
Proving Equality of Streams Automatically
Hans Zantema1 and Jörg Endrullis2

1 Department of Computer Science, TU Eindhoven, The Netherlands
Institute for Computing and Information Sciences, Radboud University
Nĳmegen, The Netherlands
h.zantema@tue.nl

2 Free University Amsterdam, The Netherlands
joerg@few.vu.nl

Abstract
Streams are infinite sequences over a given data type. A stream specification is a set of equations
intended to define a stream. In this paper we focus on equality of streams, more precisely,
for a given set of equations two stream terms are said to be equal if they are equal in every
model satisfying the given equations. We investigate techniques for proving equality of streams
suitable for automation. Apart from techniques that were already available in the tool CIRC
from Lucanu and Roşu, we also exploit well-definedness of streams, typically proved by proving
productivity. Moreover, our approach does not restrict to behavioral input format and does not
require termination.

We present a tool Streambox that can prove equality of a wide range of examples fully
automatically.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

Category Regular Research Paper

1 Introduction

The stream ones specified by ones = 1 : ones is the infinite stream having the data element
1 on every position. The same holds for the stream c specified by c = 1 : 1 : c. So we
expect that c = ones holds. This paper is about how to prove such stream equalities fully
automatically. More precisely, given a set of stream equalities (in this case ones = 1 : ones
and c = 1 : 1 : c) that are assumed to hold, can we conclude validity of another given
stream equality (in this case c = ones)? The semantics of this question is quite natural: we
have a basic data type D, typically the booleans or natural numbers, and streams are maps
from natural numbers to D. The question now states whether if all constants and functions
occurring in the equalities are interpreted by streams and stream functions in such a way
that all given equalities hold, then also the goal equality holds.

An excellent basis for treating this problem is the circular co-induction principle as
presented in [12, 5, 9, 10, 13, 7], and implemented in the tool CIRC. Indeed, several
interesting stream equalities can be proved fully automatically by CIRC.

Both the basic circular co-induction principle and its extension using special contexts are
the basis of the current paper. However, we offer several features that are not covered by
CIRC and/or its underlying theory:

We do not require the very specific format of behavioral equations in which the root of
every left hand side should be hd or tl and the given equations should be terminating when
applied only from left to right. Instead we allow any set of equations on streams. Our
default format is the pure stream format, the format as used in [3, 14, 15]. In this format

© John Q. Open and Joan R. Access;
licensed under Creative Commons License NC-ND

submitted to 22nd International Conference on Rewriting Techniques and Applications.
Editor: M. Schmidt-Schauß Editor; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Proving Equality of Streams Automatically

ones is specified by the single equation ones = 1 : ones, where the similar specification in
behavioral format consists of the two equations hd(ones) = 1 and tl(ones) = ones.
We have a simple syntactic criterion for checking for special contexts: we introduce
guardedness (Definition 4.4) and show that all contexts composed from symbols satisfying
this guardedness, are special.
In case an equality proof requires auxiliary lemmas, we do not need to enter these lemmas
ourselves, but our tool Streambox generates and uses suitable lemmas fully automatically.
If a particular stream is uniquely defined by a set of equations, and some term satisfies
these equations, we may conclude that that term is equal to that stream. In this way we
may exploit earlier techniques to prove that a stream is uniquely defined, for instance by
proving productivity. In case this is appropriate, our tool Streambox calls a current tool
for proving context-sensitive termination for proving productivity, typically succeeding for
equations that are non-terminating themselves. In this way state-of-the-art termination
tools are exploited for proving stream equality.

Combining these features, Streambox can prove several non-trivial equalities fully automati-
cally, like the property that the Toeplitz stream is the boolean derivative of the Thue-Morse
stream, as we shall see in Example 6.4.

The tool CIRC is based on the rewriting engine Maude, in particular using rewriting
to normal form as the mechanism to check convertibility. However, for this mechanism the
equations are only used in one direction, and the approach typically fails if this rewriting is
non-terminating.

Only rewriting in one direction gives undesirable restrictions. For instance, if a stream
function f is defined by f(σ) = 0 : f(σ), and a stream a is defined by a = f(a), then a will
coincide with 0 : a as is very easily shown by the following conversion:

a = f(a) = 0 : f(a) = 0 : a.

However, in this conversion the equality a = f(a) is used in both directions, so plain rewriting
fails to derive this very simple equality. Polishing the rules, for instance by completion, could
be helpful but also has limitations. Applying the rule a→ f(a) will cause non-termination,
and f(a)→ a will cause critical pairs with the defining rule for f . In this very simple example
Knuth-Bendix completion of the equations will succeed, but for many other examples, for
instance involving commutativity, this does not hold. Moreover, in a typical scenario the
set of equations for which convertibility of two terms has to be tested is not one static set,
but is extended all time by co-induction hypotheses and proved goals and lemmas, for which
ongoing Knuth-Bendix completion would be problematic.

So instead of forcing to do rewriting in only one direction and requiring termination, a
crucial building block of our approach is a check for general convertibility without these
restrictions. Accordingly, we developed our own tooling Streambox from scratch.

A typical example for which our tool Streambox succeeds is in proving M = 0 : M , where
M is specified by both M = f(M) and M = g(M), for f and g defined mutually recursively
by

f(x : σ) = 0 : g(σ), g(x : σ) = x : f(σ).

Here x is a boolean variable and σ is a stream variable. Indeed, f replaces every symbol
on an even position by 0, and g does the same for odd positions, so if M = f(M) and
M = g(M) then indeed M has to consist only of zeros, by which M = 0 : M should hold.
Our goal is that such a property can be proved fully automatically after entering only these
equations. Extensive experiments show failure of CIRC on all variants we could think of:

Hans Zantema and Jörg Endrullis 3

keeping the M -rules as they are will yield non-termination, while reversing them yields
non-unique normal forms caused by combinations of rules like f(M) = M and hd(f(σ)) = 0.

Conceptually, our notions of circular co-induction and the use of special contexts is the
same as in [9, 10, 13, 7]. However, we do not restrict to the behavioral format as required
there, by which the underlying definitions look quite different. As streams have a natural
semantics as mappings from natural numbers to data, it is natural to relate the notions
of validity to this semantics. We succeeded in presenting the theory for arbitrary sets of
stream equations based on this semantics. In this paper both the validity of the basic circular
co-induction principle (Theorem 3.1) and its extension to special contexts (Theorem 4.2)
is proved directly by induction on natural numbers, making the theory self-contained and
independent of [9, 10, 13, 7] or any theory of co-induction. More abstract variants of Theorem
3.1 and Theorem 4.2 are given in [10, 13]; there they are proved in a more abstract setting
in which it is left implicit that streams are a valid instance.

