
Mix-Automatic Sequences

Jörg Endrullis1, Clemens Grabmayer2, and Dimitri Hendriks1

1 VU University Amsterdam 2 Utrecht University

Abstract. Mix-automatic sequences form a proper extension of the
class of automatic sequences, and arise from a generalization of finite
state automata where the input alphabet is state-dependent. In this pa-
per we compare the class of mix-automatic sequences with the class of
morphic sequences. For every polynomial ϕ we construct a mix-automatic
sequence whose subword complexity exceeds ϕ. This stands in contrast
to automatic and morphic sequences which are known to have at most
quadratic subword complexity. We then adapt the notion of k-kernels to
obtain a characterization of mix-automatic sequences, and employ this
notion to construct morphic sequences that are not mix-automatic.

1 Introduction

Automatic sequences [1] were introduced by Cobham [4] in 1972, and have since
been been studied extensively. A sequence w : N → ∆ over a finite alphabet ∆
is automatic if it can be realized by a finite automaton that, for some k ≥ 2,
takes the base-k expansion (n)k of a number n ∈ N as input and outputs the n-th
letter of w; in this case w is called k-automatic. For multiplicatively independent
k and `, k-automaticity and `-automaticity are almost separated notions; e.g., if
a sequence is both 2-automatic and 3-automatic, then it is ultimately periodic.

Therefore it is natural to study also nonstandard numeration systems, and
the classes of automatic sequences they give rise to. Rigo [10] and Rigo and
Maes [11] study ‘abstract numeration systems’ based on the ‘shortlex’ order on
an infinite regular language, induced by an order on the alphabet. With this
concept they precisely capture the class of morphic sequences.

We introduce dynamic radix numeration systems which are obtained as a nat-
ural generalization from another variation of the standard base-k representation:
the mixed radix numeration systems [8] in which the base used only depends on
the position of a digit. In dynamic radix numeration systems the base used may
depend on the input digits read so far. Sequences realized by finite automata
that take dynamic radix input we call mix-automatic.

We first consider an example of a 2-automatic sequence, the celebrated Thue–
Morse sequence, and explain how it is generated by the automaton in Figure 1.

q0/a q1/b

0 1

1

0

Fig. 1. DFAO generating the Thue–Morse sequence abbabaabbaababba · · · .

2 J. Endrullis, C. Grabmayer, and D. Hendriks

The automaton has states {q0, q1}, initial state q0, input alphabet {0, 1} and
output alphabet {a, b}. The output letter assigned to q0 is a and to q1 is b
(indicated by state/output in the states of the automaton). The n-th letter of
the sequence is the output of the automaton when reading (n)2, the base-2
expansion of n. For example, for input (3)2 = 11 the automaton ends in state q0
with output a, and for input (4)2 = 100 in state q1 with output b.

The automaton of Figure 1 is called a deterministic finite-state automaton
with output (DFAO). For k ≥ 2, a k-DFAO is an automaton over the input alpha-
bet N<k = {0, 1, . . . , k − 1}. An infinite sequence w ∈ ∆ω is called k-automatic
if there exists a k-DFAO such that for every n ∈ N the output of the automaton
when reading the word (n)k ∈ N∗<k is w(n), with (n)k the base-k expansion of n.

Mix-Automatic Sequences. The class of automatic sequences is well-known to
have good closure properties; for example, it is closed under shifts (prepending
letters or removing prefixes), and taking arithmetic subsequences. The class of
mix-automatic sequences extends the class of automatic sequences, has all these
closure properties, and additionally is closed under k-shuffling, for all k ≥ 2.

Mix-automatic sequences are defined via mix-DFAOs, automata that gener-
alize k-DFAOs by allowing that the alphabet of the symbol to be processed next
depends on the current state. Let us consider the example of a mix-DFAO shown
in Figure 2. The state q0 has two outgoing edges, reflecting the input alphabet
{0, 1}, while q1 has three outgoing edges, reflecting the input alphabet {0, 1, 2}.

q0/a q1/b

0
1

0, 1

2

Fig. 2. An example of a mix-DFAO.

