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Jörg Endrullis1, Juhani Karhumäki2, Jan Willem Klop1,3, and Aleksi Saarela2

1 Department of Computer Science
VU University Amsterdam, Amsterdam, the Netherlands

Email: j.endrullis@vu.nl, j.w.klop@vu.nl
2 Department of Mathematics and Statistics & FUNDIM

University of Turku, Turku, Finland
Email: karhumak@utu.fi, amsaar@utu.fi

3 Centrum Wiskunde & Informatica (CWI), Amsterdam, the Netherlands

Abstract. Our objects of study are finite state transducers and their
power for transforming infinite words. Infinite sequences of symbols are of
paramount importance in a wide range of fields, from formal languages to
pure mathematics and physics. While finite automata for recognising and
transforming languages are well-understood, very little is known about
the power of automata to transform infinite words.

We use methods from linear algebra and analysis to show that there is
an infinite number of atoms in the transducer degrees, that is, minimal
non-trivial degrees.

1 Introduction

The transformation realised by finite state transducers induces a partial order
of degrees of infinite words: for words v, w ∈ ∆N, we write v ≥ w if v can be
transformed into w by some finite state transducer. If v ≥ w, then v can be
thought of as at least as complex as w. This complexity comparison induces
equivalence classes of words, called degrees, and a partial order on these degrees,
that we call transducer degrees.

The ensuing hierarchy of degrees is analogous to the recursion theoretic degrees
of unsolvability, also known as Turing degrees, where the transformational devices
are Turing machines. The Turing degrees have been widely studied in the 60’s
and 70’s. However, as a complexity measure, Turing machines are too strong:
they trivialise the classification problem by identifying all computable infinite
words. Finite state transducers give rise to a much more fine-grained hierarchy.

We are interested in the structural properties of the hierarchy of transducer
degrees. In this paper, we investigate the existence of atom degrees. An atom
degree is a minimal non-trivial degree, that is, a degree that is directly above the
bottom degree without interpolant degree.

? This research has been supported by the Academy of Finland under the grant 257857.
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Our contribution In [7] and [4] it has been proven that the degree of the words
〈n〉 and 〈n2〉 are atoms. Surprisingly, we find that this does not hold for 〈n3〉.
In particular, we show that the degree of 〈nk〉 is never an atom for k ≥ 3
(see Theorem 22). On the other hand, we prove that for every k > 0, there
exists a unique atom among the degrees of words 〈p(n)〉 for polynomials p(n) of
order k (see Theorem 31). (To avoid confusion between two meanings of degrees,
namely degrees of words and degrees of polynomials, we speak of the order of a
polynomial.) We moreover show that this atom is the infimum of all degrees of
polynomials p(n) of order k.

Further related work The paper [11] discusses complexity hierarchies derived
from notions of reduction. The paper [9] gives an overview over the subject of
transducer degrees and compares them with the well-known Turing degrees [15,12].
Restricting the transducers to output precisely one letter in each step, we arrive
at Mealy machines. These gives rise to an analogous hierarchy of Mealy degrees
that has been studied in [2,13]. The structural properties of this hierarchy are
very different from the transducer degrees, see further [9].

2 Preliminaries

Let Σ be an alphabet. We write ε for the empty word, Σ∗ for the set of finite
words over Σ, and let Σ+ = Σ∗ \ {ε}. The set of infinite words over Σ is
ΣN = {σ | σ : N → Σ} and we let Σ∞ = Σ∗ ∪ ΣN. Let u,w ∈ Σ∞. Then u is
called a prefix of w, denoted u v w, if u = w or there exists u′ ∈ Σ∞ such that
uu′ = w.

A sequential finite state transducer (FST) [1,14], a.k.a. deterministic gener-
alised sequential machine (DGSM), is a finite automaton with input letters and
finite output words along the edges.

Definition 1. A sequential finite state transducer A = 〈Σ,Γ,Q, q0, δ, λ〉 consists
of a finite input alphabet Σ, a finite output alphabet Γ , a finite set of states Q, an
initial state q0 ∈ Q, a transition function δ : Q×Σ → Q, and an output function
λ : Q×Σ → Γ ∗. Whenever the alphabets Σ and Γ are clear from the context,
we write A = 〈Q, q0, δ, λ〉.