Most of our theory easily generalizes to other infinite data types, like infinite binary
trees. However, in order to keep notations simple we chose to focus on streams. It turns out
that involved underlying proof principles already appear in streams, and can be motivated
by small boolean stream examples. Our theory is given for streams over arbitrary data
types (specified by finite constructor ground terms). In the implementation and most of
the examples we restrict to the boolean case in which 0 and 1 are the only data elements.
Example 3.4 shows how our theory can be applied for stream over natural numbers.

This paper is structured as follows. In Section 2 we present the basic setting and its
semantics. In Section 3 we present the basic version of the principal of circular co-induction.
In Section 4 we extend this to special contexts and investigate how to recognize special
contexts when given in pure stream format, the standard format as used in [3, 14, 15]. In
Section 5 we present how to prove equality by using that a stream or stream function is
uniquely defined, typically to be proved by proving productivity. Next, in Section 6 we
discuss our implementation. We conclude in Section 7.

2 Streams: Specifications and Models

In stream specifications we have two sorts: s (stream) and d (data). We assume the set D of
data elements to consist of ground terms T(Σd) over some signature Σd of which all symbols
are of type dn → d for some n ≥ 0. We will focus on the boolean case where D = Σd = {0, 1}.
We assume three particular symbols:

: having type d× s→ s;
hd having type s→ d;
tl having type s→ s.

Apart from the symbols in Σd ∪ {:, hd, tl} there is a set Σ of user defined symbols, each
being of type dn × sm → s or dn × sm → d for n,m ≥ 0.

We assume a set Xs of variables of sort s and a set Xd of variables of sort d. Using all
these ingredients we can build (well-sorted) terms:

x is a term of sort d if x ∈ Xd,
σ is a term of sort s if σ ∈ Xs,
if u1 . . . , un are terms of sort d, and t1 . . . , tm of sort s, then f(u1 . . . , un, t1 . . . , tm) is
a term of sort d if f ∈ Σ ∪ Σd ∪ {hd} has type dn × sm → d, and a term of sort s if
f ∈ Σ ∪ {:, tl} has type dn × sm → s.

The set of all such terms is denoted by T(Σ ∪ Σd ∪ {:, hd, tl},Xd,Xs).

RTA’11

4 Proving Equality of Streams Automatically

As a notational convention variables of sort d will be denoted by x, y, terms of sort d by
u, ui, variables of sort s by σ, τ , and terms of sort s by t, ti.

I Definition 2.1. An equation is a pair (`, r) ∈ T(Σ ∪ Σd ∪ {:, hd, tl},Xd,Xs)2 such that `
and r are of the same sort.

An equation (`, r) is usually written as ` = r.
A stream specification is defined to be a set of equations.

I Example 2.2. For specifying the Thue-Morse stream morse as extensively studied e.g. in
[1], we have D = Σd = {0, 1}. There are two equations of sort d:

not(0) = 1, not(1) = 0,

and the following equations of sort s:

morse = 0 : zip(inv(morse), tl(morse)) tl(x : σ) = σ

inv(x : σ) = not(x) : inv(σ) zip(x : σ, τ) = x : zip(τ, σ)

Stream specifications are intended to specify streams for the constants in Σ of sort s,
and stream functions for the other elements of Σ of sort s. Similarly, elements of Σ of sort
d should specify data elements and data functions. The combination of these streams and
functions is what we will call a stream model.

More precisely, a stream over D is a map from the natural numbers to D. Write S = Dω

for the set of all streams over D. In case of D = ∅ we have S = ∅; in case of #D = 1 we
have #S = 1. So in non-degenerate cases we have #D ≥ 2.

I Definition 2.3. A stream model over Σd ∪ Σ is defined to consist of the set S = Dω and a
set of functions and constants [f] for every f ∈ Σ, where [f] : Dn × Sm → S if the type of
f ∈ Σ is dn × sm → s, and [f] : Dn × Sm → D if the type of f ∈ Σ is dn × sm → d.

Apart from the functions and constants [f] for every f ∈ Σ, we also have [f] for every
f ∈ Σd ∪ {:, hd, tl}, defined as follows:

[f](u1, . . . , un) = f(u1, . . . , un) for f ∈ Σd of type dn → d, u1, . . . , un ∈ T(Σd), for n ≥ 0.
For u ∈ T(Σd) and s ∈ S the stream [:](u, s) is defined by

[:](u, s)(0) = u, [:](u, s)(n+ 1) = s(n)

for every n ≥ 0.
[hd](s) = s(0) for s ∈ S.
For s ∈ S the stream [tl](s) is defined by

[tl](s)(n) = s(n+ 1)

for every n ≥ 0.

A variable assignment α is defined to be a map α : Xd ∪Xs → D∪S such that α(x) ∈ D
for x ∈ Xd and α(σ) ∈ S for σ ∈ Xs.

For t ∈ T(Σ ∪ Σd ∪ {:, hd, tl},Xd,Xs) and a variable assignments α : Xd ∪Xs → D ∪ S
the stream interpretation [t, α] in the stream model (S, ([f])f∈Σ) is defined inductively by:

[x, α] = α(x) for x ∈ Xd
[σ, α] = α(σ) for σ ∈ Xs

[f(u1, . . . , un, t1, . . . , tm), α] = [f]([u1, α], . . . , [un, α], [t1, α], . . . , [tm, α])

Hans Zantema and Jörg Endrullis 5

for all terms u1, . . . , un of sort d and all terms t1, . . . , tm of sort s, and every f ∈ Σ ∪Σd ∪ {:
, hd, tl} of type dn × sm → d or dn × sm → s.

In case t is a ground term then [t, α] does not depend on α, and we simply write [t] rather
than [t, α].

I Definition 2.4. An equation ` = r is defined to hold in the stream model, or the stream
model satisfies the equation ` = r, if [`, α] = [r, α] for every variable assignment α. A stream
model is said to satisfy a set of equations if it satisfies each of its equations.