Dynamic Radix Numeration Systems. Clearly, the numeration system used for
the input of mix-DFAOs cannot be the standard base-k representation. Instead,
in the number representation that we let these automata operate on, the base for
each digit is determined by the lower-significance digits that have already been
read.Thus we let the automata read from the least to the most significant digit
(i.e., we let the reading direction be from right to left). We write (n)M for the
number representation of n that serves as input for the automaton M . For M
the automaton from Figure 2, the representations of the first eight numbers are

(0)M = ε (2)M = 1202 (4)M = 120202 (6)M = 131202

(1)M = 12 (3)M = 1312 (5)M = 2312 (7)M = 130312

where a subscript b (not part of the number representation) in db indicates the
base employed for d. Let us explain this at the example (17)M = 12022312.
Knowing the base for each digit, we can reconstruct the value of the representa-
tion as follows: 17 = 1 ·2 ·3 ·2+0 ·3 ·2+2 ·2+1 where each digit is multiplied with
the product of the bases of the lower digits. Given just the representation 1021,
the base of each of the digits is determined by the input alphabet of the state of

Mix-Automatic Sequences 3

the automaton reading the digit. The states q0 and q1 of M have input alphabets
{0, 1} and {0, 1, 2} and thus expect the input in base 2 and 3, respectively. When
reading 1021 (right to left) the automaton M visits the states q0, q1, q0, q0 and
q1. Annotating the input digits with the state of the automaton when reading
the digit, we obtain 1q00q02q11q0 , and taking into account the bases expected by
these states, yields 12022312.

We emphasize that, given a mix-DFAO M , every n ∈ N has a unique rep-
resentation (n)M = dm · · · d0 (without leading zeros). This representation can
be computed as follows. Assume that we have determined the value of the dig-
its di−1 · · · d0 with corresponding bases bi−1 · · · b0. The base bi of digit di is
determined by the input alphabet of the state of the automaton after read-
ing di−1 · · · d0 (right to left), and digit di is the remainder of the division of
n−

∑
0≤j<i dj(bj−1 · · · b1 · b0) by bi.

Every mix-DFAO M gives rise to a mix-automatic sequence w ∈ ∆ω by
defining for every n ∈ N, w(n) as the output of M when reading (n)M .

Zip-Specifications. In [6] it has been shown that k-automatic sequences are pre-
cisely the class of sequences definable by zip-k specifications, that is, systems of
recursion equations {X1 = t1, . . . , Xn = tn} with terms ti built from the syntax

t ::= Xi | a : t | zipk(t, . . . , t) (1 ≤ i ≤ n, a ∈ ∆)

Semantically, the term notation a : t indicates the concatenation of a letter with a
sequence, and the k-ary symbol zipk stands for the function of type (Σω)k → Σω

that zips (or interleaves or shuffles) its k argument sequences, and is defined by

zipk(w0, . . . , wk−1)(kn+ i) = wi(n) (0 ≤ i < k)

Operationally, zipk can be defined by the rewrite rule

zipk(x : t0, t1, . . . , tk−1)→ x : zipk(t1, . . . , tk−1, t0) (1)

The zip operation on finite words is known in the literature as perfect shuffle [2].
An example of a zip-2 specification corresponding to the 2-DFAO from Fig. 1 is

M = a : Q1 Q0 = a : zip2(Q0,Q1) Q1 = b : zip2(Q1,Q0) (2)

The Thue–Morse sequence is the unique solution for the variable M in this spec-
ification, or, from a rewriting perspective, it is the infinite normal form of M in
the rewrite system consisting of (1) and (2), orienting the equations from left to
right. For further details we refer to [6].

The introduction of mix-automatic sequences was motivated by the charac-
terization of k-automatic sequences as the class of sequences that can defined by
zip-k specifications, answering the question: What class of sequences is obtained
when allowing zips of different arities in the same specification? In [6, 7] the cor-
respondence between such ‘zip-mix’ specifiable sequences and mix-automatic se-
quences was established. Moreover, it was shown that mix-automaticity properly
extends automaticity: for example, shuffling a 2-automatic and a 3-automatic se-
quence, both not ultimately periodic, is mix-automatic but not automatic.

4 J. Endrullis, C. Grabmayer, and D. Hendriks

Contribution and Overview. We continue the study of mix-automatic sequences
started in [6, 7] by exploring the relationship with morphic sequences. In Sec-
tion 3, we generalize the characterization of k-automatic sequences via finite
k-kernels to the setting of mix-automatic sequences. In Sections 4 and 5 we
show that neither of the classes (a) mix-automatic sequences and (b) morphic
sequences subsumes the other. In particular we show that the subword com-
plexity of mix-automatic sequences can exceed any polynomial, whereas it is
known [5] that morphic sequences have at most quadratic subword complexity.