We only consider sequential transducers and will simply speak of finite state
transducers henceforth.

Definition 2. Let A = 〈Σ,Γ,Q, q0, δ, λ〉 be a finite state transducer. We ho-
momorphically extend the transition function δ to Q×Σ∗ → Q by: for q ∈ Q,
a ∈ Σ, u ∈ Σ∗ let δ(q, ε) = q and δ(q, au) = δ(δ(q, a), u). We extend the output
function λ to Q×Σ∞ → Γ∞ by: for q ∈ Q, a ∈ Σ, u ∈ Σ∞, let λ(q, ε) = ε and
λ(q, au) = λ(q, a) · λ(δ(q, a), u).

We note that finite state transducers can be viewed as productive term rewrite
systems [6] and the transduction of infinite words as infinitary rewriting [5].
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3 Transducer Degrees

In this section, we explain how finite state transducers give rise to a hierarchy of
degrees of infinite words, called transducer degrees. First, we formally introduce
the transducibility relation ≥ on words as realised by finite state transducers.

Definition 3. Let w ∈ ΣN, u ∈ ΓN for finite alphabets Σ, Γ . Let A =
〈Σ,Γ,Q, q0, δ, λ〉 be a finite state transducer. We write w ≥A u if u = λ(q0, w).
We write w ≥ u, and say that u is a transduct of w, if there exists a finite state
transducer A such that w ≥A u.

Note that the transducibility relation ≥ is a pre-order. It thus induces a
partial order of ‘degrees’, the equivalence classes with respect to ≥ ∩ ≤. We
denote equivalence using ≡. It is not difficult to see that every word over a finite
alphabet is equivalent to a word over the alphabet 2 = { 0, 1 }. For the study of
transducer degrees it suffices therefore to consider words over the latter alphabet.

Definition 4. Define the equivalence relation ≡ = (≥ ∩ ≤). The (transducer)
degree w≡ of an infinite word w is the equivalence class of w with respect to ≡,
that is, w≡ = {u ∈ 2N | w ≡ u}. We write 2N/≡ to denote the set of degrees
{w≡ | w ∈ 2N}.

The transducer degrees form the partial order 〈2N/≡,≥〉1 induced by the
pre-order ≥ on 2N, that is, for words w, u ∈ 2N we have w≡ ≥ u≡ ⇐⇒ w ≥ u.

The bottom degree 0 of the transducer degrees is the least degree of the
hierarchy, that is, the unique degree a ∈ 2N/≡ such that a ≤ b for every
b ∈ 2N/≡. The bottom degree 0 consists of the ultimately periodic words, that
is, words of the form uvvv · · · for finite words u, v where v 6= ε.

An atom is a degree that has only 0 below itself.

Definition 5. An atom is a minimal non-bottom degree, that is, a degree
a ∈ 2N/≡ such that 0 < a and there exists no b ∈ 2N/≡ with 0 < b < a.

4 Spiralling Words

We now consider spiralling words over the alphabet 2 = {0, 1} for which the
distance of consecutive 1’s in the word grows to infinity. We additionally require
that the sequence of distances of consecutive 1’s is ultimately periodic modulo
every natural number. The class of spiralling words allows for a characterisation
of their transducts in terms of weighted products.

For a function f : N→ N, we define 〈f〉 ∈ 2N

〈f〉 =
∏∞

i=0 10f(i) = 10f(0) 10f(1) 10f(2) · · · .

We write 〈f(n)〉 as shorthand for 〈n 7→ f(n)〉.
1 We note that finite state transducers transform infinite words to finite or infinite

words. The result of the transformation is finite if the transducer outputs the empty
word ε for all except a finite number of letters of the input word. We are interested
in infinite words only, since the set of finite words would merely entail two spurious
extra sub-bottom degrees in the hierarchy of transducer degrees.
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Definition 6. A function f : N→ N is called spiralling if

(i) limn→∞ f(n) =∞, and
(ii) for every m ≥ 1, the function n 7→ f(n) mod m is ultimately periodic.

A word 〈f〉 is called spiralling whenever f is spiralling.

