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Abstract

Just like diamonds, streams are forever. They are also ubiquitous, arising
in theoretical computer science (formal languages and functional program-
ming), mathematics (number theory), and engineering (signal processing).
Also in computing applications streams are important. Here one can think
of the streams of data queries flowing into search engines, or streams of
financial data processed by financial organizations.

In this paper, we describe a number of aspects of streams that we have
encountered and studied during the last years.

1 Introduction

Infinite streams, also called infinite sequences, infinite words, or ω-words, are the
subject of study in several disciplines, ranging from the foundations of mathemat-
ics (choice sequences in intuitionistic logic), to engineering applications in signal
processing. In this paper we will not be concerned with deep philosophical or log-
ical aspects of infinite sequences. We will be interested mostly in specifications
of streams, their classification, and their comparison.

A landmark was the work [55] of Axel Thue, who devised in 1906 infinite
sequences of symbols avoiding certain simple patterns such as squares ww or
cubes www where w is a finite word. He introduced the cubefree sequence M =

0110100110010110 · · · , now known as the Thue-Morse sequence. This sequence
turned out to be ubiquitous indeed, see [2], and was rediscovered by Marston
Morse in 1921 in the mathematical context of dynamical systems and ergodic the-
ory [45]. The Thue-Morse sequence is also known to be an automatic sequence
(see [3]), and in particular it is a (purely) morphic sequence or D0L sequence. In
the terminology of [49] the sequence is obtained by a ‘substitution’, another word
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for morphism. Later we will encounter several definitions of the Thue-Morse se-
quence, and also explain some of the key words just used denoting families of
streams.

So infinite streams (we will often call them just streams) arise in theoretical
computer science, in particular the areas of formal languages and combinatorics,
and also in mathematics, with applications in dynamical systems and number the-
ory. They also appear in the more practical side of computer science where func-
tional programming languages reside (see e.g. [53]).

A word on methodology. Streams can be approached from various directions,
originating from deep and established mathematical areas such as the theory of
numeration systems (there have been several workshops devoted to this theme in
recent years) concerned with methods to denote numbers, and also from relatively
young developments in theoretical computer science, specifically infinitary term
rewriting and coalgebra. The first is an outgrowth of the classical lambda calculus,
while the second saw the light with the emergence of theories about infinite pro-
cesses with communication, based on non-wellfounded set theory. Our point of
view is that of infinitary term rewriting, to which we devote a nutshell introduction
at the end of the paper.

Let us now give a short survey of the topics we aim to address. In Section 2 we
start with presenting some of the well-known families of streams, exemplified by
some famous streams. Thus we meet morphic sequences, automatic sequences,
Toeplitz words, sturmian sequences, and sequences obtained by periodically iter-
ated morphisms.

In Section 3 we briefly discuss the well-known relation between streams and
fractals via turtle graphics. Even though it is well-known that some streams give
rise via some turtles to some well-defined fractals, the complete correspondence
between streams and fractals is not at all completely clear; at the end of the paper
we devote a further question about such a correspondence.

The next point to visit in our guided tour is a discussion of possible ways
to compare streams as to their complexity, Section 4. Here we do not mean the
well-known logical complexity in terms of the arithmetical or analytical hierar-
chy. But there are two notions of comparing complexity of streams that spring
to mind, namely Kolmogorov complexity and subword complexity. We argue
that both have their drawbacks, and propose a way of comparing streams that is
simple but did not yet receive attention. This comparison is analogous to com-
paring the intrinsic difficulty of sets of natural numbers (which are just streams
over {0, 1}), by means of Turing degrees. There two objects are equivalent iff they
can be transformed back and forth into each other by Turing Machines. For the
purpose of comparing streams, a similar procedure can be adopted, except that
Turing Machines now are much too powerful; all interesting streams are com-
putable, and thus equivalent with respect to transforming them into one another



via Turing Machines. The appropriate transformation tool, generalizing several
well-known transformation notions between streams, seems to be that of a finite
state transducer (FST), a generalization of a Mealy machine. A Mealy machine
transforms an input stream in a letter-to-letter fashion. FSTs are more general in
that they transform letters to words. In this way we obtain an interesting hierarchy
of degrees of streams, presenting us with a plethora of challenging questions.

After having discussed these degrees of streams, in Section 5 we turn to a
specific question, which was raised by Larry Moss. It is concerned with a case
study, namely how to decide the equivalence of streams that can be defined using
very restricted means, only using the stream operator known as ‘zip’. The famous
Thue-Morse stream can be defined this way. Solving this question (see [32]), pro-
vided an additional bonus; it yielded an alternative characterization of automatic
sequences. Moreover, a slight generalisation of the zip specification format re-
sulted in some quite challenging open questions, where we find ourselves on the
sharp edge of the decidability property.

In Section 6 we consider infinite words generated by periodically iterated mor-
phisms, and a question raised by Lepistö and Karhumäki, asking for the subword
complexity of streams obtainable by iterating morphisms. The upshot is that this
way of specifying streams yields maximally complex streams in that their sub-
word complexity is exponential. The technique to establish this is interesting, us-
ing Conway’s intriguing programming language called Fractran of which a short
exposition is given.

In Section 7 we discuss a problem that we have postponed somewhat, but
that actually confronts us in the very beginning of studying streams, at least if
we adopt the mind set of functional programming applications. This is the well-
known problem of productivity, put on the map by Dijkstra, studied by his student
Sijtsma [51], and approached forcefully by the functional programming commu-
nity in the two seminal papers [33] and [53]. We outline the problem, and sketch
progress made by the present authors.

We conclude our guided tour along streams with a sample of questions in
Section 8.

2 Families of Streams

In the landscape of streams there are many families, characterised by shared prin-
ciples or formats that are used in stream definitions or in the generation of streams.
We give a brief listing of the main ones. An overview of some inclusion relations
between these families is displayed in Figure 1.

We use standard terminology and notation; for example, see Allouche and
Shallit [3] or Lothaire [43]. We useN = {0, 1, 2, . . .} for the set of natural numbers.
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Figure 1: Some inclusions between stream families.

Let Σ be a finite alphabet. We denote by Σ∗ the set of all finite words over Σ, and
by ε the empty word. The set of infinite words over Σ is Σω = {x | x : N→ Σ}.
On the set of all words Σ∞ = Σ∗ ∪ Σω we define the metric d for all u, v ∈ Σ∞ by
d(u, v) = 2−n, where n is the length of the longest common prefix of u and v. For
a word w ∈ Σ∞ and n ∈ N, we write w(n) for the n-th letter of w (counting from
zero). We write |x| for the length of a word x ∈ Σ∗. We call a word v ∈ Σ∗ a factor
or subword of x ∈ Σ∞ if x = uvy for some u ∈ Σ∗ and y ∈ Σ∞.

2.1 Morphic or CD0L Sequences
A widely studied family is that of the morphic sequences. Given alphabets Σ and
Γ, a morphism is a map h : Σ∗ → Γ∗ such that h(ε) = ε and h(uv) = h(u)h(v) for
all words u, v ∈ Σ∗. For k ∈ N, a morphism h is called k-uniform if |h(a)| = k for
all a ∈ Σ; h is a coding if it is 1-uniform.

Let s ∈ Σ∗, h : Σ∗ → Σ∗ a morphism, and c : Σ → Σ a coding. If in the metric
space 〈Σ∞, d〉 the limit hω(s) = limi→∞ hi(s) exists, then

(i) hω(s) is called purely morphic or D0L word, and

(ii) c(hω(s)) is called a morphic or CD0L word.

For example, the Thue-Morse sequence M is obtained by iterating the morphism
h defined by h(0) = 01, h(1) = 10 on the starting word 0, i.e., M = hω(0).

2.2 Periodically Iterated Morphisms
Instead of repeatedly applying a single morphism, one may alternate several mor-
phisms from a given (finite) set in a periodic fashion. This gives rise to what
are called PD0L sequences [15, 16, 42, 10], which form a generalization of D0L
sequences.

Let H = 〈h0, . . . , hp−1〉 be a tuple of morphisms hi : Σ∗ → Σ∗. We define the
map H : Σ∗ → Σ∗ as follows:

H(a0a1 · · · an) = u0u1 · · · un

where ui = hk(ai), with k ≡ i (mod p) and k ∈ N<p.



For s ∈ Σ∗, if in the metric space 〈Σ∞, d〉 the limit Hω(s) = limi→∞ Hi(s) exists, we
call Hω(s) a PD0L word.