So summarizing: a stream model consists of streams, and interpretations of function
symbols as functions on streams. For the symbols :, hd, tl the interpretations are predefined;
for the other symbols the choice is free. As the interpretations of :, hd, tl are fixed it is
expected that some corresponding equations hold in every model. Indeed this is the case.
Let Eht be the set of equations:

Eht =

hd(x : σ) = x

tl(x : σ) = σ

hd(σ) : tl(σ) = σ

I Lemma 2.5. Every stream model satisfies Eht.

Proof. We have to check that all three equations of Eht hold in every stream model. Using
the definitions of [:], [hd], [tl] we obtain

[hd(x : σ), α] = [hd]([x : σ, α]) = [x : σ, α](0)[:]([x, α], [σ, α])(0) = [x, α],

proving that the first equation holds, and

[tl(x : σ), α](i) = [tl]([x : σ, α])(i) = [x : σ, α](i+ 1) = [:]([x, α], [σ, α])(i+ 1) = [σ, α](i)

for every i ≥ 0, proving that the second equation holds. For the last equation we have to
prove that [hd(σ) : tl(σ), α](i) = [σ, α](i) for every i ≥ 0. For i = 0 this holds since

[hd(σ) : tl(σ), α](0) = [:]([hd(σ), α], [tl(σ), α])(0) = [hd(σ), α] = [σ, α](0);

for i > 0 this holds since

[hd(σ) : tl(σ), α](i) = [:]([hd(σ), α], [tl(σ), α])(i) = [tl(σ), α](i− 1) = [σ, α](i).

J

Now we arrive at the central notion of this paper.

I Definition 2.6. An equation ` = r is defined to hold with respect to a stream specification
E, notation E |= ` = r, if ` = r holds in every stream model satisfying E.

A set E′ of equations is defined to hold with respect to a stream specification E, notation
E |= E′, if E |= ` = r for every ` = r ∈ E′.

For a stream specification E we write =E for the congruence generated by E, that is, the
closure of E with respect to reflexivity, symmetry, transitivity, contexts and substitution.
Only using =E is called equational reasoning.

We obviously have the following theorem.

I Theorem 2.7. For every equation ` = r satisfying ` =E∪Eht r we have E |= ` = r.

The converse of Theorem 2.7 is not true: typically E |= ` = r may hold while ` =E∪Eht r

does not hold. For instance, if E consists of the two equations c = 0 : c and d = 0 : d, then
in every model both [c] and [d] are equal to stream only consisting of zeros, so E |= c = d.
However, to prove this equational reasoning is not sufficient: c =E∪Eht d does not hold.

RTA’11

6 Proving Equality of Streams Automatically

3 Basic circular co-induction

A main goal of this paper is to extend Theorem 2.7 to more powerful syntactic techniques
suitable for implementation for concluding E |= ` = r, which are still based on equational
reasoning. As long as the elements of the intended models can be interpreted as finite terms,
inductive theorem proving is the standard approach for this kind of questions. However, here
we deal with streams, that can be seen as infinite terms, and for which we need co-induction
rather than induction.

For expressing the versions of the co-induction principle as we consider them, we need a
fresh freeze symbol fr of type s→ d. This freeze symbol is used to force that the co-induction
hypothesis is only used on top level, and not on subterms. This idea originates from [6], in
which square brackets are used the notation for the freeze operator.

For a set E′ of equations of sort s we write fr(E′) for the set of equations fr(`) = fr(r)
for ` = r ∈ E′. The following theorem can be seen as an instance of Theorem 2 in [13]; for
completeness we give a full proof based on our stream semantics and independent of the
more abstract and general setting of [13].

I Theorem 3.1 (Basic circular co-induction). Let E be a stream specification and E′ a set of
equations of sort s, both not containing the symbol fr, such that

E |= hd(`) = hd(r) for all ` = r ∈ E′, and
E ∪ fr(E′) |= fr(tl(`)) = fr(tl(r)) for all ` = r ∈ E′.

Then E |= E′.

Proof. Take an arbitrary stream model satisfying E; we have to prove that for all ` = r ∈ E′
we have [`, α] = [r, α] for every α, that is, [`, α](n) = [r, α](n) for every n ≥ 0. We do this by
induction on n.

For n = 0 take ` = r ∈ E′. We use the property E |= hd(`) = hd(r) from which we
conclude [hd(`), α)] = [hd(r), α]. We obtain [`, α](0) = [hd(`), α)] = [hd(r), α] = [r, α](0).

For n > 0 we assume [`, α](n− 1) = [r, α](n− 1) for every α and every ` = r ∈ E′ as the
induction hypothesis. For every ` = r ∈ E′ we have to prove [`, α](n) = [r, α](n), again for
every α. As fr does neither occur in E nor in ` = r, both the assumption that the model
satisfies E and the induction hypothesis are independent of the symbol fr, and we are still
free to define [fr]. Let us define [fr](s) = s(n− 1) for every stream s. Using the induction
hypothesis, then for every α we have

[fr(`), α] = [`, α](n− 1) = [r, α](n− 1) = [fr(r), α],

so our model satisfies fr(`) = fr(r) for all ` = r ∈ E′. So from E ∪ fr(E′) |= fr(tl(`)) = fr(tl(r))
we conclude that [fr(tl(`)), α] = [fr(tl(r)), α], for all ` = r ∈ E′. We obtain

[`, α](n) = [fr(tl(`)), α] = [fr(tl(r)), α] = [r, α](n),

concluding the proof. J

The set fr(E′) in the second requirement of Theorem 3.1 is called the co-induction
hypothesis.

I Example 3.2. Let E consists of the two equations c = 0 : c and d = 0 : d. Then E |= c = d

is proved using Theorem 3.1 as follows. Choose E′ = {c = d}. Here and in the following in
equational reasoning we will abbreviate =E∪Eht and =

E∪Eht∪fr(E′) to =.
The first requirement E |= hd(c) = hd(d) follows from

hd(c) = hd(0 : c) = 0 = hd(0 : d) = hd(d).

Hans Zantema and Jörg Endrullis 7

The second requirement follows from

fr(tl(c)) = fr(tl(0 : c)) = fr(c) = fr(d) = fr(tl(0 : d)) = fr(tl(d)),

using the co-induction hypothesis fr(c) = fr(d). So Theorem 3.1 implies E |= c = d.

