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Abstract
We investigate the computational power of periodically iterated
morphisms, also known as D0L systems with periodic control,
PD0L systems for short. These systems give rise to a class of one-
sided infinite sequences, called PD0L words.

We construct a PD0L word with exponential subword complex-
ity, thereby answering a question raised by Lepistö [22] on the ex-
istence of such words. We solve another open problem concerning
the decidability of the first-order theories of PD0L words [23]; we
show it is already undecidable whether a certain letter occurs in a
PD0L word. This stands in sharp contrast to the situation for D0L
words (purely morphic words), which are known to have at most
quadratic subword complexity, and for which the monadic theory
is decidable.

The main result of our paper, leading to these answers, is that
every computable word w ∈ Σω can be embedded in a PD0L
word u ∈ Γω with Γ ⊃ Σ in the following two ways: (i) such that
every finite prefix of w is a subword of u, and (ii) such that w is
obtained from u by erasing all letters from Γ\Σ. The PD0L system
generating such a word u is constructed by encoding a Fractran
program that computes the word w; Fractran is a programming
language as powerful as Turing Machines.

As a consequence of (ii), if we allow the application of finite
state transducers to PD0L words, we obtain the set of all com-
putable words. Thus the set of PD0L words is not closed under
finite state transduction, whereas the set of D0L words is. It more-
over follows that equality of PD0L words (given by their PD0L
system) is undecidable. Finally, we show that if erasing morphisms
are admitted, then the question of productivity becomes undecid-
able, that is, the question whether a given PD0L system defines an
infinite word.

1. Introduction
Morphisms for transforming and generating infinite words provide
a fundamental tool for formal languages, and have been studied
extensively; we refer to [2] and the bibliography therein.

In this paper we investigate the class of infinite words gener-
ated by periodically alternating morphisms [6, 10, 11, 22]. Instead

∗ This research has been funded by the Netherlands Organization for Scien-
tific Research (NWO) under grant numbers 639.021.020 and 612.000.934.

[Copyright notice will appear here once ’preprint’ option is removed.]

of repeatedly applying a single morphism, one alternates several
morphisms from a given (finite) set in a periodic fashion. Let us
look at an example right away, and consider the most famous word
generated by such a procedure, namely the Kolakoski word [21]

K = 1 22 11 2 1 22 1 22 11 2 11 22 1 2 11 2 1 22 11 2 · · ·
which is defined such that K(0) = 1 and K(n) equals the length
of the n-th run of K; here by a ‘run’ we mean a maximal subse-
quence of consecutive identical symbols. The Kolakoski word can
be generated by alternating two morphisms on the starting word 12,
h0 for the even positions and h1 for the odd positions, defined as
follows:

h0 :
1→ 1
2→ 11

h1 :
1→ 2
2→ 22

The first few iterations then are
12

h0(1)h1(2) = 122

h0(1)h1(2)h0(2) = 12211

h0(1)h1(2)h0(2)h1(1)h0(1) = 1221121

It is known that the Kolakoski word is not purely morphic [11], i.e,
cannot be generated by iterating a single morphism. However it is
an open problem whether it is a morphic word, i.e., the image of a
purely morphic word under a coding (= letter-to-letter morphism).
We shall use the ‘D0L’ terminology: D0L for purely morphic,
CD0L for morphic, and PD0L for words generated by periodically
alternating morphisms, like the Kolakoski word above.

A natural characteristic of sequences is their subword complex-
ity [1, 2, 18]. The subword complexity of a sequence u is a func-
tion N→ N mapping n to the number of n-length words that occur
in u. It is well-known that morphic words have at most quadratic
subword complexity [12]. Lepistö [22] proves that for all r ∈ R
there is a PD0L word whose subword complexity is in Ω(nr);
hence there are PD0L words that are not CD0L. It remained an
open problem whether PD0L words can exhibit exponential sub-
word complexity. This intriguing question formed the initial moti-
vation for our investigations. We actually establish a stronger result
from which the existence of such words can be derived, as we will
describe next.

The main results of our paper can be stated as follows: For every
computable word w ∈ Σω there exists a PD0L word u such that

I. all prefixes of w occur in u as subwords between special
marker symbols (Theorem 5.9),

II. w is the subsequence of u obtained from selecting all letters
from Σ (Theorem 5.12).

The construction of the PD0L systems generating such words u
makes use of Fractran [7, 8], a Turing complete programming lan-
guage invented by Conway, in the following way. First, in Sec-
tion 3, we show how to employ Fractran to generate any com-
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putable infinite word. Then we encode Fractran programs as PD0L
systems, and prove that the PD0L system correctly simulates the
Fractran program and records its output, see Sections 4 and 5.

Consequences of I and II are as follows:

(1) There exist PD0L words with exponential subword complexity
(Theorem 5.14).

(2) It is undecidable to determine, given a PD0L system H and a
letter b, whether the letter b occurs (infinitely often) in the word
generated byH (Theorem 5.15).

(3) The first-order theory of PD0L words is undecidable (Corol-
lary 5.16).

(4) Equality of PD0L words is undecidable (Corollary 5.17).

(5) The set of PD0L words is not closed under finite state transduc-
tions (Corollary 5.13).

All the above results concern PD0L systems whose morphisms are
non-erasing. But we also study erasing PD0L systems, and find

(6) It is undecidable to determine, on the input of an erasing PD0L
system, whether it generates an infinite word (Theorem 4.6).

The outline of the paper is as follows. In Sections 2 and 3
we introduce the dramatis personae of our story: PD0L systems
and Fractran programs. We explain the workings of the Fractran
algorithm, and how to program in this language.

Then, as a steppingstone to our main result, we start with a
proof of (6) in Section 4. This proof illustrates our key construction:
encoding Fractran programs as PD0L systems. We then modify and
extend this encoding in Section 5 to prove Theorems 5.9 and 5.12:
PD0L words can embed every computable word, in the sense of
I and II above. We give a detailed example of the translation, and
prove (1)–(5) listed above.

PD0L systems resulting from encoding Fractran programs can
be quite large. For example, the system obtained from a simple bi-
nary counter (computing an infinite word with exponential subword
complexity) consists of

536393214598471230

morphisms. Due to space limitations we present a direct solution in
Section 6, namely a PD0L system with 16 morphisms simulating
such a counter.

2. D0L Systems with Periodic Control
We use standard terminology and notations, see, e.g., [2]. Let Σ
be a finite alphabet. We denote by Σ∗ the set of all finite words
over Σ, by ε the empty word, and by Σ+ = Σ∗ \ {ε} the set of
finite non-empty words.

The set of infinite words over Σ is Σω = {x | x : N→ Σ}. On
the set of all words Σ∞ = Σ∗ ∪ Σω we define the metric d for all
u,v ∈ Σ∞ by d(u,v) = 2−n, where n is the length of the longest
common prefix of u and v.

We let Σp = {0, . . . , p− 1}. We write |x| for the length of
x ∈ Σ∞, with |x| = ∞ if x is infinite. We call a word v ∈ Σ∗ a
factor of x ∈ Σ∞ if x = uvy for some u ∈ Σ∗ and y ∈ Σ∞, and
say that v occurs at position |u|. For words u, v ∈ Σ∗, we write
u ≺ v if u is a strict prefix of v, i.e., if v = uu′ for some u′ ∈ Σ+,
and use � for its reflexive closure.

A morphism is a map h : Σ∗ → Γ∗ such that h(uv) =
h(u)h(v) for all u, v ∈ Σ∗, and can thus be defined by giving
its values on the symbols of Σ. A morphism h is called erasing
if h(a) = ε for some a ∈ Σ, and k-uniform, with k ∈ N, if
|h(a)| = k for all a ∈ Σ; h is a coding if it is 1-uniform.

Infinite sequences generated by periodically alternating mor-
phisms, also called ‘D0L words with periodic control’ or just

‘PD0L words’ for short, were introduced in [10]. These form a
generalization of D0L words, also known as purely morphic words,
which are obtained by iterating a single morphism.

Definition 2.1. Let H = 〈h0, . . . , hp−1〉 be a tuple of morphisms
hi : Σ∗ → Σ∗. We define the map H : Σ∗ → Σ∗ as follows:

H(a0a1 · · · an) = u0u1 · · ·un
where ui = hk(ai), with k ≡ i (mod p) and k ∈ Σp.

If s ∈ Σ∗ is such that s � H(s), then the triple H = 〈Σ, H, s〉 is
called a PD0L system. Then in the metric space 〈Σ∞, d〉 the limit

Hω(s) = lim
i→∞

Hi(s)

exists, and we call Hω(s) the PD0L word generated byH. We say
that H is productive if Hω(s) is infinite, and H is erasing if some
of its morphisms hi are erasing.

If x is a PD0L word generated by p morphisms, and x = uvy
for some u, v ∈ Σ∗ and y ∈ Σ∞, we say that the factor v of x
occurs at morphism index i when i ∈ Σp and i ≡ |u| (mod p).