A famous example generated by such a procedure is the Kolakoski word [39]

K = 1 22 11 2 1 22 1 22 11 2 11 22 1 2 11 2 1 22 11 2 · · ·

which is defined such that K(0) = 1 and K(n) equals the length of the n-th run
of K; here by a ‘run’ we mean a maximal subsequence of consecutive identical
symbols. The Kolakoski word can be generated by alternating two morphisms on
the starting word 12, h0 for the even positions and h1 for the odd positions, defined
as follows:

h0 :
1→ 1
2→ 11 h1 :

1→ 2
2→ 22

So for H = 〈h0, h1〉, we have K = Hω(12), and the first few iterations are

H0(12) = = 12

H1(12) = h0(1) h1(2) = 122
H2(12) = h0(1) h1(2) h0(2) = 12211
H3(12) = h0(1) h1(2) h0(2) h1(1) h0(1) = 1221121

It is known that the Kolakoski word is not a D0L word [16], i.e, cannot be
generated by iterating a single morphism. However it is an open problem whether
it is a CD0L word, i.e., the image under a coding of a D0L word. Another famous
open problem about the Kolakoski word is whether the letter frequency exists and
is indeed 1

2 , as computer experiments seem to support [44].
Some other open problems concerning PD0L words were recently solved by

the first two authors, see further Section 6.

2.3 Toeplitz Words
A subclass of the class of PD0L sequences is formed by Toeplitz words [35]. A
Toeplitz word Tx over an alphabet Σ is generated by a seed word x ∈ Σ(Σ ∪ {?})∗

with ? < Σ, as follows. For u ∈ Σω let xω[u] denote the sequence obtained by
replacing the subsequence of ?’s in xω by u. Then Tx is the unique solution for u
in the equation

u = xω[u] .

So in order to construct Tx , we start with the periodic xω and then replace its
subsequence of ?’s by the sequence Tx under construction. For example, if x =

101?, then

xω = 101?101?101?101?101?101?101? · · ·



Tx = 1011101010111011101110101011 · · ·

where the underlined subsequence is identical to the whole sequence. This se-
quence Tx is known as the period doubling sequence [3, Example 6.4.3], which
also is the sequence of first differences (modulo 2) of the Thue-Morse sequence M.

2.4 Automatic Sequences
An important subfamily of the morphic sequences is that of the automatic se-
quences, to which the beautiful monograph [3] is devoted. One way to charac-
terize automatic sequences is that they can be obtained by iterating a uniform
morphism, and apply a coding afterwards.

The standard definition of automatic sequences is via deterministic finite au-
tomata with output (DFAOs) that produce an element of a sequence when fed the
index of the element as input. As an example we consider again the Thue-Morse
sequence M. The n-th element M(n) is the parity of the number of 1’s in (n)2, the
binary representation of n. This is realized by the automaton displayed in Figure 2.

q0/0 q1/1

0
1

1

0

Figure 2: DFAO generating the Thue-Morse sequence.

The automaton has states {q0, q1}, initial state q0, input alphabet {0, 1} and out-
put alphabet {0, 1}. The output letter assigned to q0 is 0 and to q1 is 1 (indi-
cated by state/output in the states of the automaton). The automaton generates the
Thue-Morse sequence 0110100110010110 · · · as follows. The n-th letter of the
sequence is the output of the automaton when reading (n)2, the base-2 expansion
of n. For example, for input (3)2 = 11 the automaton ends in state q0 with output
0, and for input (4)2 = 100 in state q1 with output 1.

The automaton of Figure 2 is called a deterministic finite state automaton with
output (DFAO). For k ≥ 2, a k-DFAO is an automaton over the input alphabet
N<k = {0, 1, . . . , k − 1}. An infinite sequence w ∈ ∆ω is called k-automatic if there
exists a k-DFAO such that for every n ∈ N the output of the automaton when
reading the word (n)k ∈ N

∗
<k is w(n), with (n)k the base-k expansion of n.

2.5 Sturmian Sequences
Much studied in mathematics, for its implications for number theory, is the fam-
ily of sequences known as sturmian sequences. Sturmian sequences can be ob-



tained in a well-known direct geometrical way (‘rotation sequences’ or ‘cutting
sequences’), namely by intersections with the unit grid in the plane and a straight
line from the origin. The most famous example here is the Fibonacci word F,
01001010 · · · , obtained from the straight line from the origin with slope 1

ϕ
= ϕ−1,

with ϕ = 1+
√

5
2 the golden ratio, see Figure 3.

0
1

00 10
1 0 0 10

Figure 3: The Fibonacci stream F = 01001010 · · · .

We note that the Fibonacci word is also a morphic sequence, F = hω(0) with
the morphism h given by 0→ 01, 1→ 0.

3 Streams and Fractals

We will now go back some thirty or forty years in the history, to the time that
Seymour Papert developed his educational enterprise ‘turtle graphics’ or ‘turtle
geometry’ together with the Logo programming language. It was meant to facili-
tate Papert’s daughter with her experiments relating art and mathematics. We will
use turtles in the form of finite state transducers (see Section 4), with the stip-
ulation that the output alphabet consists of graphical instructions such as ‘draw
one straight line unit’, ‘turn write head over π

3 ’, etc. We call this a ‘smart’ turtle
as it has some memory being a finite state transducer. Now we can transform a
stream into a fractal. To do this properly, we have to re-scale the drawn figure
when it grows too large for the screen or page, and apply the Hausdorff metric
on these successive approximations. For instance the fractal in Figure 4 (left) is
generated from the Mephisto Waltz sequence 001001110001001110 · · · (obtained
by iterating the morphism 0 → 001, 1 → 110 on starting letter 0). An interesting
surprise in 2005 by Ma and Holdener was their discovery that the Thue-Morse se-
quence yields when drawn by a suitable turtle, the snowflake of Helge von Koch
(also from 1906). As pointed out by J.-P. Allouche, this discovery was actually
anticipated in the early 1980’s by M. Dekking in the mathematical framework
of iterated exponential sums. Not all streams and all smart turtles yield a ‘de-
cent’ fractal. Some patterns are chaotic, as for example the notoriously difficult
Kolakoski stream 1 22 11 2 1 22 1 22 11 2 11 . . . which is the sequence of its own



Figure 4: A turtle trajectory for the streams Mephisto Waltz (left), Kolakoski (middle) and
Fibonacci (right).

run-lengths (see also Section 2). Other streams yield aesthetically pleasing pat-
terns such as the Fibonacci word F = 0100101001001 · · · . We are interested in
the relation of the hierarchy of streams with fractals, and in particular the question
whether properties of fractals can be employed to distinguish ‘degrees of streams’,
a notion that we introduce in Section 4 below.

An amusing puzzle is to derive a sequence by looking at a fractal curve. In
Figure 5 we have displayed the initial approximations of the Sierpiński arrowhead

Figure 5: Initial approximations of the Sierpiński arrowhead curve [48].

curve [48]. The question arises: what is the sequence behind this fractal curve? In
other words, interpreting 0 and 1 as turtle drawing instructions e.g. as follows:

0: move forward one unit length and turn to the left π/3 radials, and
1: move forward one unit length and turn to the right π/3 radials,

the search is for the sequence which generates the curve, in the limit using the
Hausdorff metric.

To construct the sequence, we consider Figure 5. The first iteration of the
construction, the arrowhead shape, corresponds to the word w1 = 00111100. The
second iteration is obtained from

w2 = w1 0 w1 0 w1 1 w1 1 w1 1 w1 1 w1 0 w1 0

where w1 = 11000011, the mirrored arrowhead. Note that w1 and w1 alternate,
and the word filled in-between is w1 itself. This construction clearly resembles



the construction of Toeplitz words, as introduced in Section 2.3, and we find that
the Toeplitz word generated by the pattern

x = 0 0 1 1 1 1 0 0 ? 1 1 0 0 0 0 1 1 ?

is the desired sequence Tx = 001111000110000110001111001110000111 · · · ,
which we call the Sierpiński sequence S = Tx.

4 Degrees of Streams
We now consider a novel approach [29] to comparing the complexity of streams,
namely in terms of reducibility by finite state transducers (FSTs). This gives rise
to a hierarchy of stream ‘degrees’ somewhat analogous to the recursion-theoretic
degrees of unsolvability (see further Shoenfield [50]). It is the structure and prop-
erties of this partial order of degrees that we are interested in. As we shall see,
this hierarchy exhibits a variety of unique properties that set it apart from the usual
complexity measures for streams.