The basic machinery of our approach consists of combining Theorem 2.7 and Theorem
3.1: for proving E |= ` = r first it is tried to prove ` =E∪Eht r. If this succeeds we are done,
otherwise Theorem 3.1 is tried for E′ = {` = r}. For the proof obligations of Theorem 3.1
again first Theorem 2.7 is tried, as was successful in Example 3.2. Where this fails, the
failing proof obligation is added to E′ after removing the fr symbols, and using this extended
E′ Theorem 3.1 is tried. This may be repeated any number of times. In a typical scenario in
this way a finite set E′ is found for which Theorem 3.1 applies. In this way not only validity
of ` = r is proved, but also of any rule in E′.

I Example 3.3. Let E consist of the equations

zeros = 0 : zeros alt = 0 : 1 : alt
ones = 1 : ones zip(x : σ, τ) = x : zip(τ, σ).

Then E |= alt = zip(zeros, ones) is proved using Theorem 3.1 as follows. First choose
E′ = {alt = zip(zeros, ones)}. The first requirement follows from

hd(alt) = hd(0 : 1 : alt) = 0 = hd(0 : zip(ones, zeros) =

hd(zip(0 : zeros, ones) = hd(zip(zeros, ones).

For the second requirement we need fr(tl(alt)) = fr(tl(zip(zeros, ones))), for which equa-
tional reasoning using the co-induction hypothesis fails. So we add the equation tl(alt) =
tl(zip(zeros, ones)) to E′ and try again to apply Theorem 3.1. By this addition now we obtain
the requirements for the original equation in E′ for free, and only need to consider the new
equation. Now equational reasoning yields hd(tl(alt)) = 1 = hd(tl(zip(zeros, ones))), and for
the second requirement we use the co-induction hypothesis fr(alt) = fr(zip(zeros, ones)) to
obtain

fr(tl(tl(alt))) = fr(alt) = fr(zip(zeros, ones)) = fr(tl(tl(zip(zeros, ones)))),

concluding the proof.

I Example 3.4. Consider streams over the naturals, that is, Σd consists of a constant 0 and
a unary symbol s representing successor. Let E consist of the equations

from(x) = x : from(s(x))
from2(x) = x : from2(s(s(x))) zip(x : σ, τ) = x : zip(τ, σ).

We will prove E |= from(x) = zip(from2(x), from2(s(x))) using Theorem 3.1. Choose E′ =
{from(x) = zip(from2(x), from2(s(x)))}. The first requirement follows from

hd(from(x)) = hd(x : from(s(x))) = x = hd(x : zip(from2(s(x)), from2(s(s(x))))) =

hd(zip(x : from2(s(s(x))), from2(s(x)))) = hd(zip(from2(x), from2(s(x)))).

The second requirement follows from

fr(tl(from(x))) = fr(tl(x : from(s(x)))) = fr(from(s(x))) =fr(E′)

RTA’11

8 Proving Equality of Streams Automatically

fr(zip(from2(s(x)), from2(s(s(x))))) = fr(tl(x : zip(from2(s(x)), from2(s(s(x)))))) =

fr(tl(zip(x : from2(s(s(x))), from2(s(x))))) = fr(tl(zip(from2(x), from2(s(x))))),

by which the claim has been proved by Theorem 3.1. In particular, for x = 0 this yields that
the stream from(0) of natural numbers is the zip of the stream from2(0) of even numbers and
the stream from2(s(0)) of odd numbers.

More complicated examples over the natural numbers typically will require a combination
of circular co-induction and induction over the natural numbers.

4 Special contexts

Next we present a powerful generalization of Theorem 3.1: instead of only assuming fr(`) =
fr(r) we may also assume fr(C[`]) = fr(C[r]) for special contexts C, where roughly speaking
for every n the n-th element of the stream represented by C[s] only depends on the first n
elements of the stream represented by s. This notion originates from [6, 10]. As conceptually
our notion is the same, we keep the terminology special context as introduced there.

I Definition 4.1. A context C of sort s and the hole of sort s is called special with respect
to a stream specification, if for every stream model, for every α, every n ≥ 0, and every pair
of terms t, t′ of sort s the following holds:

If [t, α](i) = [t′, α](i) for all i ≤ n, then [C[t], α](n) = [C[t′], α](n).

For example, the empty context � is special; as a consequence of Theorem 4.5 we will
conclude that zip(�, σ) and zip(σ,�) and inv(�) are special contexts with respect to the
stream specification from Example 2.2.

As the first element of tl(t) is the second element of t, we observe that the context tl(�)
is not special. In Example 4.3 we will show that even(�) is not a special context.

The requirement of a context C to be special is that [C[·], α] is a causal function on
streams, that is, for every n the the first n elements of the output stream only depend on the
first n elements of the input stream. Such causal functions have been studied co-algebraically,
e.g., in [8].

Since by definition the empty context is a special context, Theorem 3.1 is a direct
consequence of the following theorem, which can be seen as an instance of Theorem 3 in [10].
For completeness we give a full proof based on our stream semantics and our corresponding
definition of special context.

I Theorem 4.2 (Circular co-induction with special contexts). Let E be a stream specification
and E′ a set of equations of sort s, both not containing the symbol fr, such that

E |= hd(`) = hd(r) for all ` = r ∈ E′, and
E ∪ {fr(C[`]) = fr(C[r]) | C is a special context, ` = r ∈ E′} |= fr(tl(`)) = fr(tl(r)) for all
` = r ∈ E′.

Then E |= E′.

Proof. Take an arbitrary stream model satisfying E; we have to prove that [`, α] = [r, α] for
every α and every ` = r ∈ E′, that is, [`, α](n) = [r, α](n) for every n ≥ 0. We do this by
induction on n.

For n = 0 we use the property E |= hd(`) = hd(r) from which we conclude [hd(`), α)] =
[hd(r), α]. We obtain [`, α](0) = [hd(`), α)] = [hd(r), α] = [r, α](0).

