
Levels of Undecidability in Rewriting

Jörg Endrullisa, Herman Geuversb,c, Jakob Grue Simonsend, Hans Zantemac,b

a Free University Amsterdam, The Netherlands
b Radboud University Nijmegen, The Netherlands

cEindhoven University of Technology, The Netherlands
dUniversity of Copenhagen, Denmark

Abstract

Undecidability of various properties of first order term rewriting systems is
well-known. An undecidable property can be classified by the complexity of the
formula defining it. This classification gives rise to a hierarchy of distinct levels
of undecidability, starting from the arithmetical hierarchy classifying proper-
ties using first order arithmetical formulas, and continuing into the analytic
hierarchy, where quantification over function variables is allowed.

In this paper we give an overview of how the main properties of first order
term rewriting systems are classified in these hierarchies. We consider prop-
erties related to normalization (strong normalization, weak normalization and
dependency problems) and properties related to confluence (confluence, local
confluence and the unique normal form property). For all of these we distinguish
between the single term version and the uniform version. Where appropriate,
we also distinguish between ground and open terms.

Most uniform properties are Π0
2-complete. The particular problem of local

confluence turns out to be Π0
2-complete for ground terms, but only Σ0

1-complete
(and thereby recursively enumerable) for open terms. The most surprising re-
sult concerns dependency pair problems without minimality flag: we prove this
problem to be Π1

1-complete, hence not in the arithmetical hierarchy, but prop-
erly in the analytic hierarchy.

Some of our results are new or have appeared in our earlier publications [35,
7]. Others are based on folklore constructions, and are included for completeness
as their precise classifications have hardly been noticed previously.

1. Introduction

In classical computability theory properties on countable objects are inves-
tigated by explicitly enumerating the elements of the object. Thus, a property
can be identified with a set P ⊆ N representing the set of elements for which the

Email addresses: joerg@few.vu.nl (Jörg Endrullis), herman@cs.ru.nl (Herman
Geuvers), simonsen@diku.dk (Jakob Grue Simonsen), h.zantema@tue.nl (Hans Zantema)

Preprint submitted to Elsevier January 17, 2011

property holds. Such a set P is called decidable if there exists a Turing machine
which for every input x ∈ N outputs 1 if x ∈ P and 0 if x /∈ P .

Investigating the complexity of decidable properties is well-known, defined
in terms of the time (or space) consumption of a Turing machine that decides
the property. Likewise, but less well-known, the undecidable properties can be
classified into a hierarchy of growing complexity: one undecidable property can
be harder than another. As we have infinite hierarchies like linear-quadratic-
cubic-· · · in the complexity of decidable properties, there are similar infinite
hierarchies in the universe of undecidable properties.

The twin notions of the arithmetical hierarchy [22] and the analytical hier-
archy [23, 24] establish such a classification of undecidable properties by the
complexity of predicate logic formulas that define them—in turn defined as the
number of quantifier alternations of the prenex normal form of the formula.

The arithmetical hierarchy is based on first order formulas: Quantifiers are
restricted to range over integers The classes in the arithmetical hierarchy are
denoted Π0

n and Σ0
n for n ∈ N. The lowest level of the hierarchy consists of

the classes Π0
0 and Σ0

0, both consisting of the decidable properties. Then the
classes Π0

n and Σ0
n for n ≥ 1 are inductively defined: a property is in Π0

n if it can
be written as ∀xP for P ∈ Σ0

n−1, and a property is in Σ0
n if it can be written

as ∃xP for P ∈ Π0
n−1. For example, if P (x, y, z) is a decidable property, then

∃xP (x, y, z) is in Σ0
1 and ∀y ∃xP (x, y, z) is in Π0

2.
Hence, a property belongs to the class Π0

n for n ∈ N in the arithmetical
hierarchy if it can be defined by a first order formula (in prenex normal form),
which has n quantifiers, with the outermost quantifier being universal. Likewise
a property is in Σ0

n if the outermost quantifier is existential. The class Σ0
1 is the

class of recursively enumerable (or semi-decidable) properties. The blank tape
halting problem is in this class. The initialized uniform halting problem is in
the class Π0

2.
Let Y be a property (typically: Y represents a term rewriting system or

Turing machine with a particular property) For a class, X, of properties, Y is
called X-hard if any property in X can be reduced to Y . It is called X-complete
if it is both in X and X-hard. Under suitable encodings, the blank tape halting
problem for Turing machines is Σ0

1-complete; the initialized uniform halting
problem is Π0

2-complete. For proving X-hardness of any new property it suffices
to reduce the standard instances such as the above to the new property.