2 Preliminaries

We use standard terminology and notation; for example, see Allouche and Shal-
lit [1]. Let Σ be a finite alphabet. Then we denote by

– Σ∗ the set of all finite words over Σ, by ε the empty word,
– Σ+ = Σ∗ \ {ε} the set of finite non-empty words,
– Σω = {w | w : N→ Σ} the set of infinite words over Σ,
– Σ∞ = Σ∗ ∪Σω the set of all (finite or infinite) words.

For a word w ∈ Σ∞ and n ∈ N, we write w(n) for the n-th letter of w (counting
from zero). We write |x| for the length of x ∈ Σ∞, with |x| =∞ if x is infinite.
We call a word v ∈ Σ∗ a subword of x ∈ Σ∞ if x = uvy for some u ∈ Σ∗ and
y ∈ Σ∞, and say that v occurs at position |u|. The subword complexity of a
sequence w ∈ Σω is the function pw : N → N such that pw(n) is the number of
distinct length-n subwords (factors) of w.

Definition 1. A deterministic finite automaton with output (DFAO) is a tuple
〈Q,Σ, δ, q0, ∆, λ〉 where

– Q is a finite set of states with q0 ∈ Q the initial state,
– Σ a finite input alphabet, ∆ an output alphabet,
– δ : Q×Σ → Q a transition function, and
– λ : Q→ ∆ an output function.

We extend the domain of δ to Q×Σ∗ by defining, for all q ∈ Q, δ(q, ε) = q and

δ(q, xa) = δ(δ(q, a), x) for all x ∈ Σ∗ and a ∈ Σ,

thus forcing the reading direction from right to left.

For n, k ∈ N, k ≥ 2, we let (n)k denote the canonical base-k expansion of n
(without leading zeros). More precisely, for n > 0 we have

(n)k = dmdm−1 · · · d0 where 0 ≤ d0, . . . , dm < k, dm > 0 and n =

m∑
i=0

dik
i .

For n = 0 we fix (n)k = ε. We emphasize that the exclusion of leading zeros in
the number representation (n)k is not crucial. Every DFAO can be transformed
into an equivalent DFAO that ignores leading zeros, see [1].

Mix-Automatic Sequences 5

Definition 2. Let k ≥ 2 and define N<k = {0, . . . , k − 1}. A k-DFAO M is a
DFAO 〈Q,Σ, δ, q0, ∆, λ〉 with the input alphabet Σ = N<k.

For q ∈ Q, we define the infinite sequence seq(M, q) ∈ ∆ω by seq(M, q)(n) =
λ(δ(q, (n)k)), for every n ∈ N. We write seq(M) as shorthand for seq(M, q0).
The automaton M is said to generate the sequence seq(M).

Now automatic sequences can be defined as follows:

Definition 3. A sequence w ∈ ∆ω is k-automatic if there exists a k-DFAO that
generates w. A sequence is called automatic if it is k-automatic for some k ≥ 2.

3 Mix-Automatic Sequences

In this section we introduce mix-automatic sequences. For this purpose, we de-
fine finite automata (with output) that have state-dependent input alphabets.
As inputs these automata take dynamic radix number representations, which
generalize base-k number representations to the effect that the digits are al-
lowed to belong to different bases, and may depend on previously read digits.
For specifying the format of the dynamic radix number representation that an
automaton can process we use ‘base determiners’, which are themselves finite
automata with (number) output that determine the base of each digit depend-
ing on the values of the lower digits. Number representations according to a thus
obtained dynamic radix number representation can then serve as inputs for a
mix-DFAO. k-DFAOs are special cases of mix-DFAOs. Eventually, we introduce
mix-automatic sequences as sequences that are generated by mix-DFAOs.

Deterministic Finite State Automata with State-Dependent Input Alphabet. We
introduce finite automata with output for which the input alphabet is dependent
on the current state.

Definition 4. A state-dependent input alphabet DFAO is a tuple of the form
〈Q,Σ, δ, q0, ∆, λ〉 where

– Q is a finite set of states with q0 ∈ Q the initial state,
– Σ = {Σq}q∈Q is a family of input alphabets,
– δ = {δq : Σq → Q}q∈Q is a family of transition functions,
– ∆ is an output alphabet, and
– λ : Q→ ∆ is an output function.