We explain the notion of finite state transducers, and introduce the partial order
of stream degrees. We then discuss and motivate this hierarchy, and compare it
to the common complexity measures for streams. Then we sketch a few initial
results, and collect some open questions.

Finite State Transducers. A finite state transducer (FST) is a finite automaton
which reads the input stream letter by letter, in each step producing an output
word and changing its state. An example of an FST is depicted in Figure 6, where
we write ‘a|w’ along the transitions to indicate that the input letter is a and the
output word is w. This FST computes the first difference of the input stream. For
example, it reduces the Thue-Morse sequence M to T = 1011101010111011 · · · ,
the period doubling sequence (see Section 2.3).

q0

q1

q2

0|ε

1|ε

1|10|1

1|0

0|0

Figure 6: A finite state transducer realizing the difference ∆ of consecutive bits modulo 2:
∆(abw) = (b − a (mod 2))∆(bw) for all a, b ∈ {0, 1} and w ∈ {0, 1}ω.

The working of an FST on a stream is intuitively clear and it is easy to render
it formally. At the end of the paper, in our nutshell introduction to infinitary
rewriting, we show how the working of an FST on a stream can alternatively be
phrased as infinitary rewriting to the output normal form.



4.1 A Hierarchy of Streams

Finite state transducers transform streams to streams (or finite words1). Thereby
transducers give rise to a preorder B on the set of all streams: for streams u and v,
we define u B v, u is reducible to v, by:

u B v ⇐⇒ there is an FST that transforms u into v

We write u CB v if both a forth and a back transformation is possible, that is,
CB = C ∩ B. It is easily checked that CB forms an equivalence relation, and
we refer to the equivalence classes of CB as degrees. The reducibility relation B
induces a partial order on the degrees.

ascending sequence
of degrees

descending sequence
of degrees

0 ultimately periodic streams

M S

sup? upper bound

Π a prime degree?

?

Figure 7: The partial order of stream degrees. Question marks indicate open prob-
lems. Here M is the Thue-Morse sequence, S is the Sierpiński sequence, and Π =

11010010001 · · · is the sequence of ‘rarified ones’ defined in (1) below.

Figure 7 sketches a few initial results (obtained in [29]) and a few open ques-
tions. The preliminary results are: the hierarchy is not dense, not well-founded,
there exist no maximal degrees, and a set of degrees has an upper bound if and
only if the set is countable. The morphic degrees, and the computable degrees
form interesting subhierarchies. The subhierarchy of computable degrees turns
out to have a maximum degree. An interesting notion is that of a ‘prime degree’,
an indivisible or minimal degree, see below.

Remark 4.1. We emphasize that it is important that the output given by a state
transition is allowed to be a word over the output alphabet, and not just a single

1The result of the transformation is finite if the transducer outputs the empty word ε for almost
all letters of the input stream. We are interested in streams only since the set of finite words would
merely entail two spurious extra sub-bottom degrees of our hierarchy, one for finite non-empty
words and one for the empty word.



letter or the empty word ε, although that may also be the case. Finite state trans-
ducers generalize the class of Mealy machines; the latter are restricted to output
of precisely one letter in each step. For instance, the transducer shown in Fig-
ure 6 is not a Mealy machine, and there exists no Mealy machine implementing
this transformation. Belov [8] independently studied the hierarchy arising from
Mealy machines; this hierarchy however, does not have the nice properties that
we envisage. In particular, the equivalence induced by Mealy machine transduc-
tion (forth and back) is not invariant under insertion or removal of finite (possibly
scattered) subwords of a stream.

0 The bottom degree 0 is formed by the ultimately periodic streams, that is,
all streams σ of the form σ = τγγγ . . . for finite τ, γ. Every stream can be
reduced to any ultimately periodic stream σ = τγγγ . . . by an FST of the
form displayed in Figure 8 consisting of just two states.

q0 q1
0|τ

1|τ
0|γ
1|γ

Figure 8: An FST reducing any stream to the ultimately periodic stream τγγγ · · · .

upper bound Every pair of degrees σ and τ has an upper bound. This upper bound
can be constructed as follows: pick streams u ∈ σ and v ∈ τ. Let the
stream zip(u, v) be obtained by alternatingly interleaving the elements
of the streams u and v, that is:

zip(u(0) u(1) u(2) . . . , v(0) v(1) v(2) . . .) = u(0) v(0) u(1) v(1) u(2) v(2) . . .

Then the stream zip(u, v) that can be reduced to both u and v:

zip(u, v) B u zip(u, v) B v

by the FSTs shown in Figures 9 and 10, respectively. As a consequence, the degree
of the stream zip(u, v) is an upper bound for the degrees σ and τ (the degrees of
of u and v).

q0 q1

0|0
1|1

0|ε
1|ε

Figure 9: FST for zip(u, v) B u.

q0 q1

0|ε
1|ε

0|0
1|1

Figure 10: FST for zip(u, v) B v.



upper bound As the set of all FSTs is countable, it follows that every degree is
countable, and that every degree can only have countably many de-
grees below it. Let {w0,w1,w2, . . .} be a countable set of streams.
Then we can obtain an upper bound by interleaving the streams in
the following way:

zip(w0, zip(w1, zip(w2, . . .))) ,

see also Figure 11. As an immediate consequence we obtain that a set of degrees

σ0(0)
0

σ1(0)
1

σ0(1)
2

σ2(0)
3

σ0(2)
4

σ1(1)
5

σ0(3)
6

σ3(0)
7

σ0(4)
8

σ1(2)
9

σ0(5)
10

σ2(1)
11

. . .

Figure 11: Zipping a countably infinite family of streams.

has an upper bound if and only if the set is countable.

There are no maximum degrees, i.e., for each degree a strictly larger
one can be constructed. First note that the set of all degrees is un-
countable as every degree is countable but there are uncountably many
streams. Letσ be a degree. We show thatσ is not maximal. Since there
are uncountably many degrees, we can find a degree τ such that σ 6B τ,

and then their upper bound is higher than σ. This establishes a non-constructive
argument that every degree start an infinite ascending chain. A constructive ex-
ample is the following [29]:

. . .

B A3 = 1(10)3 1(100)3 1(10000)3 1(100000000)3 . . .

B A2 = 1(10)2 1(100)2 1(10000)2 1(100000000)2 . . .

B A1 = 110 1100 110000 1100000000 . . .
B A0 = 111111 . . .

forms an infinite ascending chain. For an infinite descending chain, consider:

D0 = 1020
1021

1022
1023

1024
1025

1026
. . .

B D1 = 1020
1022

1024
1026

1028
10210

10212
. . .

B D2 = 1020
1024

1028
10212

10216
10220

10224
. . .

B . . .

Note that A1 CB D0 and so their degree has an infinite ascending chain as well as
an infinite descending chain.



Prime Degrees. An interesting notion that suggests itself is that of a prime degree:
a streamσ is prime if there exists no stream τwhose degree is strictly intermediate
between that of σ and the bottom degree 0. Thus the prime degrees reduce only
to 0 or themselves. An example of a stream of prime degree is the following
sequence called rarified ones (see [29]):

Π = 1101001000100001000001 . . .

which can be obtained as the image of the fixed point of the morphism

a 7→ a1 1 7→ 01 0 7→ 0 (1)

on the starting word a, under the coding a 7→ 1, 0 7→ 0, 1 7→ 1; thus Π is a mor-
phic stream. Intuitively, the information content of the stream Π is ‘indivisible’:
whatever FST is applied on this stream, either the result is eventually periodic
(the structure is entirely destroyed), or there is enough structure left for an FST to
reconstruct the original stream.

4.2 Motivation
Finite state automata and finite state transducers are ubiquitous in computer sci-
ence and computational linguistics. Surprisingly, very little is known about the
reducibility relation that finite state transducers induce on streams: Given streams
u and v, is there an FST reducing u to v? This is a challenging question, espe-
cially for the case of proving non-reducibility, for example of morphic streams.
At present there are no methods available for this problem.

Except for the importance of finite state transducers, the study of the FST-
hierarchy is intriguing due to its unique characteristics that set it apart from all
existing approaches to measuring stream complexity. The hierarchy is robust and
fine grained at the same time:

(i) It is robust under the insertion and removal of arbitrary finite amount of
elements in the streams (for example, cutting-off of prefixes), and change
of encoding. In some sense, the FST-hierarchy classifies streams by their
invariant infinite patterns.