For example, 〈p(n)〉 is spiralling for every polynomial p(n) with natural numbers
as coefficients. Spiralling functions are called ‘cyclically ultimately periodic’ in
the literature [3]. For a tuple α = 〈α0, . . . , αm〉, we define

– the length |α| = m+ 1, and
– its rotation by α′ = 〈α1, . . . , αm, α0〉.

Let A be a set and f : N→ A a function. We write Sk(f) for the k-th shift of f
defined by Sk(f)(n) = f(n+ k).

We use ‘weights’ to represent linear functions.

Definition 7. A weight α is a tuple 〈a0, . . . , ak−1, b〉 ∈ Qk+1 of rational numbers
such that k ∈ N and a0, . . . , ak−1 ≥ 0. The weight α is called

– non-constant if ai 6= 0 for some i < k, else constant,
– strongly non-constant if ai, aj 6= 0 for some i < j < k.

Now, let us also consider a tuple of tuples. For a tuple α = 〈α0, . . . ,αm−1〉 of

weights we define ||α|| =
∑m−1

i=0 ( |αi| − 1 ) .

Definition 8. Let f : N→ Q be a function. For a weight α = 〈a0, . . . , ak−1, b〉
we define α · f ∈ Q by α · f = a0f(0) + a1f(1) + · · · + ak−1f(k − 1) + b .
For a tuple of weights α = 〈α0,α1, . . . ,αm−1〉, we define the weighted product
α⊗ f : N→ Q by induction on n:

(α⊗ f)(0) = α0 · f
(α⊗ f)(n+ 1) = (α′ ⊗ S |α0|−1(f))(n) (n ∈ N)

We say that α⊗ f is a natural weighted product if (α⊗ f)(n) ∈ N for all n ∈ N.

Weighted products are easiest understood by an example.

Example 9. Let f(n) = n2 be a function and α = 〈α1,α2〉 a tuple of weights
with α1 = 〈1, 2, 3, 4〉, α2 = 〈0, 1, 1〉. Then the weighted product α ⊗ f can be
visualised as follows

f · · ·0 1 4 9 16 25 36 49 64 81

α⊗ f · · ·18 17 248 82

×1 ×2 ×3
+4

×0 ×1
+1

×1 ×2 ×3
+4

×0 ×1
+1

Intuitively, the weight α1 = 〈1, 2, 3, 4〉 means that 3 consecutive entries are added
while being multiplied by 1, 2 and 3, respectively, and 4 is added to the result.

We introduce a few operations on weights. We define scalar multiplication
of weights in the obvious way. We also introduce a multiplication � that affects
only the last entry of weights (the constant term).
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Definition 10. Let c ∈ Q≥0,α = 〈a0, . . . , a`−1, b〉 a weight, β = 〈β0, . . . ,βm−1〉
a tuple of weights. We define

cα = 〈ca0, . . . , ca`−1, cb〉 α� c = 〈a0, . . . , a`−1, bc〉
cβ = 〈cβ0, . . . , cβm−1〉 β � c = 〈β0 � c, . . . ,βm−1 � c〉

The following lemma follows directly from the definitions.

Lemma 11. Let c ∈ Q≥0, α a tuple of weights, and f : N→ Q a function. Then
c(α⊗ f) = (cα)⊗ f = (α� c)⊗ (cf). ut

It is straightforward to define a composition of tuples of weights such that
β ⊗ (α ⊗ f) = (β ⊗ α) ⊗ f for every function f : N → Q. Note that α ⊗ f is
already defined. For the precise definition of β ⊗α, we refer to [8]. It involves
many details whose explicitation would not be illuminating. We will employ the
following two properties of composition.

Lemma 12. Let α,β be tuples of weights. Then we have that β ⊗ (α ⊗ f) =
(β ⊗α)⊗ f for every function f : N→ Q. ut

Lemma 13. Let α be tuple of weights, and β a tuple of strongly non-constant
weights. Then α⊗ β is of the form 〈γ0, . . . , γk−1〉 such that for every i ∈ N<k,
the weight γi is either constant or strongly non-constant. ut

We need a few results on weighted products from [4].