D0L words are generated by D0L systems 〈Σ, h, s〉, i.e., PD0L
systems 〈Σ, 〈h〉, s〉 consisting of one single morphism h. Follow-
ing [6], we call the image of a D0L word under a coding (a letter-
to-letter morphism), a CD0L word, better known as morphic words.

In the literature, one typically requires the morphisms hi to be
non-erasing to ensure that the limit is infinite. We have taken a more
general definition of PD0L-words, since also erasing morphisms
may yield an infinite word in the limit. See Remark 2.3 below.

In the sequel it will be helpful to have a recursive definition of
the map H .

Lemma 2.2. Let H = 〈h0, h1, . . . , hp−1〉 be a tuple of mor-
phisms. For i ∈ Σp define Hi = 〈hi, . . . , hp−1, h0, . . . , hi−1〉
and the corresponding map Hi : Σ∗ → Σ∗ by

Hi(ε) = ε

Hi(au) = hi(a)Hi+1(u) (a ∈ Σ, u ∈ Σ∗)

where addition in the subscript of H is taken modulo p.
Then H0 = H with H the map defined in Definition 2.1, and

Hi(uv) = Hi(u)Hi+|u|(v) for all u, v ∈ Σ∗ and i ∈ Σp.

Using this notation we now formulate the PD0L analogue of the
usual condition for productivity of D0L systems. In Section 4 we
show that productivity of PD0L systems in general is undecidable.
Productivity has been studied in the wider perspective of term
rewriting systems in [13, 15, 16, 25].
Remark 2.3. Let 〈Σ, h, s〉 be a D0L system. We say that h is
prolongable on s if h(s) = sx for some x ∈ Σ∗ and hi(x) 6= ε for
all i ≥ 0. Then hi(s) ≺ hi+1(s) for all i ≥ 0, and hence the limit
hω(s) = s x h(x)h2(x) · · · is infinite. The generalization of this
condition to PD0L systems H = 〈Σ, H, v0〉 is: (*) H(v0) = v0v1
for some v1 ∈ Σ∗ such that vn 6= ε for all n ∈ N, where vn ∈ Σ∗

and zn ∈ Σp are defined by z0 = 0 and

vn = Hzn−1(vn−1) (n ≥ 2)

zn ≡ zn−1 + |vn−1| (mod p) (n ≥ 1)

Then Hn(v0) = Hn−1(v0)vn for all n ≥ 1, and so (*) forms a
necessary and sufficient condition for productivity ofH, that is, for
the limit Hω(v0) = v0v1v2 · · · to be infinite.

Definition 2.4. The subword complexity of an infinite word x ∈
Σω is the function px : N → N such that px(n) is the number of
factors (subwords) of x of length n.

Proposition 2.5 ([12]). The subword complexity of D0L words, and
hence of CD0L words, is at most quadratic.
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We first consider an example of an erasing PD0L system.

Example 2.6. LetH = 〈Σ3, H, 0〉 withH = 〈h0, h1, h2〉 defined
for all b ∈ Σ3 as follows, where addition runs modulo 3:

h0(b) = b(b+ 1)(b+ 2) h1(b) = ε h2(b) = b+ 2

ThenH is productive (by Proposition 2.8) and generates the word

Hω(0) = 0121120101221201120212010120201001210 · · ·

Definition 2.7. Let H = 〈Σ, 〈h0, . . . , hp−1〉, s〉 be a PD0L sys-
tem. We sayH is locally uniform if every morphism hi is uniform,
i.e, if for all i ∈ Σp there is ki ∈ N such that ki = |hi(b)| for all
b ∈ Σ. We sayH is (globally) uniform if, for some k ∈ N, each hi
is k-uniform (i ∈ Σp).

Obviously, a globally k-uniform PD0L system is productive if
and only if k ≥ 2. For locally uniform systems the condition is
formulated as follows, and is easy to check.

Proposition 2.8. Let H = 〈Σ, 〈h0, . . . , hp−1〉, w〉 be a locally
uniform PD0L system, where hi is ki-uniform. Let s(n) be defined
by s(0) = 0 and s(n+ 1) = s(n) + ki with i ≡ n (mod p). Then
H is productive if and only if s(n) > n for all n ≥ |w|.

Proof. The wordHω(w) can be defined as the limit of the sequence
w|w|, w|w|+1, w|w|+2, . . . of finite words defined for n ≥ |w| by

w|w| = H(w)

wn+1 =

{
wn if n ≥ |wn|
wn hi(wn(n)) if n < |wn| and n ≡ i (mod p)

We have |w|w|| = s(|w|) and by induction we get |wn| = s(n) for
every n ≥ |w|. The limit limn→∞ wn is infinite if and only if we
never get to the clause n ≥ |wn|, which holds in turn if and only if
s(n) > n for all n ≥ |w|.

Example 2.9. Let Σ = {L,O,P}, and define ρ : Σ → Σ by
ρ(L) = O, ρ(O) = P, and ρ(P) = L. Let H = 〈h0, h1〉 with
h0, h1 morphisms for all a ∈ Σ defined by

h0(a) = aρ(a)ρ2(a) h1(a) = ρ2(a)ρ(a)a

Then the PD0L system 〈Σ, H, L〉 generates the infinite word

Hω(L) = LOPLPOPLOPOLPLOLPOPLOPOLOPLOLPOPL · · ·

This is the square-free Arshon word [3] (of rank 3), which Berstel
proved to be an example of a CD0L word that is not a D0L
word [4]; see Séébold [24] for a generalization. That Hω(L) can
indeed be defined as a CD0L word follows from Proposition 2.10.

It is not hard to see that, when a word u is generated by a
(globally) k-uniform PD0L system, it is k-automatic [2], i.e., u is
the image of a coding of the fixed point of a k-uniform morphism.

Proposition 2.10. Let k ≥ 2, and H = 〈Σ, H, s〉 a k-uniform
PD0L system. Then Hω(s) is k-automatic.

Proof. Let H = 〈h0, . . . , hp−1〉, where every hi is k-uniform. We
define the (k-uniform) morphism g : Σp × Σ→ Σp × Σ by

g(〈i, a〉) = 〈ki, b0〉〈ki+ 1, b1〉 · · · 〈ki+ k − 1, bk−1〉

where addition in the first entries runs modulo p, and for j ∈ Σk,
bj ∈ Σ is such that hi(a) = b0b1 · · · bk−1. Let s = s0s1 · · · sq−1,
t = 〈0, s0〉〈1, s1〉 · · · 〈q − 1, sq−1〉, and u = Hω(s). Then

gn(t) = 〈0,u(0)〉〈1,u(1)〉 · · · 〈qkn − 1,u(qkn − 1)〉

follows by induction on n. Hence τ(gω(t)) = u with τ the coding
defined by τ(〈i, a〉) = a.

One might wonder whether also locally uniform, productive
PD0L systems always generate morphic words. Examples 2.11 and
2.12 show that this is not the case.

Example 2.11 ([22]). Define the word Fp ∈ {0, 1}ω for every p ≥
2 by Fp = Hω(0) where 〈{0, 1}, H, 0〉 with H = 〈h0, . . . , hp−1〉
is a PD0L system, and hi are morphisms defined by

h0 :

{
0→ 01

1→ 00
hi :

{
0→ 1

1→ 0
for i ∈ {1, . . . , p− 1}

For example, the word F3 starts like this:

010100110001011001000110011100010100001101010011 · · ·

Lepistö [22] proves that Fp has more than quadratic subword com-
plexity, for every p ≥ 2. Hence, with Proposition 2.5, these PD0L
words Fp cannot be CD0L words. We note that, conversely, the ex-
istence of CD0L words that are not PD0L words was shown in [10].

Example 2.12 ([6]). A Toeplitz word [20] over an alphabet Σ is
generated by a seed word u ∈ Σ(Σ ∪ {?})∗ with ? 6∈ Σ, as fol-
lows. Start with the periodic uω and then replace its subsequence
of ?’s by the sequence itself. For example u = 12??? generates
the infinite word T (u) = 121211221112221 · · · . Cassaigne and
Karhumäki [6] show that all Toeplitz words are PD0L words; e.g.,
T (u) = Hω(1) where H = 〈h0, h1, h2〉 and h0(a) = 12a and
h1(a) = h2(a) = a for all a ∈ {1, 2}. Moreover, from [6, Theo-
rem 5] it follows that pT (u)(n) ∈ Θ(nr) with r = log 5

log 5−log 3
'

3.15066, thus forming an alternative proof of what was established
in [22]: there are PD0L words that are not CD0L.

3. Fractran for Computing Streams
Fractran [7, 8] is a universal programming language invented by
John Horton Conway. The simplicity of its execution algorithm,
based on the unique prime factorization of integers, makes Fractran
ideal for coding it into other formalisms.