(ii) Thus on the one hand we have a fairly general notion of transformation, but
on the other hand it is not too strong, leading to a fine grained structure
of degrees. By contrast, allowing Turing Machines for the transformations
would be far too strong. Most of the interesting streams are computable,
and with Turing Machines any pair of such computable streams could be
transformed into each other, and our endeavour would trivialize. The hier-
archy of degrees arising from Turing Machines is the well-known recursion



theoretic degrees of unsolvability that classify the intrinsic ‘difficulty’ of a
set of natural numbers (Shoenfield [50]).

4.3 Comparison with Standard Complexity Measures
The hierarchy of stream degrees is very different from the common approaches
for measuring the complexity of streams: (i) the recursion-theoretic hierarchy
identifies all computable streams, (ii) Kolmogorov complexity can be increased
arbitrarily by the insertion of elements, and (iii) subword complexity can be trivial
(linear) even for non-computable streams. The subword complexity of a stream
σ is a function ξ : N → N such that ξ(n) is the number of subwords of length n
occurring in σ. The Kolmogorov complexity K(σ) ∈ N of a computable stream
σ is the length of the shortest program computing σ.

4.4 Open Questions
The study of the hierarchy concerns the very core of finite state transducers: the
transducibility relation they induce on streams. Surprisingly, although finite au-
tomata and finite state transducers are ubiquitous in computer science, only little is
known about this transducibility relation. Given streams σ and τ, there are hardly
any methods available to determine whether σ B τ, that is, can σ be reduced to τ
via some FST? This is challenging especially for the case of proving that σ cannot
be transduced to τ. In special cases, pumping lemma arguments may work, but
they fail for basically all streams that we are interested in (e.g. morphic streams).
If σ is morphic and τ not, then we can make use of a famous theorem by Dekking
stating that morphic streams are closed under FST transduction. In all other cases,
we are lost.

We mention a few intriguing open questions:

(i) What is the structure of the partial order of degrees?

(ii) How many prime degrees exist?

(iii) Is the degree of the Thue-Morse sequence M prime?

(iv) How do the degrees of some well-known streams compare? For example,
are M and S of the same degree? Here S is the Sierpiński stream, see Fig-
ure 5.

(v) How to prove non-reducibility σ 6B τ (e.g. for morphic streams σ, τ)?

(vi) Do the structures displayed in Figure 12 exist?
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Figure 12: Possible structures in the FST-hierarchy: a diamond, and a line. The arrows
S → T mean S B T. Using transitivity of B we leave some arrows implicit. Moreover, we
assume that if S is a degree and S B T, then T is depicted as well. In particular there are
no intermediate degrees between two displayed nodes connected by an arrow.

(vii) What is the structure of the partial order of degrees restricted to different
families of streams? E.g. the families of computable or morphic streams?

5 Zip Goes a Million
Elias Howe, the inventor of the sewing machine, patented in 1851 an ‘automatic,
continuous clothing closure’, later known as zip or zipper. The name is an ono-
matopoeia, a sound imitation. Apart from its use as a coding device for American
postal services around 1950, ‘zip’ made its entrance also in the world of light cul-
ture, giving rise in 1919 to the Broadway play Zip! goes a million, and a 1954
remake as a London musical Zip goes a million, the former unsuccessful, but the
latter quite successful. The plot was based on the book Brewster’s millions from
1902, describing the problem how to loose $1000 000 in order to gain $7000 000.

In this section we are concerned with the more serious culture of stream spec-
ifications, and we will endeavour to describe how the stream operator ‘zip’, in the
literature known as perfect shuffle, can profitably be used to give an elegant alter-
native definition of automatic sequences, and how its use suggests some further
challenging questions. First, we will consider zip-specifications, to be followed
by an excursion to mix-automatic sequences.

5.1 Destructing Automatic Sequences
For i, k ∈ N, we define projection functions πi,k : ∆ω → ∆ω by the equations:

π0,k(x : σ) = x : πk−1,k(σ) πi+1,k(x : σ) = πi,k(σ) (2)

So πi,k(σ) is an arithmetic subsequence of σ:

πi,k(σ) = σ(i) σ(i + k) σ(i + 2k) · · ·

The functions π0,k, . . . , πk−1,k are the destructors of zipk, that is, we have

πi,k(zipk(σ0, . . . , σk−1)) = σi (0 ≤ i < k) (3)



Definition 5.1. Let Φ be a set of stream functions ∆ω → ∆ω, and σ ∈ ∆ω a stream.
The Φ-derivatives of σ are the smallest set D ⊆ ∆ω such that: σ ∈ D, and φ(τ) ∈ D
whenever τ ∈ D and φ ∈ Φ.

The derivatives provide an elegant, iterative way of defining the k-kernels [3].
The k-kernel of a sequence σ is the set of {π0,k, . . . , πk−1,k}-derivatives of σ. Then
the well-known characterization of k-automatic sequences via finite k-kernels can
be phrased as follows:

Theorem 5.1. Let k ∈ N. A stream σ ∈ ∆ω, is k-automatic if and only if the set of
{π0,k, . . . , πk−1,k}-derivatives of σ is finite.

This characterization can be generalized to other sets of derivatives:

Theorem 5.2. Let k > 1. Let Φ be a finite set of projection functions πi,kn with
i, n ∈ N and n ≥ 1 such that the set N \ {a + nb | πa,b ∈ Φ, n ∈ N} is finite. Then
σ ∈ ∆ω is k-automatic if and only if the set of Φ-derivatives of σ is finite.

For example, the set of {π1,k, . . . , πk,k}-derivatives is finite if and only if the
sequence is k-automatic, see further [27]. The increased flexibility in choosing the
projection functions Φ can help to simplify proofs and disproofs of k-automaticity.
In the terminology of [40], the derivatives {π0,k, . . . , πk−1,k} are a complete set of
cooperations, forming (together with head) a cobasis for streams. This cobasis
gives rise to a final coalgebra for automatic sequences, see [41, 32].

5.2 Automatic Sequences via Zip-Specifications
Automatic sequences can be defined via term rewriting, or equational specifica-
tions in a restricted format: zip-specifications, see further [32]. For example, the
Thue–Morse sequence is obtained by the succinct zip-specification

M = 0 : X X = 1 : zip(X,Y) Y = 0 : zip(Y,X) (4)

(We obtain a term rewriting system by orienting the equations from left to right.)
Here the function zip interleaves the elements of two streams alternatingly, also
known as perfect shuffle:

zip(σ0 : σ1 : σ2 : . . . , τ0 : τ1 : τ2 : . . .) = σ0 : τ0 : σ1 : τ1 : σ2 : τ2 : . . .

As a term rewriting rule, ‘zip’ can be defined as follows:

zip(x : σ, τ) = x : zip(τ, σ)



Naturally, the function zip can be generalized to interleaving k arguments:

zipk(x1 : s1, s2, . . . , sk) = x1 : zipk(s2, . . . , sk, s1)

A zip-k specification consists of recursion equations X1 = r1, . . . , Xn = rn such
that X1, . . . , Xn are recursion variables, and the right-hand sides r1, . . . , rn are terms
inductively generated by the following grammar:

Gk ::= Xi | a : Gk | zipk(Gk, . . . ,Gk) (1 ≤ i ≤ n, a ∈ Σ)

That is, the right-hand sides of the equations are built from recursion variables,
prefixing a symbol at the head of a stream, and the stream function zipk.

It turns out, that the class of streams definable by zip-k specifications is pre-
cisely the class of k-automatic sequences [32]. Thus zip-specifications provide a
term rewriting syntax for automatic sequences.

Let us explain why zip-specifications give rise to automatic sequences at the
example of the specification (4). We show that the sequence is 2-automatic by
computing the 2-kernel, the set of {π0,2, π1,2}-derivatives. To this end, we compute
the derivatives symbolically using the equations (2) and (3), and unfolding stream
constants defined by (4) whenever necessary. For better readability we write even
for π0,2 and odd for π1,2. We obtain:

even(M) = even(0 : X) odd(M) = odd(0 : X)
= 0 : odd(X) = even(X)
= 0 : odd(1 : zip(X,Y)) = even(1 : zip(X,Y))
= 0 : even(zip(X,Y)) = 1 : odd(zip(X,Y))
= 0 : X = 1 : Y
= M

Likewise even(1 : Y) = 1 : Y and odd(1 : Y) = M. Thus the set of derivatives is
finite, namely {M, 1 : Y }, and by Theorem 5.1, the stream M is 2-automatic.