We interpret δ as a partial function Q ×
⋃
Σ ⇀ Q, and define δ(q, i) = δq(i)

iff i ∈ Σq. We extend the domain of δ to Q × (
⋃
Σ)∗ by defining for all q ∈ Q,

δ(q, ε) = q, and for all q ∈ Q, x ∈ Σ∗, and a ∈ Σq
δ(q, xa) = δ(δ(q, a), x) if δ(δ(q, a), x) is defined.

Note that the definition of δ forces the reading direction of input words to be
from right to left. An alternative definition of δ is as follows: Let q ∈ Q and
w = an−1 · · · a0 where ai ∈ Σri (0 ≤ i < n) with ri ∈ Q defined (for 0 ≤ i ≤ n)
by r0 = q and ri+1 = δ(ri, ai); then we set δ(q, w) = rn.

The following definition generalizes k-DFAOs:

6 J. Endrullis, C. Grabmayer, and D. Hendriks

Definition 5. A mix-DFAO is a tuple 〈Q, β, δ, q0, ∆, λ〉 that represents a state-
dependent input alphabet DFAO 〈Q, {N<β(q)}q∈Q, δ, q0, ∆, λ〉 with β : Q→ N≥2.

Obviously, mix-DFAOs require a special number representation as input. The
number representation must ensure that the base of each digit matches the input
alphabet of the state the automaton is in when reading the digit. This leads to
the following generalization of the usual base-k number representations.

Dynamic Radix Numeration Systems and Base Determiners. We now introduce
dynamic radix number representations. For defining these representations special
mix-DFAOs called ‘base determiners’ are used to specify the base for each digit
depending on the digits that have been read before.

Definition 6. A base determiner is a tuple 〈Q, β, δ, q0〉 which is a shorthand for
the mix-DFAO 〈Q, β, δ, q0,N, β〉. The base determiner underlying a mix-DFAO
〈Q, β, δ, q0, ∆, λ〉 is the base determiner 〈Q, β, δ, q0〉.

Let B = 〈Q, β, δ, q0〉 be a base determiner. The base-B representation of an
integer n ∈ N is defined by (n)B = (n)q0 where (0)q = ε and for n > 0

(n)q = (n′)δ(q,d) d , n′ = bn/β(q)c , and d = n− n′ · β(q)

So n′ and d are quotient and remainder of division of n by β(q), respectively.

Definition 7. Let B = 〈Q, β, δ, q0〉 be a base determiner. We define the partial
function []B : N∗ ⇀ N by [w]B = [w, 1]q0 where we let [w, b]q for all b ∈ N and
q ∈ Q be defined by

[ε, b]q = 0 [wd, b]q = [w, bβ(q)]δ(q,d) + bd if d ∈ N<β(q)

and undefined otherwise.

Note that []B is the left inverse of ()B : for all b ∈ N and q ∈ Q [(n)q, b]q = bn
follows by induction on n ∈ N.

q/k 0, 1, . . . , k − 1

Fig. 3. A base determiner for the stan-
dard base-k number representation.

We obtain ordinary base-k numbers by
defining the base determiner B to consist
of a single state q with output k and edges
0, . . . , k − 1 looping to itself; this is illus-
trated in Figure 3.

Example 8. Consider the following mix-DFAO M and the dynamic numeration
system it defines (where n > 0, and q ∈ {q0, q1, q2}):

q0/a q1/b q2/b

0 1 2

1 0

0

1

(2n)q0 = (n)q00 (0)q = ε

(2n+ 1)q0 = (n)q11 (3n)q1 = (n)q20

(2n)q2 = (n)q10 (3n+ 1)q1 = (n)q01

(2n+ 1)q2 = (n)q01 (3n+ 2)q1 = (n)q12

Let B be the base determiner underlying M (that is, obtained from M by re-
defining the output for q0, q1 and q2 as 2, 3 and 2, respectively).

Mix-Automatic Sequences 7

As an example, we compute (5)B , and (23)B as follows:

(5)B = (5)q0 = (2)q11 = (0)q221 = 21

(23)B = (23)q0 = (11)q11 = (3)q121 = (1)q2021 = (0)q01021 = 1021 .

A k-DFAO is an automaton reading the input in the base-k number format.
We generalize this concept to B-DFAOs that expect to read input in the number
format defined by the base determiner B.

Definition 9. Let M be a mix-DFAO and B a base determiner. We call M a
B-DFAO if M is compatible with B in the sense that (n)B = (n)BM

holds for
all n ∈ N, where BM is the base determiner underlying M .