A Fractran program F is a finite list of fractions

F =
n1

d1
, . . . ,

nk
dk

(1)

with ni, di positive integers. Let fi = ni
di

. The action of F on
an input integer N ≥ 1 is to multiply N by the first ‘applicable’
fraction fi, that is, the fraction fi with i the least index such that
the product N ′ = N · fi is an integer again, and then to continue
withN ′. The program halts if there is no applicable fraction for the
current integer N .

For example, consider the program

F =
5

2 · 3 ,
1

2
,

1

3

and the run of F on input N = 2335 :

2335 → 223451 → 213352 → 203253 → 203153 → 203053 .

Note that each multiplication by 5
6

decrements the exponents of 2
and 3 while incrementing the exponent of 5. Once 5

6
is no longer

applicable, i.e., when one of the exponents of 2 and 3 in the prime
factorization of the current integer N equals 0, the other is set to 0
as well. Hence, executing F on N = 2a 3b halts after max(a, b)
steps with 5min(a,b).

Thus the prime numbers that occur as factors in the numerators
and denominators of a Fractran program can be regarded as regis-
ters, and if the current working integer is N = 2a 3b 5c . . . we can
say that register 2 holds a, register 3 holds b, and so on.

The real power of Fractran, however, comes from the use of
prime exponents as states. To explain this, we temporarily let pro-
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grams consist of multiple lines of the form

α :
n1

d1
→ α1,

n2

d2
→ α2, . . . ,

nm
dm
→ αm (2)

forming the instructions for the program in stateα: multiplyN with
the first applicable fraction ni

di
and proceed in state αi, or terminate

if no fraction is applicable. We call the states α1, . . . , αm in (2)
the successors of α, and we say a state is looping if it is its own
successor.

For example, the program Padd given by the lines

α :
2 · 5

3
→ α,

1

1
→ β and β :

3

5
→ β

realizes addition; running Padd in state α on N = 2a3b terminates
in state β with 2a+b3b.

A program with n lines is called a Fractran-n program. A flat
list of fractions f1, . . . , fk now is a shorthand for the Fractran-1
program α : f1 → α, f2 → α, . . . , fk → α. Conway [8]
explains how every Fractran-n program (n ≥ 2) can be compiled
into a Fractran-1 program, using the following steps:

(i) For every looping state α, introduce a ‘mirror’ state α, substi-
tute αfor all occurrences of α in the right-hand sides of its
program line, and add the line

α:
1

1
→ α

(ii) Replace state identifiers α by ‘fresh’ prime numbers.

(iii) For every line of the form (2) append the following fractions:
n1 · α1

d1 · α
,
n2 · α2

d2 · α
, . . . ,

nk · αm
dm · α

(preserving the order) to the list of fractions constructed so far.

Let us illustrate these steps on the adder Padd given above. Step (i)
of splitting loops, results in

α :
2 · 5

3
→ α,

1

1
→ β β :

3

5
→ β

α:
1

1
→ α β:

1

1
→ β .

In step (ii), we introduce ‘fresh’ primes to serve as state indicators,
e.g., 〈α, α, β, β〉 = 〈7, 11, 13, 17〉. Finally, step (iii), we replace
lines by fractions, to obtain the Fractran-1 program

Fadd =
2 · 5 · α

3 · α ,
α

α
,
β

α
,

3 · β

5 · β ,
β

β
.

Then indeed the run of Fadd on 2a3bα ends in 2a+b3bβ.
For ‘sensible’ programs any state indicator has value 0 (‘off’)

or 1 (‘on’), and the program is always in exactly one state at a
time. Hence, if a program F uses primes r1, . . . , rp for storage,
and primes α1, . . . , αq for control, at any instant the entire config-
uration of F (= register contents + state) is uniquely represented by
the current working integer N

N = re11 re22 · · · r
ep
p αj

for some integers e1, . . . , ep ≥ 0 and 1 ≤ j ≤ q.
The reason to employ two state indicators α and αto break

self-loops in step (i), is that each state indicator is consumed when-
ever it is tested, and so we need a secondary indicator αto say “con-
tinue in the current state”. This secondary indicator αis swapped
back to the primary indicator α in the next instruction, and the loop
continues.

We now introduce some further notation. For partial functions
g : A ⇀ B we write g(x)↓ to indicate that g is defined on x ∈ A,
and g(x)↑ otherwise.

Definition 3.1. Let F = f1, . . . , fk be a Fractran program with
fi = ni

di
∈ Q>0. We define the partial function ψF : N ⇀ N

which, given an integerN ≥ 1, selects the index of the first fraction
applicable to N , and is undefined if no such fraction exists, i.e.,

ψF (N) = min {i | 1 ≤ i ≤ k, N · fi ∈ N} ,
where we stipulate (min∅)↑. We write ψ(n) for short when F is
clear from the context.

We overload notation and use F : N ⇀ N to denote the one-
step computation of the program F , defined for all N ≥ 1 by

F (N) = N · fψ(N)

where it is to be understood that F (N)↑whenever ψ(N)↑. The run
of F on N is the finite or infinite sequence N,F (N), F 2(N), . . ..
We say that F halts or terminates on N if the run of F on N is
finite.

The halting problem for Fractran programs is undecidable.

Proposition 3.2 ([14, Theorem 2.2]). The uniform halting problem
for Fractran programs, that is, deciding whether a program halts
for every starting integer N ≥ 0, is Π0

2-complete.

Proposition 3.3 ([19, Theorem 68]). The input-2 halting problem
for Fractran programs, that is, deciding whether a program halts
for the starting integer N = 2, is Σ0

1-complete.

Remark 3.4. In some sense it does not matter which prime numbers
are used in a Fractran program. Let us make this precise. Let p be
a prime number, and n a positive integer. Then let vp(n) denote
the p-adic valuation of n i.e., vp(n) = a with a ∈ N maximal
such that pa divides n. For ~p = 〈p1, p2, . . . , pt〉 we write v~p(n) to
denote 〈vp1(n), vp2(n), . . . , vpt(n)〉. Let F be a Fractran program
with t distinct primes ~p = p1, p2, . . . , pt, let ~q = q1, q2, . . . , qt be
any vector of t distinct primes, and let G be the program obtained
from F by uniformly substituting the qi’s for the pi’s. Then clearly,
for all integers M,N ≥ 0 such that v~p(M) = v~q(N), we have
v~p(F

i(M)) = v~q(G
i(N)) for all i ≥ 0.

We employ Fractran programs to define finite or infinite words
over the alphabet {0, 1} by giving the primes 3 and 5 a special
meaning, namely for indicating output 0 and 1, respectively. The
construction easily generalizes to arbitrary finite alphabets.

Definition 3.5. Let F be a Fractran program. The finite or infinite
word WF computed by F is WF = W (2) where W (N) = ε if the
sequence F (N), F 2(N), . . . does not contain values divisible by 3
or 5, (note that this includes W (N) = ε if F (N)↑), and otherwise

W (N) =


0 W (F (N)) if 3 | F (N),
1 W (F (N)) if 5 | F (N) and 3 - F (N),
W (F (N)) otherwise.

So the word WF is infinite if and only if F does not terminate
on input 2 and the run of F onN contains infinitely many numbers
that are divisible by 3 or 5. The infinite word can be read off
from the infinite run by dropping all entries neither divisible by 3
nor 5, and then mapping the remaining entries to 0 or 1, if they are
divisible by 3 or 5 (and not 3), respectively.

Example 3.6. The Fractran program 3
2
, 5
3
, 3
5

gives rise to the com-
putation 3, 5, 3, 5, 3, 5, . . ., and hence computes the infinite word
010101 . . . of alternating bits.

Proposition 3.7. Every (finite or infinite) computable, binary word
can be computed by a Fractran program.

Proof. In [14] it is shown that Fractran programs can simulate
any Turing machine computation. By Remark 3.4 we may assume
that this translation does not employ the primes {2, 3, 5}. Then a
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straightforward adaptation of the proof in [14] yields the claim:
we multiply the fractions corresponding to the Turing machine
generating an output 0 or 1 by the primes 3 or 5, respectively, and
make sure the thus introduced factor 3 or 5 is removed in the next
step by putting fractions 1

3
and 1

5
in front of the program.

We define a Fractran-n program and compile it to a Fractran-1
programFBIN which computes an infinite word that has every finite
binary word as one of its factors. For this we use the bijective
‘z-representation’ defined as follows.