For n > 0 we assume as the induction hypothesis [`, α](i) = [r, α](i) for every α and every
i < n, for all ` = r ∈ E′, and we have to prove [`, α](n) = [r, α](n), again for every α and

Hans Zantema and Jörg Endrullis 9

` = r ∈ E′. As fr does neither occur in E nor in E′, both the assumption that the model
satisfies E and the induction hypothesis are independent of the symbol fr, and we are still
free to define [fr]. Just like in the proof of Theorem 3.1 define [fr](s) = s(n − 1) for every
stream s. Let C be any special context. Using the induction hypothesis and the definition of
special context, for every α and ` = r ∈ E′ we obtain

[fr(C[`], α] = [C[`], α](n− 1) = [C[r], α](n− 1) = [fr(C[l], α],

so our model satisfies fr(C[`]) = fr(C[r]). As this holds for every special context and
` = r ∈ E′, and the model still satisfies E, from the condition of the theorem we conclude
that the model also satisfies fr(tl(`)) = fr(tl(r)) for any ` = r ∈ E′. Hence we obtain

[`, α](n) = [fr(tl(`)), α] = [fr(tl(r)), α] = [r, α](n),

concluding the proof. J

I Example 4.3. We start by a negative example. Let E consists of the four equations

even(x : σ) = x : odd(σ), odd(x : σ) = even(σ), c = 0 : even(c), d = 0 : even(d).

We now will show that even(�) is not a special context. Consider two streams: one only
consisting of zeros, and the other starting by two zeros, and followed by only ones. Then
both satisfy the equations for c and d, so we conclude E 6|= c = d.

Next assume that even(�) is a special context. The first condition of Theorem 4.2 for
proving E |= c = zeros is easily checked:

hd(c) = hd(0 : even(c)) = 0 = hd(0 : even(d)) = hd(d).

Using the co-induction hypothesis fr(even(c)) = fr(even(d)) also the second condition holds:

fr(tl(c)) = fr(tl(0 : even(c))) = fr(even(c)) = fr(even(d)) = fr(tl(0 : even(d))) = fr(tl(d)).

So by Theorem 4.2 we would conclude E |= c = d, contradicting the assumption that even(�)
is a special context.

Theorem 4.2 becomes useful if we have a syntactic criterion to check whether a particular
context is special. A suitable criterion is friendly nestingness as was introduced in [3] for
establishing productivity. The underlying idea is that when using equations from left to right,
at each step at most one stream element is consumed and at least one element is produced.
Although the underlying idea is the same, for our purpose we need less conditions, for instance,
we do not require orthogonality. In other settings this idea is also called guardedness, e.g., in
process algebra, where a recursive specification is called guarded if right-hand sides can be
rewritten to a choice among terms all having a constructor on top, see e.g. [2], Section 5.5.

To avoid confusion with the more restricted notion of friendly nestingness, we prefer to
call it guardedness. Where the rest of this paper allows arbitrary equations, this guardedness
criterion for detecting special contexts is the only spot where we focus on the pure stream
format as given in [3, 14, 15].

I Definition 4.4. A stream specification E over Σ ∪ Σd ∪ {:, hd, tl} is called guarded if no
symbol of sort d in Σ has an argument of sort s, and all equations ` = r of E of sort s satisfy

the symbols hd and tl do not occur in ` and r,
r is not a variable, and the root of r is :,

RTA’11

10 Proving Equality of Streams Automatically

` is of the shape f(u1 . . . , un, t1 . . . , tm) such that either ti ∈ Xs or ti = x : σ for some
x ∈ Xd, σ ∈ Xs, for every i = 1, . . . ,m,

and E is exhaustive, that is, for every term t = f(u1 . . . , un, t1 . . . , tm) for which ui ∈ D for
i = 1, . . . , n and for every i = 1, . . . ,m the term ti is of the shape d : t′ for d ∈ D, there is
such an equation ` = r and a substitution ρ such that t = `ρ.

I Theorem 4.5. Let a stream specification E over Σ ∪ Σd ∪ {:, hd, tl} be given, and subsets
E′ ⊆ E and Σ′ ⊆ Σ such that E′ over Σ′ ∪ Σd ∪ {:, hd, tl} is a guarded stream specification.
Then every context over Σ′ ∪ Σd ∪ {:} ∪Xs ∪Xd of sort s is special with respect to E.

Proof. Fix a model for E, and an assignment α. We prove the theorem by proving the
following claim by induction on n:

Claim: If terms t, t′ of sort s satisfy [t, α](i) = [t′, α](i) for all i ≤ n, then [C[t], α](i) =
[C[t′], α](i) for all i ≤ n, for every context C of sort s in which all symbols on the
path from the root to the hole (of sort s) are in Σ′ ∪ {:}.

For C = � being the empty context the claim is trivial. For a context in which the hole
is deeper then the first level, the claim can be proved by repeatedly applying instances of
the claim for contexts in which the hole is immediately below the root. So it remains to
prove the claim for C = f(u1, . . . , un, t1, . . . , tm) in which the hole � is one of the arguments
t1, . . . , tm, say tI = �; it can not be in a data argument since we assumed that data symbols
have no arguments of sort s. For proving [C[t], α](i) = [C[t′], α](i) for i ≤ n it is obtained
form the induction hypothesis for i < n, we only need to prove [C[t], α](n) = [C[t′], α](n).

In case f = : we have C = u1 : �. For n = 0 we conclude [C[t], α](0) = [u1, α] =
[C[t′], α](0), and for n > 0 we conclude

[C[t], α](n) = [t1[t], α](n− 1) = [t1[t′], α](n− 1) = [C[t′], α](n)

by the induction hypothesis.
It remains to prove [C[t], α](n) = [C[t′], α](n) for C = f(u1, . . . , un, t1, . . . , tm) for f ∈ Σ′

and tI = �. For any term v we have

[C[v], α] = [f(u1, . . . , un, t1, . . . , tI−1, v, tI+1, . . . , tm)]), α].

Here every ui may be replaced by the data element [u1, α)], and every ti may be replaced
by [ti, α](0) : tl(ti)), α], since [ti, α] = [[ti, α](0) : tl(ti), α] by Lemma 2.5, and similar for v.
Now the resulting term matches with ` for some equation ` = r in E′, due to the definition
of guardedness, where the root of r is :. Then [C[v], α] = [u : C ′[tl(v)]∗, α] for some u ∈ D
and some context C ′ having zero or more holes, and every path from the root to a hole
only contains symbols from Σ′ ∪ {:}. The ’∗’ in C ′[tl(v)]∗ means that every hole is filled by
tl(v). For n = 0 we obtain [C[t], α](0) = [u : · · · , α](0) = [C[t′], α](0), for n > 0 we apply the
induction hypothesis on C ′ and the two terms tl(t) and tl(t′). The condition of the induction
hypothesis for n − 1 is [tl(t), α](i) = [tl(t′), α](i) for all i ≤ n − 1, which follows from the
assumption [t, α](i) = [t′, α](i) for all i ≤ n. So by the induction hypothesis we conclude
C ′[tl(t)]∗, α](n− 1) = [C ′[tl(t′)]∗, α](n− 1).