Lemma 14 ([4]). Let f : N→ N, and α a tuple of weights. If α⊗ f is a natural
weighted product (i.e. ∀n ∈ N. (α⊗ f)(n) ∈ N), then 〈f〉 ≥ 〈α⊗ f〉. ut

For the proof of Theorem 21, below, we use the following auxiliary lemma.
The lemma gives a detailed structural analysis, elaborated and explained in [4],
of the transducts of a spiralling word 〈f〉.
Lemma 15 ([4]). Let f : N → N be a spiralling function, and let σ ∈ 2N be
such that 〈f〉 ≥ σ and σ 6∈ 0. Then there exist n0,m ∈ N, a word w ∈ 2∗, a tuple
of weights α, and tuples of finite words p and c with |α| = |p| = |c| = m > 0

such that σ = w ·
∏∞

i=0

∏m−1
j=0 pj c

ϕ(i,j)
j where ϕ(i, j) = (α⊗Sn0(f))(mi+ j), and

(i) cωj 6= pj+1c
ω
j+1 for every j with 0 ≤ j < m− 1, and cωm−1 6= p0c

ω
0 , and

(ii) cj 6= ε, and αj is non-constant, for all j ∈ N<m. ut

Example 16. We continue Example 9. We have α = 〈α0, α1〉. Accordingly, we have
prefixes p0, p1 ∈ 2∗ and cycles c0, c1 ∈ 2∗. Then the transduct σ in Lemma 15,
defined by the double product, can be derived as follows:

f · · ·0 1 4 9 16 25 36 49 64 81

α⊗ f · · ·18 17 248 82

α0 α1 α0 α1

σ = w · · ·· p0 c
18
0 · p1 c

17
1 · p0 c

248
0 · p1 c

82
1

The infinite word σ is the infinite concatenation of w followed by alternating
p0c

e0
0 and p1c

e1
1 , where the exponents e0 and e1 are the result of applying weights

α0 and α1, respecively.
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The following theorem characterises the transducts of spiralling words up to
equivalence (≡).

Theorem 17 ([4]). Let f : N→ N be spiralling, and σ ∈ 2N. Then 〈f〉 ≥ σ if
and only if σ ≡ 〈α⊗ Sn0(f)〉 for some n0 ∈ N, and a tuple of weights α.

Roughly speaking, the next proposition states that polynomials of order k
are closed under transduction.

Proposition 18 ([4]). Let p(n) be a polynomial of order k with non-negative
integer coefficients, and let σ be a transduct of 〈p(n)〉 with σ /∈ 0. Then σ ≥ 〈q(n)〉
for some polynomial q(n) of order k with non-negative integer coefficients.

5 The Degree of 〈nk〉 is Not an Atom for k ≥ 3

We show that the degree of 〈nk〉 is not an atom for k ≥ 3. For this purpose, we
prove a strengthening of Theorem 17, a lemma on weighted products of strongly
non-constant weights, and we employ the power mean inequality.

First, we recall the power mean inequality [10].

Definition 19. For p ∈ R, the weighted power mean Mp(x) of x = 〈x1, x2, . . . , xn〉 ∈
Rn

>0 with respect to w = 〈w1, w2, . . . , wn〉 ∈ Rn
>0 with

∑n
i=1 wi = 1 is

Mw,0(x) =
∏n

i=1 x
wi
i Mw,p(x) = (

∑n
i=1 wix

p
i )1/p .

Proposition 20 (Power mean inequality). For all p, q ∈ R, x,w ∈ Rn
>0:

p < q =⇒ Mw,p(x) ≤Mw,q(x)

(p = q ∨ x1 = x2 = · · · = xn) ⇐⇒ Mw,p(x) = Mw,q(x) .

Theorem 17 characterises transducts of spiralling sequences only up to equiva-
lence. This makes it difficult to employ the theorem for proving non-transducibility.
We improve the characterisation for the case of spiralling transducts as follows.

Theorem 21. Let f, g : N → N be spiralling functions. Then 〈g〉 ≥ 〈f〉 if and
only if some shift of f is a weighted product of a shift of g, that is:

Sn0(f) = α⊗ Sm0(g)

for some n0,m0 ∈ N and a tuple of weights α.