Definition 3.8. Let Σ = {0, 1}. For all n ∈ N and w ∈ Σ∗, we
define (n)z ∈ Σ∗ and [w]z ∈ N by

(0)z = ε [ε]z = 0

(2n+ 1)z = 0(n)z [0w]z = 2[w]z + 1

(2n+ 2)z = 1(n)z [1w]z = 2[w]z + 2

and we let BIN denote the infinite word

BIN = (0)z(1)z(2)z · · · = 0 1 00 10 01 11 000 100 010 · · ·
We will now define a Fractran program that computes BIN; it

will be the compilation of the following Fractran-7 program:

α1 :
r2
r3
→ α5 ,

r1
1
→ α2 β0 :

1

1
→ α1

α2 :
r2r3
r1
→ α2 ,

1

1
→ α3 β1 :

1

1
→ α1

α3 :
r1
r3
→ α3 ,

1

1
→ α4

α4 :
r3
r22
→ α4 ,

1

r2
→ β0 ,

1

r3
→ β1

α5 :
r2
r3
→ α5 ,

1

1
→ α4

We first explain its workings, and then compile it into a Fractran-1
program. Let e1, e2, e3 be the register contents of the current in-
teger N , i.e., such that N = re11 r

e2
2 r

e3
3 . In the run (= sequence of

states) of the above program starting in α1 with e1 = e2 = e3 = 0,
the subsequence of ‘output’ states β0 and β1 corresponds to the in-
finite word BIN. The idea is that r1 holds the current value n for
producing the factor (n)z of BIN. State α1 with e3 = 0 incre-
ments e1, and the program proceeds in state α2. States α2 and α3

copy e1 to e2 and we continue in state α4. State α4 subtracts 2 from
e2 while incrementing e3 as long as possible (corresponding to di-
vision of r2 by 2 and storing the quotient in e3), and then goes to
output state β0 if the remainder e2 6= 0, and to output state β1 after
decrementing e3, otherwise (corresponding to the definition of (·)z
above). After any of the two output states, the program returns to
state α1. State α1 with a non-zero quotient r3 copies e3 to e2 using
state α5, and then continues with state α4.

We compile the above program into a flat list of fractions using
the steps (i)–(iii) given above. For the looping states α2, α3, α4,
and α5, we introduce mirror states α2, α3, α4, and α5. Second, we
assign the following prime numbers to the identifiers:

α1 α2 α2 α3 α3 α4 α4 α5 α5 β0 β1 r1 r2 r3
2 7 11 13 17 19 23 29 31 3 5 37 41 43

Finally, with (iii), we obtain the following Fractran-1 program:

FBIN =
r2α5

r3α1
,
r1α2

α1
,
r2r3 α2
r1α2

,
α3

α2
,
α2

α2
,
r1 α3
r3α3

,
α4

α3
,
α3

α3
,

r3 α4
r22α4

,
β0
r2α4

,
β1
r3α4

,
α4

α4
,
r2 α5
r3α5

,
α4

α5
,
α5

α5
,
α1

β0
,
α1

β1

which is run on input N = α1 = 2 to force the program to start
in the initial state. We note that the huge number mentioned at the
end of the introduction is the least common denominator of FBIN.

Proposition 3.9. The word computed by FBIN is BIN.

4. Productivity for Erasing PD0L Systems
We show that the problem of deciding productivity of erasing PD0L
systems is undecidable. The idea is to encode a given Fractran
program F as a PD0L systemHF = 〈Σ, H, s〉 such that Hω(s) is
infinite if and only if F does not terminate on input 2.

We consider Fractran programs of the form n1
d
, . . . , nk

d
; every

program can be brought into this form by taking d the least common
denominator of the fractions.

Definition 4.1. Let F = n1
d
, . . . , nk

d
be a Fractran program. We

define the PD0L systemHF = 〈Γ, H, s 〉 where

Γ =
{
s , , a , A , b , B

}
and H = 〈h0, . . . , hd−1〉 consisting of morphisms hi : Γ∗ → Γ∗

defined for all i ∈ Σd as follows:

hi( s ) = s d−1 a a b d−1 (3)
hi( ) = ε (4)

hi( a ) =

{
A d−1 if i = d− 1

ε otherwise
(5)

hi( b ) = B d−1−i (6)

hi(A ) =

{
anψ(i) if ψ(i) is defined
ε otherwise

(7)

hi(B ) =

{
ai·

nψ(i)
d b d−1 if ψ(i) is defined

ε otherwise
(8)

Before we show that productivity of the PD0L system HF
coincides with F running forever on input 2, we give some intuition
and an example to illustrate the working ofHF .

The following trivial fact is useful to state separately.

Lemma 4.2. Let N, d, q, r ∈ N such that N = qd + r, and F
a Fractran program. Then ψF (N) = ψF (r). If moreover b ∈ N
divides d, then b | N if and only if b | r.

Let F be a Fractran program with common denominator d, and
(finite or infinite) run N0, N1, N2, . . .. Let qi ∈ N and ri ∈ Σd
such that Ni = qid + ri, for all i ≥ 0. We let xn be the ‘con-
tribution’ of the iteration Hn+1, i.e., xn is such that Hn+1( s ) =
Hn( s )xn. ThenHω( s ) = sx0x1x2 · · · . We will displayHω( s )
in separate lines each corresponding to an xn. The computation of
the word Hω( s ) proceeds in two alternating phases: the transition
from even to odd lines corresponds to division by d, and the tran-
sition from odd to even lines corresponds to multiplication by the
currently applicable fraction

nψ(Ni)

d
. These phases are indicated by

the use of lower- and uppercase letters, that is, x2n ∈ { , a , b }
and x2n+1 ∈ { , A , B }, as can be seen from the definition of
the morphisms. Now the intuition behind the alphabet symbols (in
view of the defining rules of the morphisms) can be described as
follows. We use s as the starting symbol, and the symbol is used
to shift the morphism index of subsequent letters.

In every even line x2i

(i) there is precisely one block of a ’s; this block is positioned at
morphism index 0 and is of length Ni, representing the current
value Ni in the run of F ;

(ii) b is a special marker for the end of a block of a ’s, so positioned
at morphism index ri, the remainder of dividing Ni by d.

In every odd line x2i+1
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(iii) the number of A ’s corresponds to the quotient qi, and every
occurrence of A is positioned at morphism index ri ;

(iv) B (also at morphism index ri) takes care of the multiplication
of the remainder ri with

nψ(Ni)

d
. Then ψ(Ni) = ψ(ri) ensures,

via Lemma 4.2, that the morphism can select the right fraction
to multiply with.

We illustrate the encoding by means of an example.

Example 4.3. Consider the Fractran program 9
2
, 5
3

, or equivalently

F =
27

6
,

10

6

and its finite run 2, 9, 15, 25. Following Definition 4.1 we construct
the PD0L systemHF = 〈Γ, H, s 〉 with H = 〈h0, . . . , h5〉 and

hi( s ) = s 5 a a b 5

h0( a ) = . . . = h4( a ) = ε

h5( a ) = A 5

hi( b ) = B 5−k

h0(A ) = h2(A ) = h4(A ) = a27

h3(A ) = a10

h1(A ) = h5(A ) = ε

h0(B ) = b 5

h2(B ) = a9 b 5

h4(B ) = a18 b 5

h3(B ) = a5 b 5

h1(B ) = h5(B ) = ε

for i ∈ Σ6. Then Hω( s ) is finite and the stepwise computation
of this fixed point can be displayed as follows. To ease reading,
we write below each letter its morphism index. Let zn denote the
morphism index of xn. Moreover, the word Hω( s ) = sx0x1 · · ·
is broken into lines in such a way that every line xn+1 is the image
of the previous line xn under Hzn (except for the line x0, which is
the tail of the image of s under H = H0).

s
0

x0 = 5

1

a
0

a
1

b
2

5

3

x1 = B
2

3

3

x2 = a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

b
3

5

4

x3 = A
3

5

4

B
3

2

4

x4 = a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

b
3

5

4

x5 = A
3

5

4

A
3

5

4

B
3

2

4

x6 = a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

a
3

a
4

a
5

a
0

a
1

a
2

a
3

a
4

a
5

a
0

b
1

5

2

x7 = A
1

5

2

A
1

5

2

A
1

5

2

A
1

5

2

B
1

x8 = ε

Now we characterize the contribution of every iteration of H
in the construction of the word Hω(2). We employ the notations
given in Lemma 2.2.

Lemma 4.4. Let F = n1
d
, . . . , nk

d
, and N ≥ 1. Let q ∈ N and

r ∈ Σd be such that N = qd+ r. Let X = d−1 . Then we have

H( aN b X ) = (A X )q B d−1−r (9)

of length d(q + 1)− r. If, moreover, F (N) is defined, then

Hr((A X )q B d−1−r ) = aF (N) b X (10)

of length F (N) + d.

Proof. Equation (9) follows immediately by induction on q. To see
that (10) holds for F (N)↓, note that ψ(N) is defined, and so is
ψ(r) = ψ(N), by Lemma 4.2. Hence we obtain

Hr((A X )q B d−1−r ) = ( anψ(r) )qHr(B
d−1−r )

= ( anψ(r) )q ar·
nψ(r)
d b X

and we conclude by F (N) = N · nψ(N)

d
= q · nψ(N) + r ·

nψ(N)

d
.

