1

c · z2
χa︸ ︷︷ ︸

F halted

,
1

c
,

z2
z1 · z1

,
2 · c
z1︸ ︷︷ ︸

initialization

,
1

1
χb︸︷︷︸

F did not halt

Let F 1 be obtained from F 0 by dropping z2
z1·z1 and 2·c

z1
.

Lemma 72. The programs F 0, F 1 are decreasing and univer-
sally halting, and λ∗F i(n) ∈ {χa, χb} for all n ∈ N, i ∈ {0, 1}.

Lemma 73. The following statements are equivalent:
(i) λ∗F 0(n) = λ∗F 1(n) for all n ∈ N>0.

(ii) λ∗F 0(ze11 · z
e2
2 ) = λ∗F 1(ze11 · z

e2
2 ) for all e1, e2 ∈ N.

(iii) The Fractran program F does not halt on 2.

Next, we translate Fractran programs to zipπ-specifications.

Definition 74. Let F = p1
q1
λ(1), . . . , pkqk λ(k) be a decreasing

Fractran program with output.
Let d := lcm(q1, . . . , qk), and define p′n = d ·p〈n〉/q〈n〉 and

bn = n · p〈n〉/q〈n〉 for 1 ≤ n ≤ d; if 〈n〉↑, let p′n↑ and bn↑.
We define the zipπ-specification S(F ) for 1 ≤ n ≤ d by:

X0 = zipd(X1, . . . ,Xd)

Xn = πbn−1,p′n(X0) if 〈n〉↓ and λ(〈n〉)↑
Xn = λ(〈n〉) : Xn if 〈n〉↓ and λ(〈n〉)↓
Xn = ⊥ : Xn if 〈n〉↑

Lemma 75. Let F be a decreasing Fractran program with
output. The zipπ-specification S(F ) is productive and it holds
that JX0KS(F )(n) = λ∗F (n+ 1) for every n ∈ N.

Proof of Theorem 68: We reduce the complement of the
halting problem of Fractran programs on input 2 (which is Π0

1-
complete by Lemma 70) to equivalence of zipπ-specifications.

Let F be a Fractran program. Define F 0, F 1 as in Defi-
nition 71. By Lemma 72 both are decreasing. By Lemma 75
S(F i) is productive, and JX0KS(F

i)(n) = λ∗F i(n+1) for every
n ∈ N and i ∈ {0, 1}. Finally, by Lemma 73 it follows that
S(F 0) and S(F 1) are equivalent iff F does not halt on 2.

The equivalence problem of productive specifications is
obviously in Π0

1 since every element can be evaluated.
The complexity of deciding the equality of streams defined

by systems of equations has been considered in [18] and [3].

In [18], Roşu shows Π0
2-completeness of the problem for

(unrestricted) stream equations. In [3], Balestrieri strengthens
the result to polymorphic stream equations. However, both
results depend on the use of ill-defined (non-productive) speci-
fications that do not uniquely define a stream. The Π0

2-hardness
proofs employ stream specifications for which productivity
coincides with unique solvability. As a consequence, both
results depend crucially on the notion of equivalence for
specifications without unique solutions.

In contrast to [18] and [3], we are concerned with productive
specifications, that is, every element of which can be evaluated
constructively. Then equality is obviously in Π0

1. We show that
equality is Π0

1-hard even for a restricted class of polymorphic,
productive stream specifications.
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