Theorem 21 is a strengthening of Theorem 17 in the sense that the character-
isation uses equality (= and shifts) instead of equivalence (≡). We will employ
the gained precision to show that certain spiralling transducts of 〈nk〉 cannot be
transduced back to 〈nk〉, and conclude that 〈nk〉 is not an atom for k ≥ 3. See
further Theorem 22. Note, however, that Theorem 21 only characterises spiralling
transducts whereas Theorem 17 characterises all transducts.

Proof (Theorem 21). For the direction ‘⇐’, assume that Sn0(f) = α⊗ Sm0(g).
Then we have 〈g〉 ≡ 〈Sm0(g)〉 ≥ 〈α ⊗ Sm0(g)〉 = 〈Sn0(f)〉 ≡ 〈f〉 by invariance
under shifts and by Lemma 14.

For the direction ‘⇒’, assume that 〈g〉 ≥ 〈f〉. Then by Lemma 15 there exist
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m0,m ∈ N, w ∈ 2∗, α, p and c with |α| = |p| = |c| = m > 0 such that:

〈f〉 = w ·
∏∞

i=0

∏m−1
j=0 pj c

ϕ(i,j)
j (1)

where ϕ(i, j) = (α ⊗ Sm0(g))(mi + j) such that the conditions (i) and (ii) of
Lemma 15 are fulfilled.

Note that, as limn→∞ f(n) = ∞, the distance of ones in the sequence 〈g〉
tends to infinity. For every j ∈ N<m, the word pj occurs infinitely often in 〈f〉
by (1), and hence pj can contain at most one occurrence of the symbol 1.

By condition (ii), we have for every j ∈ N<m that cj 6= ε, and the weight αj
is not constant. As limn→∞ g(n) =∞, it follows that c2j appears infinitely often
in 〈f〉 by (1). Hence cj consists only of 0’s, that is, cj ∈ {0}+ for every j ∈ N<m.

By condition (i) we never have cωj = pj+1c
ω
j+1 for j ∈ N<m (where addition

is modulo m). As cωj = 0ω and pj+10ω = pj+1c
ω
j+1, we obtain that pj+1 must

contain a 1. Hence, for every k ∈ N<m, the word pj contains precisely one 1.
Finally, we apply the following transformations to ensure pj = 1 and cj = 0

for every j ∈ N<m:

(i) For every j ∈ N<m such that cj = 0h for some h > 1, we set cj = 0 and
replace the weight αj in α by hαj .

(ii) For every j ∈ N<m such that pj = 0h10` for some h ≥ 1 or ` ≥ 1, we set
pj = 1 and replace the weight αj in α by (αj + `) and the weight αj−1

by (αj−1 + h). Here, for a weight γ = 〈x0, . . . , x`−1, y〉 and z ∈ Q, we write
γ + z for the weight 〈x0, . . . , x`−1, y + z〉. If j = 0, we moreover append 0h

to the word w.

Note that both transformations leave equation (1) valid, they do not change the
result of the double product.

Thus we now have pj = 1 and cj = 0 for every j ∈ N<m. It follows from (1)
that 〈f〉 = w〈α⊗ Sm0(g)〉. Hence Sn0(f) = α⊗ Sm0(g) for some n0 ∈ N. ut

Theorem 22. For k ≥ 3, the degree of 〈nk〉 is not an atom.

Proof. Define f : N → N by f(n) = nk. We have 〈f〉 ≥ 〈g〉 where g : N → N is
defined by g(n) = (2n)k + (2n+ 1)k. Assume that we had 〈g〉 ≥ 〈f〉. Then, by
Theorem 21 we have Sn0(f) = α⊗ Sm0(g) for some n0,m0 ∈ N and a tuple of
weights α. Note that g = 〈〈1, 1, 0〉〉 ⊗ f and

Sn0(f) = α⊗ Sm0(〈〈1, 1, 0〉〉 ⊗ f)

= α⊗ (〈〈1, 1, 0〉〉 ⊗ S2m0(f)) = β ⊗ S2m0(f)

where β = α⊗ 〈〈1, 1, 0〉〉. By Lemma 13 every weight in β is either constant or
strongly non-constant. As Sn0(f) is strictly increasing (and hence contains no
constant subsequence), each weight in β must be strongly non-constant.