Lemma 4.5. For all Fractran programs F , the PD0L system HF
is productive if and only if F does not terminate on input 2.

Proof. Let F and HF be as in Definition 4.1. Let N0, N1, N2, . . .
be the finite or infinite run of F on 2, i.e., Ni = F i(2), and let
t ∈ N∪{∞} denote its length. For all i with 0 ≤ i < t, let qi ∈ N
and ri ∈ Σd be such that Ni = qid+ ri.

We define xn ∈ Σ∗ and zn ∈ Σd for all n ≥ 0, as follows. Let
X = d−1 , x0 = a a b X , z0 = 0, and, for n ≥ 1, let xn and zn
be such thatHn+1( s ) = Hn( s )xn and zn ≡ |Hn( s )| (mod d).
Then Hω( s ) = s Xx0x1x2 · · · , and the factor xn is at morphism
index zn. With Lemma 2.2 we then have

xn = Hzn−1(xn−1) zn ≡ zn−1 + |xn−1| (mod d) (11)

for all n ≥ 1. Now we prove by induction on n ≥ 0 that

xn = aNi b X zn = 0 if n = 2i < 2t,

xn = (A X )qi B d−1−ri zn = ri if n = 2i+ 1 < 2t,
xn = ε zn = 0 if n ≥ 2t.

The base case is immediate. Let n > 0. If n = 2i < 2t for some
i < t, then Ni = F (Ni−1) is defined, and xn = Hzn−1(xn−1) =

Hri−1((A X )qi−1 B d−1−ri−1 ) = aNi b X , and zn ≡ zn−1 +
|xn−1| ≡ ri−1 + d(qi−1 + 1) − ri−1 ≡ 0 (mod p), both by
(11), the induction hypothesis and Lemma 4.4. If n = 2i+ 1 < 2t

for some i < t, then xn = Hzn−1(xn−1) = H0( aNi b X ) =

(A X )qi B d−1−ri , and zn ≡ zn−1 + |xn−1| ≡ 0 + Ni +
d ≡ ri (mod p), again by (11), the induction hypothesis and
Lemma 4.4. Finally, if n = 2t, then xn = Hzn−1(xn−1) =

Hrt−1((A X )qt−1 B d−1−rt−1 ) = ε, since F terminates on
Nt−1 (and so ψ(Nt−1) and ψ(rt−1) are undefined), and zn ≡
zn−1 + |xn−1| ≡ rt−1 + d(qt−1 + 1) − rt−1 ≡ 0. Clearly, then
also xn = ε and zn = 0 for all n > 2t.

Hence, by Lemma 4.5 and Proposition 3.3, deciding productiv-
ity of PD0L systems is undecidable.

Theorem 4.6. The problem of deciding on the input of a PD0L
systemH whetherH is productive, is Π0

1-complete.

5. Turing Completeness of Non-Erasing
PD0L Systems

In this section we extend the encoding of Fractran from the pre-
vious section to show that every computable infinite word can be
embedded in the following two ways.
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Definition 5.1. Let Σ and Γ ⊃ Σ be alphabets with letters l , r ∈
Γ \Σ, and let w ∈ Σω and u ∈ Γω be infinite words. We say w is
prefix embedded in u if the following three conditions are satisfied:

(i) for every finite prefix v of w there is an occurrence l v r in u,
(ii) for every occurrence of a word l v r in u with v ∈ (Γ \ { r })∗

we have that v is a prefix of w, and
(iii) letters from Σ occur in u only in factors (subwords) of the form

l v r with v ∈ (Γ \ { r })∗.

Definition 5.2. Let Σ and Γ ⊃ Σ be alphabets, and let w ∈ Σω

and u ∈ Γω be infinite words. We say w is sparsely embedded in u
if w is obtained from u by erasing all letters in Γ \ Σ.

The crucial difference with the encoding of Section 4 is that
we now use the knowledge about the remainder not only to select
the correct fraction to multiply with, but also to recognize when the
current value is divisible by 3 or 5, and correspondingly produce an
output bit 0 or 1 , cf. Definition 3.5. The process again proceeds in
two phases, for division and multiplication, and we employ lower-
and uppercase letters accordingly. We introduce letters l (and L )
and r (and R ) marking the beginning and the end of the prefix of
the infinite word computed by the Fractran program. Furthermore,
the symbol R produces the output bits depending on the current
remainder ri. In order to prevent that the output of R changes the
morphism index of R , we introduce z (and Z ) which compensate
the production of R with an inverse length. The letter e (and
E ) marks the end of the line, and additionally e takes care of
realignment after multiplication, such that the first a in each run
stands on morphism index 0.

Definition 5.3. Let F = n1
d
, . . . , nk

d
be a Fractran program such

that (without loss of generality) the common denominator d is di-
visible by 3 and 5. Define the PD0L systemHF = 〈Γ, H, s 〉 with

Γ =
{
s , , ◦ , a , A , b , B , z , Z , l , L , 0 , 1 , r , R , e , E , Q

}
and H = 〈h0, . . . , hd−1〉 consisting of (non-erasing) morphisms
hi : Γ∗ → Γ∗ defined for every i ∈ Σd as follows:

hi( s ) = s d−1 a a b d−1 z d−2 l r d−1 e

hi( ) =

hi( a ) =

{
A d−1 if i = d− 1 ,
d otherwise.

hi( b ) = B

hi( z ) = Z

hi( l ) = L

hi( r ) = R

hi( e ) = E ◦d−i

hi( ◦ ) = d

hi(A ) =

{
anψ(i) if ψ(i) is defined,
Q otherwise.

hi(B ) =

{
ai·

nψ(i)
d b if ψ(i) is defined,

Q otherwise.

hi(Z ) =

{
z d−1 if 3 | i or 5 | i ,
z otherwise.

hi(L ) = l

hi( 0 ) = 0

hi( 1 ) = 1

hi(R ) =


0 r if 3 | i ,
1 r if 5 | i ,
r otherwise.

hi(E ) = e

hi(Q ) = Q

Remark 5.4. In Definition 5.3 we require that 3 and 5 divide the
common denominator in order for Lemma 4.2 to apply. Informally
speaking, via the remainder we can only observe factors that also
divide the common denominator.
Remark 5.5. Let F and H be as in Definition 5.3. It can be shown
that the symbol Q occurs in the word Hω( s ) if and only if the
Fractran program F halts on input 2. This fact can be used to
show that it is undecidable whether Q occurs inHω( s ). However,
we prove this differently, namely by applying Theorem 5.9 and
using the fact that for non-terminating Fractran programs it is
undecidable whether digit 1 occurs in the sequence computed by
the program. See Theorem 5.15.

Time for an example.

Example 5.6. Consider the following Fractran program:

F =
2

7
,

3 · 7
2 · 5 ,

3

2
,

5

3
,

2

1

which has the infinite run 2, 3, 5, 10, 21, 6, 9, 15, 25, 50, 105, 30,
63, 18, 27, 45, 75, 125, 250, 525, 150, . . . and computes the word

011000011000000011000000000011000000000000011 · · · ,

that is, 0111 03+111 06+111 09+111 012+1 . . . =
∏∞
i=0 03·i+111.

Writing the program with the common denominator 210 yields:

F =
60

210
,

441

210
,

315

210
,

350

210
,

420

210

LetHF be the PD0L encoding of F , as given in Definition 5.3. We
consider the first steps of the iteration of the morphisms; for easier
reading, we drop blocks of consecutive symbols 210 (they do not
change the morphism index of other letters), and let X = 209 .

s

0

x0 = X

1

a2

0

b

2

X

3

z

2

208

3

l

1

r

2

X

3

e

2

x1 = X

3

B

2

X

3

Z

2

208

3

L

1

R

2

X

3

E

2

◦208

3

x2 = X

1

a3

0

b

3

X

4

z

3

208

4

l

2

r

3

X

4

e

3

x3 = X

4

B

3

X

4

Z

3

208

4

L

2

R

3

X

4

E

3

◦207

4

x4 = X

1

a5

0

b

5

X

6

z

5

207

6

l

3

0

4

r

5

X

6

e

5

x5 = X

6

B

5

X

6

Z

5

207

6

L

3

0

4

R

5

X

6

E

5

◦205

6

x6 = X

1

a10

0

b

10

X

11

z

10

206

11

l

7

0

8

1

9

r

10

X

11

e

10

x7 = X

11

B

10

X

11

Z

10

206

11

L

7

0

8

1

9

R

10

X

11

E

10

◦200

11

x8 = X

1

a21

0

b

21

X

22

z

21

205

22

l

17

0

18

1

19

1

20

r

21

X

22

e

21

x9 = X

22

B

21

X

22

Z

21

205

22

L

17

0

18

1

19

1

20

R

21

X

22

E

21

◦189

22

Note that the number of a ’s in rows x2i precisely models the run
of the Fractran program 2, 3, 5, 10, 21, . . . . By construction, the
morphism index of R equals the remainder ri, and consequently
R produces the prefix 011 of the word computed by F .
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Things become more interesting if the number of a ’s exceeds
the denominator 210. We look at a few steps further down the
sequence:

x36 = X

1

a250
0

b
40

X

41

z

40

191

41

l

22

0

23

1

24

1

25

0

26

0

27

0

28

0

29

1

30

1

31

0

32

0

33

0

34

0

35

0

36

0

37

0

38

1

39

r

40

X

41

e

40

x37 = X

41

A

40

X

41

B

40

X
41

Z
40

191

41

L

22

0

23

1

24

1

25

0

26

0

27

0

28

0

29

1

30

1

31

0

32

0

33

0

34

0

35

0

36

0

37

0

38

1

39

R

40

X

41

E

40

◦170

41

x38 = X

1

a525

0

b

10
5

X

10
6

z

10
5

190
10

6

l
86

0
87

1

88

1

89

0

90

0

91

0

92

0

93

1

94

1

95

0

96

0

97

0

98

0

99

0

10
0

0

10
1

0

10
2

1

10
3

1

10
4

r

10
5

X

10
6

e

10
5

x39 = X

10
6

(A

10
5

X

10
6

)2 B

10
5

X

10
6

Z

10
5

190

10
6

L
86

0
87

1
88

1
89

0

90

0

91

0

92

0

93

1

94

1

95

0

96

0

97

0

98

0

99

0

10
0

0

10
1

0

10
2

1

10
3

1

10
4

R

10
5

X

10
6

E

10
5

◦105

10
6

x40 = X

1

a150

0

b

15
0

X

15
1

z

15
0

189

15
1

l

13
0

0

13
1

1

13
2

1

13
3

0

13
4

0

13
5

0

13
6

0

13
7

1

13
8

1

13
9

0

14
0

0

14
1

0

14
2

0

14
3

0
14

4

0
14

5
0

14
6

1

14
7

1

14
8

0

14
9

r

15
0

X

15
1

e

15
0

In line x36 we have 250 a ’s giving rise to only one A in the
subsequent line x37. Again, A , B , Z and R stand on index
40 ≡ 250 (mod 210), and consequently both deduce that the
first applicable fraction is 441

210
= 3·7

2·5 . The letter A represents the
quotient from the division by 210, and hence produces 441 a ’s.
The letter B is responsible for the multiplication of the remainder,
and thus produces 40 · 3·7

2·5 = 84 a ’s. Thus we get 441 + 84 = 525

a ’s in line x38. Moreover, R produces a 1 since 250 is dividable
by 5 but not 3, and Z produces an X -block (X = 209 ) to keep
R and the remaining symbols on the correct index.

Now the division of 525 by 210 has quotient 2 and remainder
105, and so we have two A ’s in line x39, and all A ’s, B , Z and
R standing on index 105. The first applicable fraction for 105 is
60
210

= 2
7

, and correspondingly the two A ’s produce 60 a ’s each,
and B produces 30 = 105 · 2

7
a ’s, in total giving rise to 150 a ’s

in line x40. Now 525 is divisible by 3 and so R produces a 0 .

We now start working towards a proof of Theorem 5.9. Let
F = n1

d
, . . . , nk

d
be a Fractran program. We again employ the no-

tation Hi as given in Lemma 2.2. Furthermore, we define relations
 ,∼ ⊆ Σ∗ × Σ∗ by

 = {〈u d v, uv〉 | u, v ∈ Σ∗} ∼ = (  ∪ )∗

Then clearly we have Hi(u) ∼ Hi(v) for all i ∈ Σd, u, v ∈ Σ∗

with u ∼ v. This allows us to prove properties ofHω( s ) reasoning
modulo∼. Below, we write n with n < 0 to denote the block m

with m ∈ Σd and n ≡ m (mod d). For N ≥ 1 we define

κ(N) = 0 if 3 | N
κ(N) = 1 if 3 - N and 5 | N
κ(N) = ε otherwise

Lemma 5.7. Let F = n1
d
, . . . , nk

d
, and N ≥ 1. Let κ = κ(N)

and X = d−1 . Let q ∈ N and r ∈ Σd be such that N = qd+ r,
and let v ∈

{
0 , 1

}∗. Then we have

H1(X aN b X z d−2−|v| l v r X e )

= X (A X )q B X Z d−2−|v| L v R X E ◦d−r
(12)

of length equivalent to −r modulo d.
Moreover, if in addition F (N) is defined, then we have

Hr+1(X (A X )q B X Z d−2−|v| L v R X E ◦d−r )

∼ X aF (N) b X z d−2−|v κ | l v κ r X e
(13)

of length equivalent to F (N) modulo d.

Proof. (12) follows immediately: Let x, y ∈ Γ∗ be arbitrary. Then
H1(Xx) = XH0(x), and H0( aN y) = X (A X )qH0( ar y) =

X (A X )qHr(y). Furthermore, Hr( b X z d−2−|v| l v r X e ) =

B X Z d−2−|v| L v RHr( e ) and Hr( e ) = ◦d−r .
To show (13), let F (N) be defined. Then ψ(N) = ψ(r) is also

defined (Lemma 4.2). Hence we get, for w ∈ Γ∗ arbitrary:

Hr+1(X (A X )q B Xw)

= XHr((A X )q B Xw)

= X ( anψ(r) X )qHr(B Xw)

= X ( anψ(r) X )q ar·
nψ(r)
d b XHr(w)

∼ X aF (N) b XHr(w)

Finally, to compute Hr(w) for w = Z d−2−|v| L v R X E ◦d−r ,
distinguish the following cases: If 3 or 5 divides r, then 3 or
5 divides also N , respectively, by Lemma 4.2. Hence we have
κ = κ(N) = κ(r) and |κ | = 1, and

Hr(w) = z X d−2−|v| l vHr(R X E ◦d−r )

= z X d−2−|v| l v κ r X e d(d−r)

∼ z d−3−|v| l v κ r X e

as required. And , if 3 - r and 5 - r, then κ = κ(N) = κ(r) = ε,
and Hr(w) ∼ z d−2−|v| l v r X e , as required.

Lemma 5.8. Let F be a Fractran program computing an infinite
word w. Then the PD0L system HF from Definition 5.3 generates
a word that prefix embeds w (see Definition 5.1).

Proof. Let F = n1
d
, . . . , nk

d
be a Fractran program, computing

w ∈ { 0 , 1 }ω , i.e., w = WF with WF as defined in Defini-
tion 3.5. Let N0, N1, N2, . . . be the infinite run of F starting on
N0 = 2 (so with infinitely manyNi divisible by 3 or 5). Let qi ∈ N
and ri ∈ Σd be such that Ni = qid+ ri. Let HF = 〈Γ, H, s 〉 be
the PD0L system defined in Definition 5.3.

We show that u = Hω( s ) satisfies the conditions (i), (ii),
and (iii) of Definition 5.1, by characterizing the contribution of
every iteration of H . For every i ∈ N we let vi ∈ Σ∗ be defined by
v0 = ε and vi+1 = viκ(Ni) so that w = limi→∞ vi. For all n ≥ 0
let xn ∈ Γ∗ and zn ∈ Σd be such thatHn+1( s ) = Hn( s )xn and
zn ≡ |Hn( s )| (mod d). Then Hω( s ) = sx0x1 · · · , and

xn = Hzn−1(xn−1) zn ≡ zn−1 + |xn−1| (mod d) (14)

Let us abbreviate Yi = d−2−|vi| . We prove that xn and zn satisfy

x2i ∼ X aNi b X zYi l vi r X e

x2i+1 ∼ X (A X )qi B X ZYi L vi R X E ◦d−ri

z2i ≡ 1 (mod d)

z2i+1 ≡ ri + 1 (mod d)

by induction on n. For the base case, we see z0 = | s | = 1 and
x0 = X a a b X z d−2 l r X e , as required. So let n ≥ 1. If
n = 2i for some i ≥ 1, it follows from (14), Lemma 5.7 and the
induction hypothesis that

xn = Hzn−1(xn−1)

∼ Hri−1+1(X (A X )qi−1 B X ZYi−1 L vi−1 R X E ◦d−ri−1 )

∼ X aNi b X zYi l vi r X e

and zn ≡ zn−1 + |xn−1| ≡ ri−1 + 1− ri−1 ≡ 1 (mod d).
Similarly, if n = 2i+ 1 for some i ≥ 0, we obtain

xn = Hzn−1(xn−1)

∼ H1(X aNi b X zYi l vi r X e )
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∼ X aNi+1 b X zYi+1 l vi+1 r X e

and zn ≡ zn−1 + |xn−1| ≡ 1 +Ni+1 ≡ ri + 1 (mod d).
Knowing the exact shape (modulo∼) of u = Hω( s ), it is now

easy to verify that u it satisfies (i), (ii), and (iii), taking into account
that does not occur in any factor l v r of u with v ∈ (Γ\{ r })∗,
by the definition of the morphisms.