(Note that M is a BM -DFAO, i.e., M reads the number format defined by itself.)
A B-DFAO with output alphabet ∆ defines a B-automatic sequence w ∈ ∆ω

by defining for all n ∈ N, w(n) as the output of the DFAO on the input (n)B .
Sequences generated by mix-DFAOs we call ‘mix-automatic’ sequences.

Definition 10. Let B be a base determiner, and M = 〈Q, β, δ, q0, ∆, λ〉 a
B-DFAO. For states q ∈ Q, we define seq(M, q) ∈ ∆ω by:

seq(M, q)(n) = λ(δ(q, (n)B)) for all n ∈ N

We define seq(M) = seq(M, q0), and say M generates the sequence seq(M).
A sequence w ∈ ∆ω is B-automatic if there exists a B-DFAO M such that

w = seq(M). A sequence is called mix-automatic if it is B-automatic for some
base determiner B.

Example 11. We continue Example 8. The sequence seq(M) begins with

abbabbaabbbaaaabbbbbbaaaabababbbbbbabababaaaaaababbbabbbabbb · · ·

with entries 5 and 23 underlined. E.g. λ(δ(q0, 1021)) = a since starting from q0
and reading 1021 from right to left brings you back at state q0 with output a.

Kernels for Mix-Automatic Sequences. Automatic sequences can be character-
ized in terms of their ‘kernels’ being finite. For sequences w ∈ ∆ω and i, k ∈ N,
k > 0 we define

πi,k(w) = w(i)w(i+ k)w(i+ 2k)w(i+ 3k)w(i+ 4k) · · · ,

the subsequence of w selecting every k-th element starting form the i-th element
(counting from 0). The k-kernel Ker(k,w) of a sequence w ∈ ∆ω is the set
of arithmetic subsequences Ker(k,w) = {πi,kp(w) | p ∈ N, i < kp}. The set
Ker(k,w) can equivalently be defined as the smallest set K such that w ∈ K,
and for all u ∈ K we have πi,k(u) ∈ K for all 0 ≤ i < k; see further [6].

Fact ([1, Thm. 6.6.2]). A sequence is k-automatic iff its k-kernel is finite.

8 J. Endrullis, C. Grabmayer, and D. Hendriks

We now generalize this characterization to mix-automatic sequences.

Definition 12. Let x : ∆ω → N≥2. The x-kernel Ker(x,w) of a sequence w ∈
∆ω is defined as the smallest set K ⊆ ∆ω such that w ∈ K, and for all se-
quences u ∈ K we have πi,x(u)(u) ∈ K for all 0 ≤ i < x(u).

The function x : ∆ω → N≥2 determines for every sequence w ∈ ∆ω the set of
derivative functions {π0,x(w), π1,x(w), . . . , πx(w)−1,x(w)} to be applied to w. The
ordinary k-kernels (k ∈ N) are obtained by defining x(w) = k for every w ∈ ∆ω.

Theorem 13. A sequence w ∈ ∆ω is mix-automatic if and only if there exists
a function x : ∆ω → N≥2 such that the x-kernel of w is finite.

Proof. We show the less obvious direction, from left to right. For this let M =
〈Q, β, δ, q0, ∆, λ〉 be a mix-DFAO that generates a sequence w. For every state
q ∈ Q the equality seq(M, q) = zipβ(q)(seq(M, δ(q, 0)), . . . , seq(M, δ(q, β(q) −
1))) holds, that is, the sequence generated by a state q is the shuffling of the
sequences generated by the successor states of q. As a consequence, whenever
M contains states q1 6= q2 ∈ Q, q2 6= q0 with seq(M, q1) = seq(M, q2) we can
eliminate q2 after redirecting all its incoming edges to q1; this changes the number
representation, but leaves the sequence generated by the automaton unaltered.
Thus we may assume that seq(M, q1) 6= seq(M, q2) for all q1 6= q2 ∈ Q. Hence we
can define the function x : ∆ω → N≥2 as follows: x(seq(M, q)) = β(q) for every
q ∈ Q, and x(u) = 2 for all other sequences u. Then it follows immediately that
Ker(x,w) ⊆ {seq(M, q) | q ∈ Q}, namely, the set of sequences generated by the
reachable states, and that Ker(x,w) is finite. ut

We refine this characterization with respect to a given number representation.