The derivatives of a stream specification can be illustrated using a graph. The
nodes of the graph are the {even, odd}-derivatives. The edges represent the deriva-
tive relation and are labeled with even and odd, correspondingly. The graph corre-
sponding to the {even, odd}-derivatives of M is shown in Figure 13. If we replace
in this graph ‘even‘ by 0 and ‘odd’ by 1, we obtain a 2-DFAO that generates the
Thue–Morse sequence M as automatic sequence.

5.3 Mix-Automatic Sequences
The correspondence of k-automatic sequences with zip-k specifications, leads to
the natural question: What class of sequences is obtained when allowing zips of
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Figure 13: The 〈head, even, odd〉-coalgebra induced by M.

different arities in the same specification? For example:

Z = zip2(0 : Z,Y) Y = 1 : zip3(Z,Y, 0 : Z)

We call the arising class of sequences mix-automatic. It forms a proper extension
of the class of automatic sequences [32], and is in contrast to automatic sequences,
closed under zipping (perfect shuffle). For example, zipping a 2-automatic and a
3-automatic sequence, both not ultimately periodic, yields a non-automatic (yet
mix-automatic) sequence. While automatic sequences have at most linear sub-
word complexity, and morphic sequences at most quadratic, the subword com-
plexity of mix-automatic sequences can exceed an arbitrary polynomial, see [22].

Mix-automatic sequences can be defined via a generalization of k-DFAOs al-
lowing that the input alphabet depends on the current state. We call these automata
mix-DFAOs. Let us consider the example of a mix-DFAO shown in Figure 14.

q0/a q1/b

0
1

0, 1

2

Figure 14: An example of a mix-DFAO.

The state q0 has two outgoing edges, reflecting the input alphabet {0, 1}, while q1

has three outgoing edges, reflecting the input alphabet {0, 1, 2}.

Dynamic Radix Numeration Systems. The numeration systems these automata
operate on are no longer the standard base-k representation. The corresponding
number systems are called dynamic radix numeration systems, a generalization
of mixed radix numeration systems [38]. In this number representation, the base
for each digit is determined depending on the lower-significance digits. Thus we
let the automata read from the least to the most significant digit (from right to
left). We write (n)M for the number representation of n that serves as input for the
automaton M. For M the automaton from Figure 14, the representations of the
first eight numbers are

(0)M = ε (2)M = 1202 (4)M = 120202 (6)M = 131202



(1)M = 12 (3)M = 1312 (5)M = 2312 (7)M = 130312

where a subscript b (not part of the number representation) in db indicates the base
employed for d. Let us explain this at the example (17)M = 12022312. Knowing the
base for each digit, we can reconstruct the value of the representation as follows:
17 = 1 · 2 · 3 · 2 + 0 · 3 · 2 + 2 · 2 + 1 where each digit is multiplied with the product
of the bases of the lower digits. Given just the representation 1021, the base of
each of the digits is determined by the input alphabet of the state of the automaton
reading the digit. The states q0 and q1 of M have input alphabets {0, 1} and {0, 1, 2}
and thus expect the input in base 2 and 3, respectively. When reading 1021 (right
to left) the automaton M visits the states q0, q1, q0, q0 and q1. Annotating the
input digits with the state of the automaton when reading the digit, we obtain
1q00q02q11q0 , and mapping states to their expected base yields 12022312.

Let M be a mix-DFAO. Then every n ∈ N has a unique representation (n)M =

dm · · · d0 (without leading zeros). This representation can be computed as follows.
Assume that we have determined the value of the digits di−1 · · · d0 with correspond-
ing bases bi−1 · · · b0. The base bi of digit di is determined by the input alphabet of
the state of the automaton after reading di−1 · · · d0 (right to left), and digit di is the
remainder of the division of n −

∑
0≤ j<i d j(b j−1 · · · b1 · b0) by bi.

A mix-DFAO M gives rise to a mix-automatic sequence w ∈ ∆ω as follows:
for every n ∈ N, w(n) is the output of M when reading (n)M.

5.4 Research Questions
The concept of mix-automatic sequences and dynamic-radix numeration systems
are very recent, and many interesting questions remain. We highlight three partic-
ularly intriguing, and challenging questions:

(1) (J.-P. Allouche) Characterize the intersection of mix-automatic and morphic
sequences. (Note that at least all automatic sequences are in.)

(2) Is the following problem decidable: Given two mix-DFAOs, do they generate
the same sequence?

(3) Can Cobham’s Theorem (below) be generalized to mix-automatic sequences?

Theorem 5.3 (Cobham’s Theorem [11]). Let k, ` ≥ 2 be multiplicatively indepen-
dent (i.e., ka , `b, for all a, b > 0), and let w ∈ ∆ω be both k- and `-automatic.
Then w is ultimately periodic.

For more details, we refer to [32, 22].



6 Periodically Iterated Morphisms

Infinite words obtained from periodically iterating multiple morphisms, so-called
PD0L words, have been studied in [15, 16, 42, 10]. In particular, Lepistö [42]
shows that for all r ∈ R there is a PD0L word whose subword complexity is in
Ω(nr). Subword complexity [31, 1, 3] is a natural characteristic of streams. The
subword complexity of a stream u is a function N → N mapping n to the number
of n-length words that occur in u. It is well-known that CD0L words can have at
most quadratic subword complexity [19]. Hence from Lepistö’s result [42] it fol-
lows that there are PD0L words that are not CD0L. Cassaigne and Karhumäki [10]
show that all Toeplitz words are PD0L words, and that some of them have sub-
word complexity in Ω(nr) for r > 2, thus forming an alternative proof of what was
established in [42]. We note that, conversely, the existence of CD0L words that
are not PD0L words was shown in [15].

Recently, the first two authors [27] have shown that PD0L words can even
exhibit exponential subword complexity, answering a question raised by Lep-
istö [42], Cassaigne and Karhumäki [10] on the existence of such words. An-
other open problem concerned the decidability of the first-order theories of PD0L
words [46]; from [27] it follows that is already undecidable whether a certain let-
ter occurs in a PD0L word. This stands in contrast to the situation for D0L words
(purely morphic words), which are known to have at most quadratic subword com-
plexity, and for which the monadic theory is decidable.

Actually, [27] shows a stronger result, which can be paraphrased by

Periodically iterated morphisms are Turing-complete.

The proof of this result is based on an encoding of Fractran [12, 13] programs as
PD0L systems. Fractran is a very simple, yet Turing complete programming lan-
guage invented by John Horton Conway. We will here describe the essence of this
encoding. In particular we show how the halting problem of Fractran programs
is translated to the productivity problem for erasing PD0L systems, i.e., systems
where morphisms are allowed to map letters to the empty word ε. A PD0L system
is called productive if it generates an infinite word. Productivity is discussed in the
wider context of term rewriting in Section 7. In [27] this construction is extended
to non-erasing PD0L systems that also record the output of the Fractran program,
so that any computable stream can be ‘embedded’ in a PD0L word. Let us first
give a nutshell introduction to Fractran.



6.1 Fractran
A Fractran program F is a finite list of fractions

F =
n1

d1
, . . . ,

nk

dk
(5)

with ni, di positive integers. Let fi = ni
di

. The action of F on an input integer N ≥ 1
is to multiply N by the first ‘applicable’ fraction fi, that is, the fraction fi with
i the least index such that the product N′ = N · fi is an integer again, and then
to continue with N′. The program halts if there is no applicable fraction for the
current integer N. For example, we consider the program

F =
5

2 · 3
,

1
2
,

1
3

and the run of F on input N = 2335 :

2335 → 223451 → 213352 → 203253 → 203153 → 203053 .

Each multiplication by 5
6 decrements the exponents of 2 and 3 while incrementing

the exponent of 5. Once 5
6 is no longer applicable, i.e., when one of the exponents

of 2 and 3 in the prime factorization of the current integer N equals 0, the other is
set to 0 as well. Hence, executing F on N = 2a 3b halts after max(a, b) steps with
5min(a,b).

Thus the prime numbers that occur as factors in the numerators and denomina-
tors of a Fractran program can be regarded as registers, and if the current working
integer is N = 2a 3b 5c . . . we can say that register 2 holds a, register 3 holds b,
and so on.

The real power of Fractran comes from the use of prime exponents as states.
To explain this, we temporarily let programs consist of multiple lines of the form

α :
n1

d1
→ α1,

n2

d2
→ α2, . . . ,

nm

dm
→ αm (6)

forming the instructions for the program in state α: multiply N with the first appli-
cable fraction ni

di
and proceed in state αi, or terminate if no fraction is applicable.

We call the states α1, . . . , αm in (6) the successors of α, and we say a state is
looping if it is its own successor.