We are ready to collect our main results.

Theorem 5.9. Every computable infinite word can be prefix em-
bedded in a PD0L word (see Definition 5.1).

Proof. Let w ∈ { 0 , 1 }ω be an infinite computable word. Then,
by Proposition 3.7, w is computed by some Fractran program. By
Lemma 5.8 the claim follows.

Definition 5.10. Let F be a Fractran program, and HF the PD0L
system given in Definition 5.3 We define the PD0L system H′F as
the result of replacing inHF the rules hi( 0 ) = 0 and hi( 1 ) = 1
by hi( 0 ) = and hi( 1 ) = , for all i ∈ Σd.

Lemma 5.11. Let F be a Fractran program computing an infinite
word w, and let u ∈ Γω be the PD0L word generated by the H′F
defined in Definition 5.10. Then w is sparsely embedded in u.

Proof. By an easy adaptation of the proof of Lemma 5.8, noting
that every output 0 and 1 is produced precisely once and in the
next iteration replaced by .

Theorem 5.12. Every computable infinite word can be sparsely
embedded in a PD0L word (see Definition 5.2).

Proof. Analogous to the proof of Theorem 5.9, replacing Lemma 5.8
by Lemma 5.11.

It is known that the set of morphic words is closed under finite
state transductions [2, Theorem 7.9.1]. In particular, if we erase all
occurrences of a certain letter from a morphic word, the result is
a morphic (or finite) word. From Theorem 5.12 it follows that this
is not the case for PD0L words, establishing a negative answer to
Problem 29 (1) and (2) of [23].

Corollary 5.13. The set of PD0L words is not closed under finite
state transductions.

Proof. There are computable streams that are not PD0L words [10];
hence the class of PD0L words is not closed under finite state
transductions, by Theorem 5.12 (erasing letters is a finite state
transduction).

Finite state transducers play a central role in computer science.
The transducibility relation via finite state transducers (FST) gives
rise to a hierarchy of degrees of infinite words [17], analogous
to the recursion theoretic hierarchy. But, in contrast to the latter,
the FST-hierarchy does not identify all computable streams. An
open problem in this area is the lack of methods for discriminating
infinite words u,v, that is, to show that there exists no finite state
transducer that transduces u to v. Discriminating morphic words
seems to require heavier machinery than arguments based on the
pumping lemma.

We will now collect several immediate consequences of Theo-
rem 5.9. First of all, we have solved the open problem [22] on the
existence of PD0L words that have exponential subword complex-
ity.

Theorem 5.14. There is a PD0L word u such that pu(n) ≥ 2n.

Proof. LetF = FBIN be the Fractran program defined in Section 3,
computing the wordWF = BIN (Proposition 3.9). Furthermore, let
HF = 〈Γ, H, s 〉 be the PD0L system of Definition 5.3. Then, by
Lemma 5.8, u = Hω( s ) is the word we are looking for.

Lemma 5.8 also allows us to give a negative answer to [23,
Problem 29 (3)].

Theorem 5.15. The following problems are undecidable:
INPUT: PD0L systemH = 〈Γ, H, s 〉, letter b ∈ Γ

QUESTION: (i) Does b occur in Hω( s )?
(ii) Does b occur infinitely many times in Hω( s )?

Proof. We show that the following problem is undecidable: given
a Fractran program F computing an infinite word w over the
alphabet {0, 1}, does the letter 1 occur in w? This suffices since
by Lemma 5.8, if u is the infinite word generated by HF , then the
letter 1 occurs in u if and only if 1 occurs infinitely often in u if
and only if 1 occurs in w.

We use the input 2 halting problem for Fractran programs which
is Σ0

1-complete by Proposition 3.3. Let F be an arbitrary Fractran
program. By Remark 3.4 we can replace the primes in F to obtain a
program F ′ that does not contain the primes {2, 3, 5} such that F ′

halts on 7 if and only if F halts on 2. We now extend F ′ to F ′′ by
adding in front the fraction 3·7

2
and at the end the fractions 5

3
and 1

1
.

Then the first fraction of F ′′ starts F ′ on input 7 and ensures that
the output is 0 for every step that F ′ is running, and only when F ′

terminates, the last two fractions of F ′′ switch the output to 1 and
keep running forever.

From Theorem 5.15 it follows immediately that the first-order
(and monadic second-order) theory of PD0L words is undecidable,
answering [23, Problem 28]; see [23] also for the definition of the
first-order and monadic theory of a sequence. This again stands in
contrast to the case for morphic sequences, which are known to
have a decidable monadic second-order theory [5].

Corollary 5.16. The first-order theory of PD0L words is undecid-
able.

Also immediate from Theorem 5.15 is the undecidability of
equivalence of PD0L systems (equality of the limit words they gen-
erate). We note that equivalence of D0L systems is decidable [9],
whereas that of CD0L words is an open problem.

Corollary 5.17. Equality of PD0L words (given by their PD0L
systems) is undecidable.

Proof. We reduce problem (i) stated in Theorem 5.15 to equiva-
lence of PD0L systems, as follows. Let H = 〈Σ, H, s〉 be a PD0L
system and b ∈ Σ, and let H′ = 〈Σ ∪ {b′}, H ′, s′〉 where b′ 6∈ Σ
and H ′ and s′ are obtained from H and s by replacing all occur-
rences of b by b′, and letting H ′(b) = b. Then b does not occur in
the word generated byH if and only ifH andH′ generate the same
word. By Theorem 5.15 this is undecidable.

6. A Concrete PD0L Word with Exponential
Subword Complexity

In this section we give a concrete example of a PD0L system which
generates an infinite word with exponential subword complexity.
The word embeds all prefixes of the word BIN = (0)z(1)z(2)z · · ·
given in Definition 3.8. We refrain from proving that it indeed does
have this property; the existence of such a PD0L word is already
proved in the previous section, see Theorem 5.9.

9 2012/7/17



We define a PD0L system H = 〈h0, h1, . . . , h15〉 consisting
of 16 morphisms. We express morphism indices i ∈ Σ16 by linear
combinations

i = a(i) · 23 + r(i) · 22 + c(i) · 21 + o(i) · 20.

with a(i), r(i), c(i), o(i) ∈ {0, 1} which we call flags. We use
these flags to transmit information between symbols:

• a(i) = 1 stands for active,
• r(i) = 1 stands for running,
• c(i) = 1 stands for carry flag, and
• o(i) = 1 stands for output one.

The idea is to simulate a binary counter, using the representation of
Definition 3.8. The counter repeatedly increments (+1) the current
value, and thereby brings (n)z to (n + 1)z. During an increment
process we need to shift the activity from bit to bit. To this end, the
activity flag a(i) indicates whether a symbol at morphism index i
is active.

We explain the increment process using the following example
word. Here . . . is the already produced prefix of BIN, and we
assume for the moment that the symbols a , b and d each stand
for a word of length 16, and c for a word of length 8.

a
a
c
a
b c c

a
b c c

a
c c

a
a L . . . R (15)

Here a and b represent the bits 0 and 1 , respectively, and we
shall continue to call them bits. Ignoring the c ’s in between, (15)
represents the word 0110 (in turn representing the integer 21).
Apart from incrementing this initial word a b b a , it is at the
same time ‘copied’ bit by bit to the word 0110 between symbols
L and R . The least significant bit is left, and consequently the
process of incrementing will proceed from left to right. The symbol
c (being of length 8) swaps the value of a(i) for the morphism
index i of all subsequent letters. Note that between the n-th and
(n+ 1)-th occurrence of bits ( a or b ), there are 2n−1 c ’s. Hence,
if the first bit is active, then this is the only active bit.

We now describe the transition from (15) to its PD0L im-
age (16). Note that starting from the first occurrence of c , ev-
ery second occurrence in (15) has the activity flag set. When the
symbol c is active, it will be eliminated, that is replaced by the
symbol d (of assumed length 16), thus activating the next bit for
the next iteration (16).

B
a
d
a
b
a
c
a
d b c d

a
c
a
d a L . . . 0 R (16)

Note that a is replaced by B ; uppercase letters are used for indicat-
ing the already processed bits during the increment loop. When the
increment loop is finished, uppercase will be turned to lowercase,
and the process restarts. The switch from a to B corresponds to in-
crementing. This is controlled by the carry flag indicating whether
a bit has to be flipped. The carry flag is always set at the start of
an increment loop. To keep this example simple we do not display
this flag. At the end of this section we give the first iterations of the
PD0L system displaying all flags.