Definition 14. Let B = 〈Q, β, δ, q0〉 be a base determiner. The B-kernel of a se-
quence w ∈ ∆ω, which is denoted by Ker(B,w), is the set {u | (u, q) ∈ K} where
K ⊆ ∆ω×Q is the smallest set such that (w, q0) ∈ K, and (πi,β(q)(u), δ(q, i)) ∈ K
for all (u, q) ∈ K and i ∈ N with 0 ≤ i < β(q).

Theorem 15. A sequence w ∈ ∆ω is B-automatic iff its B-kernel is finite.

4 The Subword Complexity of Mix-Automatic Sequences

We show for any polynomial ϕ there exists a mix-automatic sequence with a
subword complexity exceeding ϕ. It immediately follows that there are mix-
automatic sequences that are not morphic. This answers a question of [6].

For p, n ∈ N>0 with p a prime number, we use νp(n) to denote the p-adic
valuation of n, that is, the largest integer k ∈ N such that pk divides n. For
every prime number p, we define the sequence γp ∈ {0, 1}ω by

γp = (νp(1) mod 2) (νp(2) mod 2) (νp(3) mod 2) · · ·

Mix-Automatic Sequences 9

The sequence γ2 is the well-known period-doubling sequence [1, Example 6.4.3]:

γ2 = 010001010100010001000101010001010100010101000100010001010100 · · ·

We show that shuffling k sequences from the set {γp | p is prime} yields a
mix-automatic sequence with subword complexity in Ω(nk). We first show that
each of the sequences has at least linear subword complexity:

Lemma 16. The subword complexity of γp is in Ω(n) for every prime number p.

Proof. The Morse–Hedlund theorem [9] asserts that an infinite sequence w is
ultimately periodic if and only if for some n ∈ N not more than n factors of
length n occur in w. Hence, it suffices to show that γp is not ultimately periodic.
Assume that γp would be ultimately periodic. Then there exist n0, k > 1 such
that νp(n) ≡ νp(n + k) (mod 2) for every n ≥ n0. Let n = pνp(k)+2m+1 with
m ∈ N such that n ≥ n0. Then νp(n) = νp(k) + 2m + 1 and νp(n + k) = νp(k),
and hence νp(n) 6≡ νp(n+ k) (mod 2) contradicting the assumption. ut

We moreover employ that the sequences have the following regular structure:

Lemma 17. Let p be a prime number, k ∈ N and w the prefix of length pk − 1
of the sequence γp. Then w occurs in γp at every position n · pk (n ∈ N).

Proof. Let 0 ≤ i < pk−1. Then we have γp(n ·pk+i) ≡ νp(n ·pk+i+1) (mod 2)
and νp(n · pk + i+ 1) = νp(i+ 1) for every n ∈ N. ut

Lemma 18. Let k > 0, p1, . . . , pk be pairwise distinct primes. Then the sequence
zipk(γp1 , γp2 , . . . , γpk) is mix-automatic and its subword complexity is in Ω(nk).

Proof. By Lemma 16 the sequences γp1 , . . . , γpk have subword complexity in
Ω(n). Hence, for proving that the subword complexity of zipk(γp1 , γp2 , . . . , γpk)
is in Ω(nk), it suffices to show the following: for every n ∈ N whenever w1, . . . , wk
are n-length subwords of the sequences γp1 , . . . , γpk , respectively, the shuffle
zipk(w1, . . . , wk) of length kn is a subword of zipk(γp1 , γp2 , . . . , γpk).

For this purpose, we show (∗) there exists a position q ∈ N such that for all i
(1 ≤ i ≤ k), the word wi occurs in γpi at position q. Let `1, . . . , `k be such that

every wi (1 ≤ i ≤ k) occurs in the prefix of γpi of length p`ii −1. Let o1, . . . , ok be
the positions of the first occurrences of w1, . . . , wk in γp1 , . . . , γpk , respectively.

(All of these positions are in the respective prefixes of γpi of length p`ii − 1.) We
proceed by induction on 1 ≤ i ≤ k to construct integers ai, bi > 0 such that

(i) for all 1 ≤ j ≤ i, the word wj occurs at all positions ai +m · bi (m ∈ N), and
(ii) for all i < j ≤ k, bi is coprime with pj , i.e., gcd(bi, pj) = 1.

For i = 1, we choose a1 = o1 and b1 = p`11 . Then, as a consequence of Lemma 17,
the word w1 occurs at every position a1 +m · b1 (m ∈ N).

Let i < k and ci+1 = p
`i+1

i+1 . From (ii) it follows that bi and ci+1 are coprime.
By Euler’s theorem, there exists 1 ≤ ei+1 ∈ N such that b

ei+1

i ≡ 1 (mod ci+1).