Let β = 〈β0, . . . ,β`−1〉. For every n ∈ N we have:

Sn0(f)(`n) = (β ⊗ S2m0(f))(`n) = β0 · S2m0+||β||·n(f) . (2)
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Then we have

Sn0(f)(`n) = (n0 + `n)k =
∑k

i=0

(
k
i

)
ni0`

k−ink−i

= `knk + kn0`
k−1nk−1 + · · ·+ knk−10 `n+ nk0 . (3)

Let β0 = 〈a0, a1, . . . , ah−1, b〉. We define ci = ai||β||k and di = (2m0 + i)/||β||.
We obtain

β0 · S2m0+||β||·n(f) = b+
∑h−1

i=0 aif(2m0 + ||β|| · n+ i)

= b+
∑h−1

i=0 aif(||β||(n+ 2m0+i
||β|| ))

= b+
∑h−1

i=0 ai||β||k(n+ di)
k = b+

∑h−1
i=0 ci(n+ di)

k

= b+
∑h−1

i=0 ci(n
k + kdin

k−1 + · · ·+ kdk−1i n+ dki ) . (4)

Recall equation (2). Comparing the coefficients of nk, nk−1 and n in (3) and (4)
we obtain

`k =

h−1∑
i=0

ci kn0`
k−1 =

h−1∑
i=0

cikdi knk−10 ` =

h−1∑
i=0

cikd
k−1
i , and hence

1 =

h−1∑
i=0

ci
`k

n0
`

=

h−1∑
i=0

ci
`k
di

nk−10

`k−1
=

h−1∑
i=0

ci
`k
dk−1i .

This is in contradiction with the weighted power means inequality (Proposition 20).
Clearly all di are distinct, and, as a consequence of β0 being strongly non-constant,
there are at least two i ∈ N<h for which ci 6= 0. Thus our assumption 〈g〉 ≥ 〈f〉
must have been wrong. Hence the degree of 〈nk〉 is not an atom. ut

6 Atoms of Every Polynomial Order

In the previous section, we have seen that 〈nk〉 is not an atom for k ≥ 3. In this
section, we show that for every order k ∈ N there exists a polynomial p(n) of
order k such that the degree of the word 〈p(n)〉 is an atom. As a consequence,
there are at least ℵ0 atoms in the transducer degrees.

As we have seen in the proof of Theorem 22, whenever k ≥ 3, we have that
〈nk〉 ≥ 〈g(n)〉, but not 〈g(n)〉 ≥ 〈nk〉 for g(n) = (2n)k + (2n+ 1)k. Thus there
exist polynomials p(n) of order k for which 〈p(n)〉 cannot be transduced to 〈nk〉.
However, the key observation underlying the construction in this section is the
following: Although we may not be able to reach 〈nk〉 from 〈p(n)〉, we can get
arbitrarily close (Lemma 25, below). This enables us to employ the concept of
continuity.

In order to have continuous functions over the space of polynomials to allow
limit constructions, we now permit rational coefficients. For k ∈ N, let Qk be
the set of polynomials of order k with non-negative rational coefficients. We also
use polynomials in Qk to denote spiralling sequences. However, we need to give
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meaning to 〈q(n)〉 for the case that the block sizes q(n) are not natural numbers.
For this purpose, we make use of the fact that the degree of a word 〈f(n)〉 is
invariant under multiplication of the block sizes by a constant, as is easy to see.
More precisely, for f : N→ N, we have 〈f(n)〉 ≡ 〈d · f(n)〉 for every d ∈ N with
d ≥ 1. So to give meaning to 〈q(n)〉, we multiply the polynomial by the least
natural number d > 0 such that d · q(n) is a natural number for every n ∈ N.

Definition 23. We call a function f : N → Q naturalisable if there exists a
natural number d ≥ 1 such that for all n ∈ N we have (d · f(n)) ∈ N.

For naturalisable f : N→ Q we define 〈f〉 = 〈d · f〉 where d ∈ N is the least
number such that d ≥ 1 where for all n ∈ N we have (d · f(n)) ∈ N. (Note that,
for f : N→ N, 〈f(n)〉 has been defined in Section 4.)

Observe that every q(n) ∈ Qk is naturalisable (multiply by the least common
denominator of the coefficients). Also, naturalisable functions are preserved under
weighted products.