The program Padd given by the lines

α :
2 · 5

3
→ α,

1
1
→ β and β :

3
5
→ β

realizes addition; running Padd in state α on N = 2a3b terminates in state β with
2a+b3b.



A program with n lines is called a Fractran-n program. A flat list of frac-
tions f1, . . . , fk now is a shorthand for the Fractran-1 program α : f1 → α, f2 →

α, . . . , fk → α. Conway [13] explains how every Fractran-n program (n ≥ 2) can
be compiled into a Fractran-1 program, using the following steps:

(i) For every looping state α, introduce a ‘mirror’ state α, substitute αfor all
occurrences of α in the right-hand sides of its program line, and add the line

α:
1
1
→ α

(ii) Replace state identifiers α by ‘fresh’ prime numbers.

(iii) For every line of the form (6) append the following fractions:

n1 · α1

d1 · α
,

n2 · α2

d2 · α
, . . . ,

nk · αm

dm · α

(preserving the order) to the list of fractions constructed so far.

We explain these steps on the program Padd. Step (i) of splitting loops, results in

α :
2 · 5

3
→ α,

1
1
→ β β :

3
5
→ β

α:
1
1
→ α β:

1
1
→ β .

In step (ii), we introduce ‘fresh’ primes to serve as state indicators; for example,
〈α, α, β, β〉 = 〈7, 11, 13, 17〉. Third, we replace lines by fractions, to obtain the
program

Fadd =
2 · 5 · α

3 · α
,
α

α
,
β

α
,

3 · β
5 · β

,
β

β
.

Then indeed the run of Fadd on 2a3bα ends in 2a+b3bβ.
For ‘sensible’ programs any state indicator has value 0 (‘off’) or 1 (‘on’), and

the program is always in exactly one state at a time. Hence, if a program F uses
primes r1, . . . , rp for storage, and primes α1, . . . , αq for control, at any instant the
entire configuration of F (= register contents + state) is uniquely represented by
the current working integer N

N = re1
1 re2

2 · · · rep
p α j

for some integers e1, . . . , ep ≥ 0 and 1 ≤ j ≤ q.



The reason to employ two state indicators α and αto break self-loops in
step (i), is that each state indicator is consumed whenever it is tested, and so we
need a secondary indicator αto say “continue in the current state”. This secondary
indicator αis swapped back to the primary indicator α in the next instruction, and
the loop continues.

The halting problem for Fractran programs is undecidable (implicit in [13],
explicit in [21, 32]).

Proposition 6.1. The input-2 halting problem for Fractran programs, that is, de-
ciding whether a program halts for the starting integer N = 2, is Σ0

1-complete.

6.2 Encoding Fractran Programs as PD0L Systems
Definition 6.1. Let H = 〈h0, . . . , hp−1〉 be a tuple of morphisms hi : Σ∗ → Σ∗. We
define the map H : Σ∗ → Σ∗ as follows:

H(a0a1 · · · an) = u0u1 · · · un

where ui = hk(ai), with k ≡ i (mod p) and k ∈ N<p.

If s ∈ Σ∗ is such that s � H(s), then the triple H = 〈Σ,H, s〉 is called a PD0L
system. Then in the metric space 〈Σ∞, d〉 the limit

Hω(s) = lim
i→∞

Hi(s)

exists, and we call Hω(s) the PD0L word generated by H . We say that H is
productive if Hω(s) is infinite, and H is erasing if some of its morphisms hi are
erasing. If x is a PD0L word generated by p morphisms, and x = uvy for some
u, v ∈ Σ∗ and y ∈ Σ∞, we say that the factor v of x occurs at morphism index i
when i ∈ N<p and i ≡ |u| (mod p).

Example 6.1. Cassaigne and Karhumäki [10] show that all Toeplitz words are
PD0L words. Consider for example the Toeplitz word Ty = 121211221112221 · · ·
generated by the seed word y = 12??? (see Section 2.3). Then we have Ty =

Hω(1) where H = 〈h0, h1, h2〉 and h0(a) = 12a and h1(a) = h2(a) = a for all
a ∈ {1, 2}. Moreover, from [10, Theorem 5] it follows that the subword complexity
of Ty is in Θ(nr) with r =

log 5
log 5−log 3 ' 3.15066, thus forming an alternative proof

(since morphic words have quadratic subword complexity at most) of what was
established by Lepistö [42]: there are PD0L words that are not morphic.

In [27] it is shown that the problem of deciding productivity of erasing PD0L
systems is undecidable. The idea is to encode a given Fractran program F as a
PD0L system HF = 〈Σ,H, s〉 such that Hω(s) is infinite if and only if F does not
terminate on input 2.



Definition 6.2. Let F = n1
d , . . . ,

nk
d be a Fractran program (every program can be

brought into this form by taking d the least common denominator of the fractions).
We define the PD0L systemHF = 〈Γ,H, s 〉 with

Γ =
{
s , � , a , A , b , B

}
and H = 〈h0, . . . , hd−1〉 ,

where for every i with 0 ≤ i < d the morphism hi : Γ∗ → Γ∗ is defined by

hi(s ) = s �d−1 a a b �d−1

hi(� ) = ε

hi(a ) =

A �d−1 if i = d − 1
ε otherwise

hi(b ) = B �d−1−i

hi(A ) =

anψ(i) if ψ(i) is defined
ε otherwise

hi(B ) =

ai·
nψ(i)

d b �d−1 if ψ(i) is defined
ε otherwise

In [27] it is shown that productivity of the PD0L systemHF coincides with F
running forever on input 2. Here we give some intuitive explanation, and illustrate
the working ofHF on an example program F.

Let F be a Fractran program with common denominator d, and (finite or in-
finite) run N0,N1,N2, . . .. Let qi ∈ N and ri ∈ N<d such that Ni = qid + ri, for
all i ≥ 0. We let xn be the ‘contribution’ of the iteration Hn+1, i.e., xn is such
that Hn+1(s ) = Hn(s )xn. Then Hω(s ) = s x0x1x2 · · · . We will display Hω(s ) in
separate lines each corresponding to an xn. The computation of the word Hω(s )
proceeds in two alternating phases: the transition from even to odd lines corre-
sponds to division by d, and the transition from odd to even lines corresponds
to multiplication by the currently applicable fraction nψ(Ni)

d . These phases are in-
dicated by the use of lower- and uppercase letters, that is, x2n ∈ {� , a , b }∗ and
x2n+1 ∈ {� , A , B }∗, as can be seen from the definition of the morphisms. Now the
intuition behind the alphabet symbols (in view of the defining rules of the mor-
phisms) can be described as follows. We use s as the starting symbol, and the
symbol � is used to shift the morphism index of subsequent letters.

In every even line x2i

(i) there is precisely one block of a ’s; this block occurs at morphism index 0
and is of length Ni, representing the current value Ni in the run of F;

(ii) b is a special marker for the end of a block of a ’s, and so is positioned at
morphism index ri, the remainder of dividing Ni by d.



In every odd line x2i+1

(iii) the number of A ’s corresponds to the quotient qi, and every occurrence of
A is positioned at morphism index ri;

(iv) B (also at morphism index ri) takes care of the multiplication of the remain-
der ri with nψ(Ni)

d . Then ψ(Ni) = ψ(ri) ensures that the morphism can select
the right fraction to multiply with.

We illustrate the encoding by means of an example.

Example 6.2. Consider the Fractran program 9
2 ,

5
3 , or equivalently F = 27

6 ,
10
6 and

its finite run 2, 9, 15, 25. Following Definition 6.2 we construct the PD0L system
HF = 〈Γ,H, s 〉 with H = 〈h0, . . . , h5〉 and

hi(s ) = s �5 a a b �5

hi(� ) = ε hi(b ) = B �5−i

h0(a ) = . . . = h4(a ) = ε h0(B ) = b �5

h5(a ) = A �5 h2(B ) = a9 b �5

h0(A ) = h2(A ) = h4(A ) = a27 h4(B ) = a18 b �5

h3(A ) = a10 h3(B ) = a5 b �5

h1(A ) = h5(A ) = ε h1(B ) = h5(B ) = ε

for i ∈ N<6. Then Hω(s ) is finite and the stepwise computation of this fixed
point can be displayed as follows. To ease reading, we write below each letter its
morphism index. Let zn denote the morphism index of xn. The word Hω(s ) =

s x0x1 · · · is broken into lines in such a way that every line xn+1 is the image of the
previous line xn under Hzn (except for the line x0, which is the tail of the image
of s under H0).

s
0

x0 = �5

1
a
0

a
1

b
2

�5

3

x1 = B
2

�3

3

x2 = a
0
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a
3

a
4

a
5

a
0

a
1

a
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�5
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3
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x6 = a
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1
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2
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2
A
1

�5

2
B
1

�4

2

x8 = ε

Lemma 6.2 ([27]). For all Fractran programs F, the PD0L systemHF is produc-
tive if and only if F does not terminate on input 2.