10 J. Endrullis, C. Grabmayer, and D. Hendriks

As a consequence we can find some 0 ≤ a′i < ci+1 and define ai+1 = ai+a′i ·b
ei+1

i

such that ai+1 ≡ oi+1 (mod ci+1). We let bi+1 = ci+1 · bei+1

i . Then we have:

ai+1 = ai + (a′i · b
ei+1−1
i) · bi bi+1 = (ci+1 · bei+1−1

i) · bi

We have {ai+1 +m · bi+1 | m ∈ N} ⊆ {ai +m · bi | m ∈ N}, and hence for every
1 ≤ j ≤ i + 1, the word wj occurs in γpj at all positions ai+1 + m · bi+1 with
m ∈ N. Moreover ai+1 +m · bi+1 ≡ oi+1 (mod ci+1) for every m ∈ N, and thus
by Lemma 17, wi+1 occurs in γpi+1

at all positions ai+1 +m · bi+1 with m ∈ N.

We have that bi+1 = (ci+1 ·bei+1

i) = p
`i+1

i+1 ·b
ei+1

i and thus bi+1 and bj are coprime
for every i+ 1 < j ≤ k.

Finally, we define q = ak and by induction hypothesis (i) we have (∗). ut

Morphic sequences have at most quadratic subword complexity [5]. Hence,
by Lemma 18 the mix-automatic sequences zipk(γp1 , γp2 , . . . , γpk) for k > 2 are
not morphic.

Theorem 19. The class of mix-automatic sequences is not contained in the
class of morphic sequences.

5 Morphic Sequences that are not Mix-Automatic

In the previous section, we have seen that the class of mix-automatic sequences
is not contained in the class of morphic sequences. We now show that the reverse
holds as well, that is, there exist morphic sequences that are not mix-automatic.
In particular, we consider the characteristic sequence of (positive) squares:

squares = 1001000010000001000000001000000000010000000000001 · · ·
= 1021041061081010101210141 · · ·

So squares ∈ {0, 1}ω is defined by squares(n) = 1 iff n+1 is a square number. The
sequence is morphic: it can be obtained by iterating the morphism a 7→ a001,
0 7→ 0, 1 7→ 001 on the starting letter a, and applying the coding a 7→ 1, 0 7→ 0
and 1 7→ 1 to the limit word.

We show that squares is not mix-automatic.

Lemma 20. Let `, s ∈ N be such that `, s > 1. Then there exists a number
n ∈ N such that 1 + `2(sn − 1) is not a square number.

Proof. Let `, s ∈ N be such that `, s > 1. Let k be large enough to ensure ` < 2sk.
Then (`sk − 1)2 = `2s2k − 2`sk + 1 < 1 + `2(s2k − 1) < (`sk)2 follows, which for
n = 2k traps 1 + `2(sn − 1) in between consecutive squares.

Alternatively, a geometrical rendering is the following. We view s2n − 1 =
(sn)2−1 as a square of sn×sn pieces of which one corner piece has been removed:

sn-times

sn-times

= s2n − 1

Mix-Automatic Sequences 11

Then 1 + `2(s2n− 1) can be visualized as shown on the
right. We have `2−1 cut-out corner pieces. Due to these,
1 + `2(s2n − 1) is strictly less than a square `sn × `sn.
The next smaller square has size (`sn − 1) × (`sn − 1)
and has precisely (2`sn − 1) less pieces than the larger
square. By picking n large enough so that ` < 2sn, we
achieve `2−1 < 2`sn−1, and hence there are too many
pieces for the next smaller square. ut

`-
ti

m
es

`-times

1 + `2(s2n − 1) =

Lemma 21. The sequence squares is morphic but not mix-automatic.

Proof. The morphic definition of squares is given above. For a contradiction, let
us assume that the sequence would be mix-automatic. Then by Theorem 13,
there exists x : ∆ω → N≥2 such that the x-kernel K of squares is finite. For
every n ∈ N we define wn ∈ K and kn ∈ N inductively as follows: w0 = squares
and wn+1 = π0,kn(wn) where kn = x(wn). As K is finite, there exist a, b ∈ N,
a < b such that wa = wb. We define k = k0 ·k1 · · · ka−1, and ` = ka ·ka+1 · · · kb−1.
Then wa = π0,k(squares) and wa = wb = π0,`(wa), and in particular

π0,k(squares) = π0,`(π0,`(π0,k(squares))) = π0,k`2(squares) . (3)

Thus (†) for all n ∈ N, kn+ 1 is a square if and only if k`2n+ 1 is a square.
Let p be a prime that does not divide k, and hence is coprime to k. Then by

Euler’s theorem there exists e ∈ N such that (p2)e ≡ 1 (mod k). Thus (∗) for
every m ∈ N, we have that (pem)2 = ((p2)e)m ≡ 1 (mod k) and hence a square
number of the form kn+ 1 for some n ∈ N.