Now, Lemma 14 can be generalised as follows. There is no longer need to re-
quire that the weighted product is natural. All weighted products of naturalisable
functions can be realised by finite state transducers.

Lemma 24. Let f : N → Q be naturalisable, and α a tuple of weights. Then
α⊗ f is naturalisable and 〈f〉 ≥ 〈α⊗ f〉.

Proof. Let α = 〈α0, . . . ,αm−1〉 for some m ≥ 1. Let c ∈ N with c ≥ 1 be
minimal such that all entries of cα are natural numbers. Let d ∈ N with d ≥ 1
be the least natural number such that ∀n ∈ N (d · f(n)) ∈ N.

Then we obtain ((dcα) ⊗ f)(n) ∈ N for ever n ∈ N. By the definition of
weighted products it follows immediately that (dcα)⊗ f = dc(α⊗ f), and hence
α⊗ f is naturalisable. Let e ∈ N with e ≥ 1 be the least natural number such
that ∀n ∈ N (e · (α⊗ f)(n)) ∈ N.

We have the following transduction

〈f〉 = 〈df〉 by Definition 23

≥ 〈((cα)� d)⊗ (df)〉 by Lemma 14

= 〈(dcα)⊗ f〉 = 〈dc(α⊗ f)〉 by Lemma 11

≥ 〈〈〈 e
dc
, 0〉〉 ⊗ (dc(α⊗ f))〉 by Lemma 14

= 〈e(α⊗ f)〉 = 〈α⊗ f〉 by Definition 23

This concludes the proof. ut

The following lemma states that every word 〈q(n)〉, for a polynomial q(n) ∈ Qk

of order k, can be transduced arbitrarily close to 〈nk〉.

Lemma 25. Let k ≥ 1 and let q(n) ∈ Qk be a polynomial of order k. For every
ε > 0 we have 〈q(n)〉 ≥ 〈nk + bk−1n

k−1 + · · ·+ b1n〉 for some rational coefficients
0 ≤ bk−1, . . . , b1 < ε.



10 J. Endrullis, J. Karhumäki, J.W. Klop, and A. Saarela

Proof. Let q(n) = akn
k + ak−1n

k−1 + · · ·+ a1n+ a0, and let ε > 0 be arbitrary.
Then for every d ∈ N, we have

〈q(n)〉 ≥ 〈q(dn)〉 ≥ 〈q(dn)

akdk
〉 = 〈nk +

ak−1
akd

nk−1 + . . .+
a1

akdk−1
n1 +

a0
akdk

〉

≥ 〈nk +
ak−1
akd

nk−1 + . . .+
a1

akdk−1
n1〉

The first transduction is picking a subsequence of the blocks. The second trans-
duction is a division of the size of each block (application of Lemma 24 with
the weight 〈〈1/akdk, 0〉〉). The last transduction amounts to removing a constant
number of zeros from each block (application of Lemma 24 with the weight
〈〈1,−a0/(akdk)〉〉). Finally, note that the last polynomial in the transduction is
of the desired form if d ∈ N is chosen large enough. ut

For polynomials p(n) ∈ Qk, we want to express weighted products 〈α〉 ⊗ p in
terms of matrix products. For that purpose we need a couple of definitions.

Definition 26. For weights α = 〈a0, . . . , ak−1, b〉 we define a column vector
U(α) = (a0, . . . , ak−1)T .

Definition 27. If p(n) =
∑k

i=0 cin
i is a polynomial of order k, we define a

column vector V (p(n)) = (c1, . . . , ck)T and a square matrix

M(p(n)) = (V (p(kn+ 0)), . . . , V (p(kn+ k − 1))) .

We also write V (p) short for V (p(n) and M(p) for M(p(n)).

Note that we have omitted the constant term c0 from the definition of V (p).
The reason is that for every f : N→ N and c ∈ N we have 〈f(n)〉 ≡ 〈f(n) + c〉.
These words are of the same degree because a finite state transducer can add (or
remove) a constant number of symbols 0 to (from) every block of 0’s. For the
same reason, b was omitted from the definition of U(α).

Example 28. Consider the polynomial n3:

V (n3) =

0
0
1

 and M(n3) =

 0 9 36
0 27 54
27 27 27


where the columns vectors of the matrixM(n3) are given by V ((3n)3), V ((3n+1)3)
and V ((3n+ 2)3).