In case C ′ has 1 hole it is immediate, in case C ′ has k holes this is concluded by applying
the induction hypothesis k times. We conclude

[C[t], α](n) = [u : C ′[tl(t)]∗, α](n)
= [C ′[tl(t)]∗, α](n− 1)
= [C ′[tl(t′)]∗, α](n− 1)
= [u : C ′[tl(t′)]∗, α](n)
= [C[t′], α](n),

Hans Zantema and Jörg Endrullis 11

concluding the proof. J

I Example 4.6. Let E consist of the two equations

zip(x : σ, τ) = x : zip(τ, σ), ones = 1 : zip(ones, ones).

We want to prove that E |= ones = 1 : ones. Applying the standard approach based
on Theorem 3.1 turns out to fail: E′ will be extended forever by terms containing an
increasing number of zip symbols. Instead, using Theorem 4.2 easily applies: according to
Theorem 4.5 zip(�, σ) is a special context, by which we may use the co-induction hypothesis
fr(zip(ones, σ)) = fr(zip(1 : ones, σ)):

fr(tl(ones)) = fr(tl(1 : zip(ones, ones))) = fr(zip(ones, ones))
= fr(zip(1 : ones, ones)) = fr(1 : zip(ones, ones))
= fr(ones) = fr(tl(1 : ones)).

For proving E |= ones = 1 : ones by Theorem 4.2 it remains to prove hd(ones) = hd(1 : ones),
which is straightforward.

5 Exploiting unicity

Several techniques have been developed to prove that a stream specification has a unique
solution, many of which are based on the notion of productivity. These techniques can be
used for proving equality: if we want to prove E |= c = t for some stream constant c having
a unique solution, then we can try to prove that t satisfies the equations for c, that is,
E |= ` ↓= r ↓ for every equation ` = r in E containing the symbol c, where ↓ means that
every symbol c is replaced by t. If this is the case, then both [c] and [t] satisfy the equations
for c in every model, and since this is unique we conclude [c] = [t] in every model, so proving
E |= c = t. In this section we describe this approach in detail, also for functions rather than
only for constants c, and give an example for which all earlier techniques fail and we make
use of recent techniques to prove productivity.

I Definition 5.1. A function symbol f ∈ Σ is called uniquely defined with respect to a set
E of equations if [f]1 = [f]2 for every two models [.]1, [.]2 satisfying E.

I Theorem 5.2. Let E be a set of equations such that a symbol f is uniquely defined with
respect to E. Let t = t′ be an equation for which f is the root of t, and all arguments of f in
t are variables, all distinct. Moreover, all variables in t′ occur in t, and the symbol f does
not occur in t′. Write ↓ for the normal formal with respect to the single rule t→ t′. Assume
E |= ` ↓= r ↓ for all equations ` = r in E. Then E |= t = t′.

Proof. Let [.]1 be any model satisfying E; we have to prove that [t, α]1 = [t′, α]1 for every
variable assignment α. Define [.]2 by [g]2 = [g]1 for every symbol g 6= f , and let [f]2 interpret
t′, that is, if t = f(x1, . . . , xn, σ1, . . . , σm, then [f]2(d1, . . . , dn, s1, . . . , sm) = [t′, α]1 for α
defined by α(xi) = di, α(σi) = si. So by definition we have [t, α]2 = [t′, α]1 for every α.
Using this, one proves by induction on the structure of v that [v, α]2 = [v ↓, α]1 for every
term v and every α. Hence for every equation ` = r in E and every α we obtain

[`, α]2 = [` ↓, α]1 = [r ↓, α]1 = [r, α]2,

so the model [.]2 satisfies E. Since f is uniquely defined we now conclude [f]1 = [f]2, so

[t, α]1 = [t, α]2 = [t′, α]1

for every α, concluding the proof. J

RTA’11

12 Proving Equality of Streams Automatically

I Example 5.3. Let E consist of the equations

a = 0 : f(a) f(0 : σ) = 1 : 0 : f(σ)
alt = 0 : 1 : alt f(1 : σ) = f(σ).

We want to prove that E |= a = alt. Earlier techniques fail for doing this automatically, but
we can apply Theorem 5.2 for the term t = a. First we have to prove that a is uniquely
defined. This follows from productivity of all ground terms, which is proved using Theorem
4.1 from [15]. To this end context-sensitive termination of E has to be proved for the instance
of context-sensitive rewriting in which rewriting is allowed on all arguments of all symbols
except for the second argument of ":". This is easily proved fully automatically by tools like
AProVE [4] and µ-Term [11].

Then by Theorem 5.2 it remains to prove that E |= ` ↓= r ↓ for all equations ` = r in E,
where ↓ means replacement of a by alt. As there is only one equation containing the symbol
a, we only have to prove E |= alt = 0 : f(alt). This is easily proved by our basic machinery
based on Theorem 3.1; it can also be proved by CIRC.

It is possible to prove E |= a = alt directly by Theorem 3.1 by choosing

E′ = {a = alt, fn(a) = 1 : alt, 0 : fn(a) = alt | n > 0}.

However, since E′ is infinite, and the argument requires to prove fn(a) = 1 : 0 : fn+1(a) for
every n > 0, this approach is not suitable for automation.

We want to stress here that productivity of all ground terms does not imply that all
functions are uniquely defined on all streams, only on stream interpretations of ground terms.
In this example [f] is not uniquely defined for all streams: one can make two distinct models
both satisfying E in which [f](s) are distinct, for s being the stream purely consisting of
ones.

6 Implementation

We have implemented the techniques as presented in this paper in a tool called ‘Streambox’.
More precisely, any stream specification with a corresponding goal can be entered, or chosen
from a list, and then the tool tries to prove the goal. The basic machinery is equational
reasoning in combination with circular co-induction. For equational reasoning the tool simply
searches for a conversion, so does not require termination. The tool Streambox is available
on-line, as well as for download:

http://infinity.few.vu.nl/streambox/

The tool Streambox automatically proves equality of all examples included in this paper.
In this section we describe some aspects of our implementation not yet covered by the

theory presented so far, in particular the implementation of special contexts, the use of
case analysis, and automatic lemma search. Streambox is not stand alone: for exploiting
unicity by using Theorem 5.2 it is tried to prove unicity by proving productivity by proving
context-sensitive termination as described in [15] This is done by calling µ-Term [11], and in
case this fails by calling AProVE [4]. In this way the power of state-of-the art termination
provers is exploited.