Hence, by Lemma 6.2 and Proposition 6.1, deciding productivity of PD0L
systems is undecidable.

Theorem 6.3 ([27]). The following problem is Π0
1-complete: Given a PD0L sys-

temH , isH is productive? �

7 The Productivity Question
So far, we have met in our guided tour through the landscape of streams some
of the important families, some famous members of these families, and we have
considered some important properties of streams, at the same time outlining some
tough questions that confront us. There is one basic issue that we still have been
silent about (although it is in fact already present in the previous section), but is
of paramount importance in stream specifications, in particular when we view the
stream landscape from the point of view of functional programming applications.
The issue was considered by Dijkstra, who also coined the word ’productivity’
of a stream definition. Two important papers gave initial approaches to this im-
portant problem of productivity: Hughes, Pareto and Sabry [33], and Telford and
Turner [53]. In this section we explain the problem, and briefly mention the real-
ization of solving this problem in an automated way for a restricted yet extensive
class of stream specifications.

An important aspect of program correctness is termination. When dealing
with programs that construct or process infinite objects, one cannot require termi-
nation; instead such programs need to be productive. The concept of productivity
captures the intuitive notion of unlimited progress, of programs producing values
indefinitely, programs immune to deadlock. For instance, control programs, such
as an operating system, are not supposed to be terminating, but we want them to
be productive. In other words we want the system to keep responding to user input
and produce output, thus generating an infinite stream of outputs. Thus produc-
tivity guarantees deadlock- and lifelock-freeness. In lazy functional programming
languages such as Miranda, Clean or Haskell, usage of infinite structures such as
streams, is common practice. For the correctness of programs dealing with such
structures one must guarantee that every finite part of the infinite structure can



be evaluated; that is, the specification of the infinite structure must be produc-
tive. This holds both for terminating programs that lazily evaluate only finite parts
of the infinite structures, as well as for non-terminating programs that directly
construct or process infinite objects (like streams of sensor data or user inputs).
Since productivity is undecidable in general, the challenge is to find ever stronger
methods for proving productivity.

We study termination and productivity in the framework of term rewriting. For
example, the Thue-Morse sequence can be defined as follows:

M = 0 : zip(inv(M), tail(M)) (7)

tail(x : σ) = σ inv(0 : σ) = 1 : inv(σ)
zip(x : σ, τ) = x : zip(τ, σ) inv(1 : σ) = 0 : inv(σ)

A stream specification is called productive if not only can the specification be
evaluated continually to build up a unique infinite normal form, but the resulting
infinite expression is also meaningful in the sense that it is a constructor normal
form which allows to read off consecutively individual elements of the stream. We
emphasize that productivity is not just unique solvability, but also the potential to
obtain the solution by evaluation. For example, the specification Z = z(Z) with
z(x : σ) = 0 : z(σ), has a unique solution (the stream of zeros), but it cannot be
evaluated to obtain this solution.

For specification (7) of the Thue-Morse sequence, it is relatively easy to con-
vince oneself that the definition is productive. Productivity of an arbitrary stream
specification is however non-trivial, even undecidable. To get a feeling of the
non-triviality, consider the stream specification

J = 0 : 1 : even(J) even(x : σ) = x : odd(σ) odd(x : σ) = even(σ) (8)

This specification ‘deadlocks’; it produces only 4 entries and then starts an infinite
idling sequence of function calls: J = 0 : 1 : 0 : 0 : even(even(even(. . .))).

The notion of productivity was first mentioned by Dijkstra [18]. Since then
several papers [56, 51, 14, 33, 52, 9] have been devoted to criteria ensuring pro-
ductivity, and more recently [23, 24, 20, 21, 57, 58, 25, 17, 26, 34]. Technically,
the common essence of most of these approaches is a data-oblivious analysis,
that is, a quantitative analysis of productivity where the concrete values of the
elements in the stream are ignored. We have adopted and elaborated this ap-
proach in [23, 24, 20, 21]. The recent trend is towards a data-aware analysis of
productivity via a transformation to termination of term rewriting systems, see
further [25, 57, 58, 26]. Let us highlight two of the papers, namely [20] and [26].

In [20] we develop a data-oblivious method for proving productivity. This
method is provably optimal among all data-oblivious approaches, meaning that



no data-oblivious approach can recognize more specifications as productive. Here
‘data-oblivious’ refers to a quantitative analysis of productivity where the concrete
values of the elements in the stream are ignored. Previously, all techniques for
recognizing productivity have been data-oblivious.

In [26] we have devised a sound and complete transformation of productivity
to context-sensitive termination, thereby making the power of termination provers
available for proving data-aware productivity. For proving termination of TRSs
automatically, many powerful techniques and tools have been developed, to wit
AProVE, Jambox, Matchbox, MuTerm, Torpa, TTT, etc.

[M] = µM.•([zip]([inv](M), [tail](M)))

= µM.•(inf(−++(−+(M)),+−+(−−+(M))))

→→R µM.•(inf(−++(M),+−−++(M)))

→→R µM.+−+(inf(−++(M),+−−++(M)))

→→R µM.inf(+−+(−++(M)),+−+(+−−++(M)))

→→R µM.inf(+−+(M),++−−++(M))

→→R inf(µM.+−+(M), µM.++−−++(M))

→→R inf(src(∞), src(∞))

→→R src(∞)

Figure 15: Output of our productivity decision tool, establishing productivity of Defini-
tion (7). Here µ symbolizes recursion, the pebble • an abstract element, inf the infimum,
{−,+} code input and output, and overlining means periodic iteration. The actual compu-
tation uses a confluent and terminating rewrite relation→→R.

[J] = µJ.•(•(−+−(J)))

→→R µJ.+−+(+−+(−+−(J)))

→→R µJ.++−+(−+−(J))

→→R µJ.++−+−(J)

→→R src(4)

Figure 16: For the specification (8) we obtain that J is not productive; only 4 elements
can be evaluated.

We have implemented our data-oblivious techniques [23, 24, 20] in the pro-
ductivity prover ProPro (http://infinity.few.vu.nl/productivity/). Figure
15 gives a script of the tool’s computation for specification (7) of the Thue-Morse



sequence, testifying that its definition outputs ∞ entries, and therefore is produc-
tive. Applied on (8) the answer is 4 (see Figure 16) , hence not productive.

8 More Questions

Figure 17: Comparing the ‘fingerprints’ ∆ω(S) and ∆ω(W) of the Sierpiński sequence S
(left), and the Mephisto Waltz W. We find that ∆2(S) = ∆3(W)!

(i) The productivity question for stream definitions has everything to do with
the input-output behavior of the various operations on streams (like zip).
Thus a stream specification is reminiscent to a system of communicating
processes. There are tools (like µ-CRL) that analyze deadlock-freeness of
process specifications. Can the stream productivity question profit from the
tools technology for process communication? We expect that it can.

(ii) Connections with λ-calculus and infinitary λ-calculus are interesting. It
is clear that stream operations like zip, even, etc., as expressible in term
rewriting, are definable in λ-calculus. The resulting λ-term M that is the
translation of the stream specification then has a Böhm Tree BT(M) that is
precisely the stream to be defined. It is total (without bottoms ⊥) iff the
stream specification is productive. In fact, we may call λ-term M with total



BT(M) productive. The study of productive λ-terms seems worthwhile in
itself.

(iii) What streams give rise to fractals? As we have seen, some streams give rise,
with suitable ’turtle’ instructions, to well-defined fractals such as the snow-
flake, the arrowhead curve, the dragon curve, the Cesàro fractal, and so on.
But other streams, like Kolakoski, seem to generated chaotic patterns that
do not converge (in the Hausdorff metric, after re-scaling successive approx-
imations) to a well-defined fractal curve. Are there criteria (and definitions
for what constitutes a ‘well-defined fractal’) that guarantee the convergence
via some smart turtle to a fractal?

(iv) FSTs are highly useful in many fields. An interesting question is whether
they can be decomposed in some elementary, ‘prime’, FSTs (with respect
to the composition of FSTs, which is intuitively clear, feeding the output
of the first FST as input of the second; this is a wreath product). A theory
that was discovered in the sixties by Rhodes and Krohn seems to indicate
that indeed there is a prime factorization theorem for FSTs. For Mealy
Machines a prime factorization was obtained by Rhodes and Krohn, see [4].
Generalizing this to the more general FSTs should be a corollary which we
expect to be straightforward (but not entirely trivial).