Lemma 29. Let k ≥ 1. Let α = 〈a0, . . . , ak−1, b〉 be a weight and p(n) ∈ Qk.
Then M(p)U(α) = V (〈α〉 ⊗ p).

Proof. A direct calculation shows that

M(p)U(α) =

k−1∑
i=0

aiV (p(kn+ i)) = V
( k−1∑

i=0

aip(kn+ i)
)
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= V
( k−1∑

i=0

aip(kn+ i) + b
)

= V (〈α〉 ⊗ p) ,

which proves the lemma. ut

Let us take a closer look at the matrix M(nk). The element on the ith row
and jth column is Mi,j =

(
k
i

)
ki(j − 1)k−i . Dividing the ith row by

(
k
i

)
ki for

each i gives a Vandermonde-type matrix, which is invertible. Thus also M(nk) is
invertible.

Lemma 30. For k ≥ 1, M(nk) is invertible. ut

Theorem 31. Let k ≥ 1. Let a0, . . . , ak−1 be positive rational numbers, α =
〈a0, . . . , ak−1, 0〉, and

p(n) = (〈α〉 ⊗ nk)(n) =

k−1∑
i=0

ai(kn+ i)k.

Then 〈q(n)〉 ≥ 〈p(n)〉 for all q(n) ∈ Qk. Moreover, the degree 〈p(n)〉≡ is an atom.
Note that the degree 〈p(n)〉≡ is the infimum of all degrees of words 〈q(n)〉 with
q(n) ∈ Qk.

Proof. By Lemma 29, M(nk)U(α) = V (p). By Lemma 30, M(nk) is invertible
and we can write U(α) = M(nk)−1V (p). By Lemma 25, for every ε > 0 there
exists qε ∈ Qk such that 〈q(n)〉 ≥ 〈qε(n)〉 and

qε(n) = nk + bk−1n
k−1 + · · ·+ b1n

with 0 ≤ bi ≤ ε for every i ∈ {1, . . . , k − 1}. We will show that if ε is small
enough, then 〈qε(n)〉 ≥ 〈p(n)〉.

We have limε→0M(qε) = M(nk). As det(M(n3)) 6= 0 and the determinant
function is continuous, also det(M(qε)) 6= 0 for all sufficiently small ε. Then M(qε)
is invertible, and we define Uε = M(qε)

−1V (p). We would like to have Uε = U(γ)
for some weight γ. This is not always possible, because some elements of Uε

might be negative. However, by the continuity of matrix inverse and product,

lim
ε→0

Uε = lim
ε→0

(M(qε)
−1V (p)) = (lim

ε→0
M(qε))

−1V (p) = M(nk)−1V (p) = U(α)

Since every element of U(α) is positive, we can fix a small enough ε so that every
element of Uε is positive. Then we have Uε = U(γ) for some weight γ.

We have M(qε)U(γ) = V (〈γ〉⊗ qε) by Lemma 29, and M(qε)U(γ) = V (p) by
the definition of Uε. As a consequence (〈γ〉 ⊗ qε)(n) = p(n) + c for some constant
c. By Lemma 24, we obtain 〈qε(n)〉 ≥ 〈p(n)〉.

It remains to show that the degree 〈p(n)〉≡ is an atom. Assume that 〈p(n)〉 ≥ w
and w 6∈ 0. By Proposition 18 we have w ≥ 〈q(n)〉 for some q(n) ∈ Qk. As shown
above, 〈q(n)〉 ≥ 〈p(n)〉, thus w ≥ 〈p(n)〉. Hence 〈p(n)〉≡ is an atom. ut
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7 Future Work

Our results hint at an interesting structure of the transducer degrees of words
〈p(n)〉 for polynomials p(n) of order k ∈ N. Here, we have only scratched the
surface of this structure. Many questions remain open, for example:

(i) What is the structure of ‘polynomial spiralling’ degrees (depending on k ∈ N)?
Is the number of degrees finite for every k ∈ N?

(ii) Are there interpolant degrees between the degrees of 〈nk〉 and 〈pk(n)〉?
(iii) Are there continuum many atoms?

(iv) Is the degree of the Thue–Morse sequence an atom?
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