We define s = (p2)e. Then an application of Lemma 20 yields that there
exists m ∈ N such that 1 + `2(sm − 1) is not a square number. We have that
sm = kn + 1 for some n ∈ N by (∗). Thus 1 + `2(sm − 1) = 1 + `2kn is not a
square while 1 + kn is. This contradicts (†). ut

Theorem 22. The class of morphic sequences is not contained in the class of
mix-automatic sequences.

6 Conclusions and Further Research

Mix-automatic sequences form a natural extension of the class of automatic
sequences. While automatic sequences are generated by DFAOs, mix-automatic
sequences are generated by DFAOs with state-dependent input alphabets. These
automata read number representations dndn−1 · · · d0 where the base of a digit
dk depends on the value of the lower-significance digits dk−1 · · · d0.

The results of this paper can be summarized as follows:

(i) A characterization of mix-automatic sequences via a generalization of the
concept of k-kernel (by which automatic sequences can be characterized).

12 J. Endrullis, C. Grabmayer, and D. Hendriks

(ii) For every polynomial ϕ there is a mix-automatic sequence whose subword
complexity exceeds ϕ. As a consequence there are mix-automatic sequences
that are not morphic, since morphic sequences have quadratic subword com-
plexity at most.

(iii) A morphic sequence that is not mix-automatic, showing that the class of
morphic sequences is not contained in the class of mix-automatic sequences.

All of these concepts are very recent, and many interesting questions remain.
We highlight three particularly intriguing, and challenging questions:

(1) (J.-P. Allouche) Characterize the intersection of mix-automatic and morphic
sequences. (Note that at least all automatic sequences are in.)

(2) Is the following problem decidable: Given two mix-DFAOs, do they generate
the same sequence?

(3) Can Cobham’s Theorem (below) be generalized to mix-automatic sequences?

Cobham’s Theorem ([3]). Let k, ` ≥ 2 be multiplicatively independent (i.e.,
ka 6= `b, for all a, b > 0), and let w ∈ ∆ω be both k- and `-automatic. Then w is
ultimately periodic.

In order to generalize this theorem to mix-automatic sequences, one could look
for a suitable notion of multiplicative independence for base determiners. Recall
that base determiners are themselves finite automata with output.

References

1. J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Gener-
alizations. Cambridge University Press, New York, 2003.

2. J. Berstel. Transductions and Context-Free Languages. Teubner, 1979.
3. A. Cobham. On the Base-Dependence of Sets of Numbers Recognizable by Finite

Automata. Mathematical Systems Theory, 3(2):186–192, 1969.
4. A. Cobham. Uniform Tag Sequences. Theory of Computing Systems, 6:164–192,

1972.
5. A. Ehrenfeucht, K. P. Lee, and G. Rozenberg. Subword Complexity of Various

Classes of Deterministic Languages without Interaction. Theoretical Computer
Science, 1:59–75, 1975.

6. C. Grabmayer, J. Endrullis, D. Hendriks, J. W. Klop, and L. S. Moss. Automatic
Sequences and Zip-Specifications. In Proc. Symp. on Logic in Computer Science
(LICS 2012), pages 335–344. IEEE Computer Society, 2012.

7. C. Grabmayer, J. Endrullis, D. Hendriks, J. W. Klop, and L. S. Moss. Automatic
Sequences and Zip-Specifications. Technical Report 1201.3251, arXiv, 2012.

8. D. E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms. Addison-Wesley, 2nd edition, 1981.

9. M. Morse and G. A. Hedlund. Symbolic Dynamics. American Journal of Mathe-
matics, 60:815–866, 1938.

10. M. Rigo. Generalization of Automatic Sequences for Numeration Systems on a
Regular Language. Theoretical Computer Science, 244(1-2):271–281, 2000.

11. M. Rigo and A. Maes. More on Generalized Automatic Sequences. Journal of
Automata, Languages and Combinatorics, 7(3):351–376, 2002.