(v) Fingerprints of streams over {0, 1}. We wonder what information about the
complexity of streams can be derived from their ‘fingerprints’. What we
record in the fingerprint is the stream of first differences (as realized by the
FST ∆ depicted in Figure 6), and this repeated ad infinitum. Being two-
dimensional, the black and white patterns that arise in this way, are much
easier ‘processed’ than the ‘patterns’ in the original stream, the top row. In
this way, we observed [28, 29] the relation between the Sierpiński stream S
and the Mephisto Waltz W (both sequences are defined in Section 3), see
Figure 17. For the Fibonacci word F, a sturmian stream, the fingerprint
reveals patterns of a rather ‘quiet nature’. Is this always so for sturmian
streams? Note that looking ‘deep’ in the fingerprint, amounts to looking far
away to the right in the stream.

9 Background: Infinitary Term Rewriting

We give a brief introduction to infinitary rewriting. Actually, what we present
here is only a prefix of a more extensive theory in which reductions can have any
countable ordinal length. Here we will be satisfied with reductions up to length ω.



For the full framework of infinitary rewriting we refer to [37, 54, 7, 30], for an
introduction to finitary rewriting to [36, 54, 5, 6].

A signature Σ is a set of symbols f each having a fixed arity # f ∈ N. (Earlier
we used Σ to denote an alphabet of letters; we now overload the use of Σ some-
what, but this will not cause confusion.) Let X be an infinite set of variables such
that X ∩ Σ = ∅. Then the set of finite terms Ter(Σ,X) over Σ and X is inductively
defined by the grammar:

T ::= x | f (T, . . . ,T︸   ︷︷   ︸
# f times

) (x ∈ X, f ∈ Σ) (9)

We obtain the set of (finite and) infinite terms Ter∞(Σ,X) by interpreting this gram-
mar coinductively. That is, Ter∞(Σ,X) is the largest set T such that every term
t ∈ T is either a variable t ∈ X, or t = f (t1, . . . , tn) with n = # f and t1, . . . , tn ∈ T .

The equality on infinite terms is bisimilarity ↔ ⊆ Ter∞(Σ,X) × Ter∞(Σ,X)
which is defined as the largest relation R such that s R t implies that s = t ∈ X, or
s = f (s1, . . . , sn) and t = f (t1, . . . , tn) such that s1 R t1, . . . , sn R tn. We consider
bisimilar terms s↔ t as identical.

Remark 9.1. Alternatively, the infinite terms arise from the set of finite terms,
Ter(Σ,X), by metric completion, using the well-known distance function d such
that for t, s ∈ Ter(Σ,X), d(t, s) = 2−n if the n-th level of the terms t, s (viewed
as labeled trees) is the first level where a difference appears, in case t and s are
not identical; furthermore, d(t, t) = 0. It is standard that this construction yields
〈Ter(Σ,X), d〉 as a metric space. Now infinite terms are obtained by taking the
completion of this metric space, and they are represented by infinite trees. We
will refer to the complete metric space arising in this way as 〈Ter∞(Σ,X), d〉, where
Ter∞(Σ,X) is the set of finite and infinite terms over Σ.

Let t ∈ Ter∞(Σ,X) be a finite or infinite term. The set of variablesVar(t) ⊆ X
of t, and the set of positions Pos(t) ⊆ N∗ of t are defined coinductively by:

Var(x) = {x} Var( f (t1, . . . , tn)) = Var(t1) ∪ . . . ∪Var(tn)
Pos(x) = {ε} Pos( f (t1, . . . , tn)) = {ε} ∪ {ip | 1 ≤ i ≤ n, p ∈ Pos(ti)}

For p ∈ Pos(t), the subterm t|p of t at position p is defined by:

t|ε = t f (t1, . . . , tn)|ip = ti|p

A substitution σ is a map σ : X → Ter∞(Σ,X). We extend the domain of substi-
tutions σ to terms Ter∞(Σ,X) as follows:

σ( f (t1, . . . , tn)) = f (σ(t1), . . . , σ(tn))



We write { x1 7→ t1, . . . , xn 7→ tn } for the substitution σ defined by σ(x1) = t1, . . . ,
σ(xn) = tn and σ(y) = y for every y ∈ X \ { x1, . . . , xn }.

A context C is a term Ter∞(Σ,X ∪ {�},) containing precisely one occurrence
of �, that is, there is precisely one position p ∈ Pos(C) such that C|p = �. For a
context C and a term t, we write C[t] for the term {� 7→ t }(C).

A rewrite rule ` → r over Σ and X is a pair (`, r) ∈ Ter(Σ,X) × Ter(Σ,X)
of finite terms such that the left-hand side ` is not a variable (` < X), and all
variables in the right-hand side r occur in ` (Var(r) ⊆ Var(`)). A term rewrite
system (TRS) R over Σ and X is a set of rewrite rules over Σ and X. We define a
binary relation→R, the rewrite steps, to consist of all pairs

C[σ(`)]→R C[σ(r)]

for contexts C, rule ` → r ∈ R, and substitution σ : X → Ter∞(Σ,X). Further-
more, we write→R,p whenever additionally C|p = �. We drop the subscript R in
→R and→R,p whenever R is clear from the context. The notion of normal form,
which now may be an infinite term, is unproblematic: it is a term without a redex
occurrence. A finite rewrite sequence from s to t, denoted s →→ t, is a sequence is
a sequence s = s0 → s1 → . . .→ sn = t.

An infinitary rewrite sequence from s to t, denoted s →→→ t, is either a finite
rewrite sequence s →→ t, or an infinite sequence s0 →p0 s1 →p1 s2 →p2 . . . of
rewrite steps such that the following conditions hold:

(i) the distance d(si, t) tends to 0 for i→ ∞ and, moreover,

(ii) the depth of the rewrite action, that is, the length of the position pi, tends to
infinity for i→ ∞.

Note that item (i) requires Cauchy convergence of the sequence of terms. The
requirement (ii) is strong convergence, which in addition requires that the depth
of the redexes contracted in the successive steps tends to infinity. So this rules
out the possibility that the action of redex contraction stays confined at the top, or
stagnates at some finite level of depth.

Example 9.2. Let us give a simple example of infinitary term rewriting that more-
over explains the working of an FST on a stream. Consider the FST in Figure 6.
We ‘translate’ this FST in the TRS with rules:

q(0 : s)→ q0(s) q0(0 : s)→ 0 : q0(s) q1(0 : s)→ 1 : q0(s)
q(1 : s)→ q1(s) q0(1 : s)→ 1 : q1(s) q1(1 : s)→ 0 : q1(s)

Here 0, 1 are 0-ary constants, q, q0, q1 are unary function symbols, ‘:’ is a binary
stream constructor, s is a variable (for streams).



Now the transformation of the Thue-Morse sequence M to the Toeplitz word
T = T101? (see Section 2.3) proceeds by the following infinite reduction sequence,
where we omit the infix ‘:’ symbols:

q(M) = q(0110100110010110 . . .)
→ q0(110100110010110 . . .)
→ 1 q1(10100110010110 . . .)
→ 10 q1(0100110010110 . . .)
→ 101 q0(100110010110 . . .)
→ 1011 q1(00110010110 . . .)
→→→ T

The term T is an infinite normal form. Note that indeed the depth of the contracted
redexes tends to infinity during the reduction.

It is not hard to see that we can easily extend such rewrite sequences to length
beyond ω; e.g. q(q(M)) →→→ q(T) →→→ 11001 . . ., which yields an infinite normal
form after ω · 2 steps. In Figure 17 we already considered the ‘fingerprint’ of a
stream s, being the matrix with rows qn(s), or in our earlier notation ∆n(s).

Remark 9.3. Without wanting to go deep in the theory of infinitary rewriting, let
us mention some facts. There are infinitary counterparts CR∞, UN∞, WN∞ and
SN∞ for the well-known finitary properties CR (confluence or Church–Rosser
property), UN (unique normal form property), WN (weak normalization), and SN
(strong normalization). In general CR∞ does not hold for first-order orthogonal
term rewriting systems, but for TRSs as in the example, without collapsing rules,
it does. Moreover, UN∞ always holds for first-order orthogonal TRSs. For the
example TRS also WN∞, SN∞ and UN∞ hold.
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