Notice that in (16) the second bit b is the only active bit
(ignoring B which we have already dealt with). Again, eliminating
the active c ’s will shift the activity to the following bit:

B
a
d
a
B
a
d
a
d
a
b
a
c
a
d d d a L . . . 0 1 R (17)

After one more step we obtain:

B
a
d
a
B
a
d
a
d
a
B
a
d
a
d
a
d
a
d
a
a
a
L
a
. . . 0 1 1 R

a
(18)

and finally:

B
a
d
a
B
a
d
a
d
a
B
a
d
a
d
a
d
a
d
a
A
a
L
a
. . . 0 1 1 0 R

a
(19)

As soon as the most significant bit a is active, R becomes active
as well. This can be used to recognize when the addition is finished,
and then R unsets the bit r(i) to restart the addition procedure.

The active bit makes use of the flag o(i) to ‘communicate’
with the symbol R whether to output a 0 or 1 . This actually
means that R can produce the 0 or 1 only two iterations later;
for simplicity we have in this intuitive explanation abstracted from
this technicality and produce the 0 ’s and 1 ’s in the immediately
following iteration (after a bit has become active).

There are more symbols and technical subtleties to be explained,
but we leave this to the imagination of the reader. Enjoy!

The morphisms hi are defined for all i ∈ Σ16 as follows:

hi( s ) = s 13 • a 15 c 7 P 15 O 15 Z1
14 L R1

8

hi( ) =

hi( • ) = 2

hi( ◦ ) = 16

hi( ? ) = 2 ◦
hi( 0 ) = 0

hi( 1 ) = 1

hi( a ) =


a if ¬a(i)
14 ? A if a(i) ∧ ¬c(i)
14 ? 12 •2 B if a(i) ∧ c(i)

hi(A ) =

{
a if ¬r(i)
A if r(i)

hi( b ) =


b if ¬a(i)

B if a(i) ∧ ¬c(i)
A if a(i) ∧ c(i)

hi(B ) =

{
b if ¬r(i)
B if r(i)

hi( c ) =

{
c if ¬a(i)

d 8 if a(i)

hi( d ) =

{
c 8 if ¬r(i)
d if r(i)

hi(P ) =


P if ¬c(i)
P if c(i) ∧ ¬a(i)

a if c(i) ∧ a(i)

hi( o ) =


o if ¬c(i)
o if c(i) ∧ ¬a(i)

d if c(i) ∧ a(i)

hi(O ) =


O if ¬a(i)

o 15 O if a(i) ∧ ¬c(i)
d 15 P 15 O if a(i) ∧ c(i)

hi(Z ) =


Z if ¬r(i)
Z 15 if r(i) ∧ ¬a(i)

Z3
15 if r(i) ∧ a(i)

hi(Z1 ) = Z

hi(Z2 ) = Z1

hi(Z3 ) = Z2

hi(L ) = L
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hi(R ) =



R if ¬r(i)
0 R if r(i) ∧ ¬o(i) ∧ ¬a(i)

0 R3
8 ? 4 ◦10 if r(i) ∧ ¬o(i) ∧ a(i) ∧ ¬c(i)

0 R3
8 ? 4 ◦8 if r(i) ∧ ¬o(i) ∧ a(i) ∧ c(i)

1 R if r(i) ∧ o(i) ∧ ¬a(i)

1 R3
8 ? 4 ◦10 if r(i) ∧ o(i) ∧ a(i) ∧ ¬c(i)

1 R3
8 ? 4 ◦8 if r(i) ∧ o(i) ∧ a(i) ∧ c(i)

hi(R1 ) = R

hi(R2 ) = R1

hi(R3 ) = R2

The PD0L word Hω( s ) starts as follows:

s
0
a
r
c
o

13

1
a
r
c
o

•
14
a
r
c
o

a
15
a
r
c
o

15

0
a
r
c
o

c
15
a
r
c
o

7

0
a
r
c
o

P
7
a
r
c
o

15

8
a
r
c
o

O
7
a
r
c
o

15

8
a
r
c
o

Z1

7
a
r
c
o

14

8
a
r
c
o

L
6
a
r
c
o

R1

7
a
r
c
o

8

8
a
r
c
o

29

0
a
r
c
o

?
13
a
r
c
o

12

14
a
r
c
o

•2
10
a
r
c
o

B
12
a
r
c
o

15

13
a
r
c
o

d
12
a
r
c
o

15

13
a
r
c
o

P
12
a
r
c
o

15

13
a
r
c
o

O
12
a
r
c
o

15

13
a
r
c
o

Z
12
a
r
c
o

14

13
a
r
c
o

L
11
a
r
c
o

R
12
a
r
c
o

8

13
a
r
c
o

29

5
a
r
c
o

( 2 ◦ )
2
a
r
c
o

16

5
a
r
c
o

B
5
a
r
c
o

15

6
a
r
c
o

d
5
a
r
c
o

15

6
a
r
c
o

P
5
a
r
c
o

15

6
a
r
c
o

o
5
a
r
c
o

15

6
a
r
c
o

O
5
a
r
c
o

15

6
a
r
c
o

Z3

5
a
r
c
o

29

6
a
r
c
o

L
3
a
r
c
o

0
4
a
r
c
o

R2

5
a
r
c
o

8

6
a
r
c
o

?4

14
a
r
c
o

◦10
2
a
r
c
o

71

12
a
r
c
o

B
3
a
r
c
o

15

4
a
r
c
o

d
3
a
r
c
o

15

4
a
r
c
o

P
3
a
r
c
o

15

4
a
r
c
o

o
3
a
r
c
o

15

4
a
r
c
o

O
3
a
r
c
o

15

4
a
r
c
o

Z2

3
a
r
c
o

29

4
a
r
c
o

L
1
a
r
c
o

0
2
a
r
c
o

R2

3
a
r
c
o

8

4
a
r
c
o

( 2 ◦ )4

12
a
r
c
o

231

8
a
r
c
o

b
15
a
r
c
o

15

0
a
r
c
o

c
15
a
r
c
o

23

0
a
r
c
o

P
7
a
r
c
o

15

8
a
r
c
o

o
7
a
r
c
o

15

8
a
r
c
o

O
7
a
r
c
o

15

8
a
r
c
o

Z1

7
a
r
c
o

29

8
a
r
c
o

L
5
a
r
c
o

0
6
a
r
c
o

R1

7
a
r
c
o

8

8
a
r
c
o

For compactness, we continue without displaying the symbols .
The length n of blocks n matters only modulo 16, and can be
deduced from the morphism indexes of the surrounding letters.

A
15
a
r
c
o

d
15
a
r
c
o

P
15
a
r
c
o

o
15
a
r
c
o

O
15
a
r
c
o

Z
15
a
r
c
o

L
13
a
r
c
o

0
14
a
r
c
o

R
15
a
r
c
o

A
7
a
r
c
o

d
7
a
r
c
o

a
7
a
r
c
o

d
7
a
r
c
o

d
7
a
r
c
o

P
7
a
r
c
o

O
7
a
r
c
o

Z3

7
a
r
c
o

L
4
a
r
c
o

0
5
a
r
c
o

1
6
a
r
c
o

R3

7
a
r
c
o

?4

0
a
r
c
o

◦8
4
a
r
c
o

A
3
a
r
c
o

d
3
a
r
c
o

a
3
a
r
c
o

d
3
a
r
c
o

d
3
a
r
c
o

P
3
a
r
c
o

O
3
a
r
c
o

Z2

3
a
r
c
o

L
0
a
r
c
o

0
1
a
r
c
o

1
2
a
r
c
o

R2

3
a
r
c
o

◦4
14
a
r
c
o

a
15
a
r
c
o

c
15
a
r
c
o

a
7
a
r
c
o

c
7
a
r
c
o

c
15
a
r
c
o

P
7
a
r
c
o

O
7
a
r
c
o

Z1

7
a
r
c
o

L
4
a
r
c
o

0
5
a
r
c
o

1
6
a
r
c
o

R1

7
a
r
c
o

?
13
a
r
c
o

•2
10
a
r
c
o

B
12
a
r
c
o

d
12
a
r
c
o

a
12
a
r
c
o

c
12
a
r
c
o

d
4
a
r
c
o

P
4
a
r
c
o

O
4
a
r
c
o

Z
4
a
r
c
o

L
1
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7. Discussion
In Section 6 we have encoded the state of a binary counter using
a binary encoding. In comparison with the binary counter obtained
from the Fractran encoding, this yields an enormous simplification
concerning the number of required morphisms. Moreover, we have
illustrated a construction which allows for shifting the activity from
one letter to the next in each iteration of the morphism, and how the
letters can ‘communicate’ computation results to the following let-
ter. It would be interesting to investigate whether Turing machines
can be encoded in a similar way. The crucial difference would be
that for Turing machines we need to shift the activity left or right
depending on the outcome of the current step; the binary counter
always shifts the activity to the right. It is unclear to us whether the
encoding from Section 6 can be extended in this direction. Com-
pared to our Fractran encoding of Section 5, such an encoding of
Turing machines could lead to significantly less morphisms (but
with a slightly larger alphabet).
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