Hans Zantema and Jörg Endrullis 13

6.1 Special contexts
Theorem 4.2 extends circular co-induction with special contexts. Roughly speaking, the idea
is that to derive the equality fr(tl(`)) = fr(tl(r)), we are allowed to use equations of the form
fr(C[`]) = fr(C[r]) for every special context C, in particular for contexts using symbols for
which the specification is guarded, as discussed in Theorem 4.5. For example, the special
contexts for Example 2.2 include:

inv(�), inv(inv(�)), inv(inv(inv(�))), . . .
zip(�, s), zip(inv(�), s), zip(inv(inv�), s), zip(zip(�, s), t), . . .

Mimicking the use of these infinitely many special contexts can be done by moving the symbol
fr up and down, as is described in the following lemma of which the proof is straightforward:

I Lemma 6.1. Let E be a stream specification and E′ a set of equations of sort s, both not
containing the symbol fr.

Let Σ′ ⊆ Σ such that every context over Σ′ ∪ {:} ∪Xs ∪Xd of sort s is special. For every
symbol f ∈ Σ′, let f# be a fresh symbol of the same type. We define the set S(Σ′) to consist
of the following equations:

fr(f(x1, . . . , xm, σ1, . . . , σm)) = f#(x1, . . . , xm, fr(σ1), . . . , fr(σm))

for every f ∈ Σ′.
Assume that the following conditions hold:
E |= hd(`) = hd(r) for all ` = r ∈ E′, and
E ∪ {fr(`) = fr(r)} ∪ S(Σ′) |= fr(tl(`)) = fr(tl(r)) for all ` = r ∈ E′.

Then E |= E′. J

Streambox derives the set Σ′ according to Theorem 4.5, and then employs the rules given
in Lemma 6.1 to treat special contexts.

6.2 Case analysis
Let us consider the following specification:

inv(0 : σ) = 1 : inv(σ), inv(1 : σ) = 0 : inv(σ),

and prove the equation inv(inv(σ)) = σ. A direct application of the basic circular co-induction
principle fails: it needs the observation that every boolean stream σ is either of the shape
σ = 0 : σ′ or σ = 1 : σ′.

The following straightforward lemma exploits this case analysis:

I Lemma 6.2 (Case analysis). Let E be a stream specification such that 0 and 1 are the only
data constructors. Let E′ ∪ {` = r} be a set of equations, and σ a stream variable occurring
in ` = r. Then E |= E′ ∪ {` = r} if and only if

E |= E′ ∪ {`[σ 7→ 0 : σ] = r[σ 7→ 0 : σ]} ∪ {`[σ 7→ 1 : σ] = r[σ 7→ 1 : σ]}

Applied to the above specification, the proof obligation is

E ∪ {fr(inv(inv(σ))) = fr(σ)} |= {fr(tl(inv(inv(0 : σ)))) = fr(tl(0 : σ))} ∪
{fr(tl(inv(inv(1 : σ)))) = fr(tl(1 : σ))}

RTA’11

14 Proving Equality of Streams Automatically

which is easily proved by equational reasoning.
In Streambox the focus is on boolean streams, and only this boolean version of case

analysis has been implemented. For other data structures case analysis can be employed as
well. For example, for streams over natural numbers one can distinguish the cases 0 : σ and
s(x) : σ.

6.3 Automatic lemma search
For many examples, circular co-induction does not suffice for deriving the goal equations
directly from the input system. Then it frequently helps to first find some auxiliary lemmas,
which can themselves be proved using circular co-induction. These lemmas then may be
employed to prove further lemmas, or the goal equations:

I Lemma 6.3 (Lemma usage). Let E be a stream specification and E′, E′′ sets of equations.
If E |= E′, then E |= E′′ if and only if E ∪ E′ |= E′′.

Proof. Since E |= E′ it follows that E′ is valid in every stream model where E is valid.
Hence, the set of stream models of E ∪ E′ coincides with that of E. J

Lemma 6.3 is used as follows: if earlier techniques fail to prove E |= E′′, then a set E′
of small equations (the lemmas) is tried to be created for which E |= E′ can be proved,
again using our approach, see below for more details. After every extension of E′ by a new
equation, it is tried to prove E ∪E′ |= E′′, and as soon this succeeds we are done. In proving
new lemmas in E′, it is allowed also to use earlier lemmas in E′.

The advantage with respect to circular co-induction is that the lemmas E′ enrich the
conversion relation, and thereby can be fruitful for deriving the goal equations.

Our tool Streambox supports an automated search for lemmas in the following way.
It enumerates small terms t1, t2, . . . of sort s by increasing ‘weight’. For the weight of a
term t we have chosen the number of function symbols in t minus ξ-times the number of
distinct variables in t (where 0 < ξ ≤ 0.1). The intention of this weight function is that the
most general lemmas are encountered first. For example, it guarantees that even(zip(s, t)) is
generated before before even(zip(s, s)), which in turn is found before even(zip(ones, ones)).

When ti is generated, for j < i it is checked whether prefixes upon some depth are equal
for ti and tj for replacing variables by some random streams. If this is the case, then it is
tried to prove E |= ti = tj . If this succeeds, then ti = tj is added to the set E′ of lemmas.

I Example 6.4. Consider the following stream specification:

morse = 0 : zip(inv(morse), tl(morse)) tl(x : σ) = σ

inv(x : σ) = not(x) : inv(σ) not(0) = 1
zip(x : σ, τ) = x : zip(τ, σ) not(1) = 0

toeplitz = 1 : zip(inv(toeplitz), ones)) xor(0 : x : xs) = x : xor(x : xs)
ones = 1 : ones xor(1 : x : xs) = not(x) : xor(x : xs)

with the goal of proving toeplitz = xor(morse). Here morse is the Thue-Morse stream from
Example 2.2, and toeplitz is a simple instance of a Toeplitz word as presented in [1], 10.11,
exercise 42: toeplitz is the stream obtained by replacing the ?-symbols in the stream 101?ω
consecutively by the elements of toeplitz. The equality between toeplitz and this alternative
characterization can also be proved by Streambox.

Hans Zantema and Jörg Endrullis 15

Our tool Streambox succeeds in proving toeplitz = xor(morse) within approximately one
minute. Among others, it discovers the 8 lemmas displayed below.

Lemma Uses Lemma
1 xor(tl(s)) = tl(xor(s))
2 xor(inv(s)) = xor(s) 1
3 inv(inv(s)) = s
4 inv(ones) = xor(ones) 1
5 zip(inv(t), inv(s)) = inv(zip(t, s))
6 xor(xor(zip(t, s))) = zip(xor(t), xor(s)) 1
7 xor(zip(inv(t), s)) = inv(xor(zip(t, s))) 1, 2, 3, 5
8 tl(inv(zip(s, s))) = xor(zip(s, ones)) 1
9 toeplitz = xor(morse) 1,2,3,4,5,6,7,8

Using these 8 lemmas, finally the proof is given.

In the default setting only the lemmas are shown that are really used, and all proofs are
given in full detail, showing the use of lemmas and co-induction hypotheses in separate colors
for clarity. By choosing ’options’ in the tool several parameters can be changed.

7 Conclusions

Streams or infinite sequences have been study extensively, see e.g., [1] and its bibliography
of over 70 pages. A compact way to specify streams is by giving a set of equations. In this
paper we investigated techniques for proving equality of streams automatically, given by such
sets of equations. As main achievements we summarize:

We present self-contained theory for the circular co-induction principle for streams,
including special contexts, as presented in [12, 5, 6, 9, 10, 13, 7]. Our proofs use the
standard semantics of streams being maps from naturals to data.
We allow any set of equations on streams; in particular we do not restrict to the specific
format of behavioral equations as in [9, 10, 13] in which only equations are allowed with
left hand sides having hd or tl on top. In contrast to the approach of the tool CIRC
[9] we never require termination. Our default format is the pure stream format as used
in [3, 14, 15], in which specifications are often given much shorter than by behavioral
equations.
Where in [10] it is stated that the algorithm for computing special contexts is quite
complex, and hence not described in detail, we have a very simple criterion for checking
for a powerful class of special contexts: guarded contexts, inspired by and closely related
to friendly nestingness from [3].
We present a technique to prove stream equality by exploiting unicity: two streams are
equal if one of them is uniquely defined and the other satisfies the equations of the first.
For using this we need to prove unicity automatically, for which we use a technique to
prove productivity by means of context-sensitive termination.
We offer a tool Streambox combining and exploiting these techniques fully automatically.
In particular, for hard examples the tool searches for lemmas autonomously, and uses
derived lemmas when appropriate. In this way for several stream equalities Streambox
outperforms the earlier tool CIRC [9].

RTA’11

16 Proving Equality of Streams Automatically

References
1 J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations.

Cambridge University Press, 2003.
2 J. C. M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theories of

Communicating Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, UK, 2009.

3 J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream productivity. In
Proceedings of the 11th International Conference on Logic for Programming, Artificial In-
telligence, and Reasoning (LPAR’08), volume 5330 of Lecture Notes in Computer Science,
pages 79–96. Springer-Verlag, 2008. Web interface tool: http://infinity.few.vu.nl/
productivity/.

4 J. Giesl et al. AProVE. Web interface and download: http://aprove.informatik.
rwth-aachen.de.

5 J. Goguen, K. Lin, and G. Roşu. Circular coinductive rewriting. In Proceedings, 15th Inter-
national Conference on Automated Software Engineering (ASE’00). Institute of Electrical
and Electronics Engineers Computer Society, 2000. Grenoble, France, 11-15 September
2000.

6 J. Goguen, K. Lin, and G. Roşu. Conditional circular coinductive rewriting with case
analysis. In Recent Trends in Algebraic Development Techniques (WADT02), volume 2755
of Lecture Notes in Computer Science, pages 216–232. Springer, 2003.

7 E.-I. Goriac, D. Lucanu, and G. Roşu. Automating coinduction with case analysis. In
Twelfth International Conference on Formal Engineering Methods (ICFEM’10), volume
6447 of Lecture Notes in Computer Science, pages 220–236. Springer, 2010.

8 J. Kim. Coinductive properties of causal maps. In Proceedings of the 12th International
Conference on Algebraic Methodology and Software Technology (AMAST 2008), volume
5140 of Lecture Notes in Computer Science, pages 253–267. Springer, 2008.

9 D. Lucanu and G. Roşu. CIRC: A circular coinductive prover. In CALCO’07, volume 4624
of Lecture Notes in Computer Science, pages 372 – 378. Springer, 2007.

10 D. Lucanu and G. Roşu. Circular coinduction with special contexts. In Proceedings of the
11th International Conference on Formal Engineering Methods (ICFEM’09), volume 5885
of Lecture Notes in Computer Science, pages 639–659. Springer, 2009.

11 S. Lucas et al. µ-Term. Web interface and download: http://zenon.dsic.upv.es/
muterm/.

12 G. Roşu. Hidden Logic. PhD thesis, University of California at San Diego, 2000.
13 G. Roşu and D. Lucanu. Circular coinduction: A proof theoretical foundation. In Proceed-

ings of the 3rd International Conference on Algebra and Coalgebra in Computer Science
(CALCO’09), volume 5728 of Lecture Notes in Computer Science, pages 127–144. Springer,
2009.

14 H. Zantema. Well-definedness of streams by termination. In Proceedings of the 20th Inter-
national Conference on Rewriting Techniques and Applications (RTA’09), volume 5595 of
Lecture Notes in Computer Science, pages 164–178. Springer-Verlag, 2009.

15 H. Zantema and M. Raffelsieper. Proving productivity in infinite data structures. In
Christopher Lynch, editor, Proceedings of the 21st International Conference on Rewriting
Techniques and Applications, volume 6 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 401–416, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

http://infinity.few.vu.nl/productivity/
http://infinity.few.vu.nl/productivity/
http://aprove.informatik.rwth-aachen.de
http://aprove.informatik.rwth-aachen.de
http://zenon.dsic.upv.es/muterm/
http://zenon.dsic.upv.es/muterm/

	Introduction
	Streams: Specifications and Models
	Basic circular co-induction
	Special contexts
	Exploiting unicity
	Implementation
	Special contexts
	Case analysis
	Automatic lemma search

	Conclusions