The analytical hierarchy continues the classification of properties by second
order formulas, allowing for quantifiers ranging over functions. An important
class is Π1

1, consisting of the properties which can be defined by ∀α : N→ N. ϕ
where ϕ is an arithmetical relation.

Extensive theory concerning these hierarchies has been developed; excellent
textbooks summarizing the major results are [33, 16, 34].

Up to renaming of function symbols, the set of all TRSs (term rewriting sys-
tems) is countable, and properties of TRSs can be classified in the arithmetical
and analytical hierarchies. The goal of this paper is to establish such a classifi-
cation for the most basic properties of first order TRSs. All of the properties we
consider are already known to be undecidable. For some of them, their level in

2

the relevant hierarchy easily follows from the folklore proofs of undecidability.
For others, the investigation has appeared earlier in our papers [35, 7]. For some
others the results in this paper are new. For the sake of completeness, all of
these results are presented in this paper.

One may wonder why these results would be of interest. A tantalizing argu-
ment against an investigation such as the one we perform is that, for undecidable
problems, no algorithm exists solving them, so further investigation is useless
from a practical perspective. On the other hand, the arithmetical and analyt-
ical hierarchy provide a natural, general and objective way to classify levels of
undecidability, and state that some undecidable problems are essentially harder
than others. This may serve for a better understanding of the hardness of sev-
eral problems. For instance, checking local confluence (on open terms) can be
done by critical pair analysis, while for checking local ground confluence (that
is, on closed terms) this approach does not apply. The critical pair analysis
implies the problem to be in Σ0

1, while we show Π0
2-hardness of local ground

confluence. From this we can conclude that it is not due to lack of human effort
that no technique is known for checking local ground confluence in a way simi-
lar to critical pair analysis; on the contrary, such a technique is fundamentally
impossible.

1.1. Results
We investigate the complexity of the following properties of first order TRSs.

• Basic properties. Each of the following problems is on the form: “Given
terms t, u, decide whether the property holds”. We prove that

– reduction (t→∗ u),

– joinability (t→∗ · ←∗ u), and

– conversion (t↔∗ u)

are all Σ0
1-complete.

• Termination-related properties. We prove that

– termination or strong normalization (SN) of single terms is Σ0
1-complete;

uniform termination is Π0
2-complete;

– weak normalization (WN) of single terms is Σ0
1-complete; uniform

weak normalization is Π0
2-complete;

– finiteness of dependency pair problems (DP) is Π1
1-complete, and

– finiteness of dependency pair problems with minimality flag (DPmin)
is Π0

2-complete.

The results hold both for general (open) terms and for ground terms.

• Confluence-related properties. We prove that

3

– confluence (CR) is Π0
2-complete, no matter whether this is taken for

single terms or uniform, or restricting to ground terms or not;
– uniform local ground confluence (grWCR) is Π0

2-complete;
– the other three variants of local confluence (WCR): single term local

ground confluence, single term local confluence and uniform local
confluence, are all Σ0

1-complete;
– the unique normal form property is Π0

1-complete, both for the vari-
ants UN and UN→, and both for single terms and the uniform version.

These results are summarized in the following tables:

→∗ →∗ · ←∗ ↔∗ DP DPmin

Σ0
1 Σ0

1 Σ0
1 Π1

1 Π0
2

SN WN CR grCR WCR grWCR UN UN→

uniform Π0
2 Π0

2 Π0
2 Π0

2 Σ0
1 Π0

2 Π0
1 Π0

1

single term Σ0
1 Σ0

1 Π0
2 Π0

2 Σ0
1 Σ0

1 Π0
1 Π0

1

While undecidability of many of these problems is folklore [11, 12], their
precise hardness has hardly been studied. An exception is [17], the oldest refer-
ence to undecidability of properties of TRSs, which also includes an observation
on the Turing degree of termination, hence essentially proving termination Π0

2-
complete. As we use a slightly different translation from Turing machines to
TRSs, we do not use the results or proofs of [17].

We find that the standard TRS properties SN, WN, CR, WCR and UN for
both the uniform and single term versions, all reside within the classes Π0

2, Π0
1

and Σ0
1 of the arithmetical hierarchy.

A somewhat unexpected result we already mentioned is that local ground
confluence is a harder decision problem than local confluence. While local con-
fluence is Σ0

1-complete and therefore recursively enumerable, it turns out that
local ground confluence Π0

2-complete.
Surprisingly, it turns out that dependency pair problems are of a much higher

degree of undecidability: They properly exceed the expressive power of first or-
der predicate logic, hence are not in the arithmetical hierarchy. In particular we
show that dependency pair problems are Π1

1-complete. So although dependency
pair problems were invented for proving termination, the complexity of general
dependency pair problems is much higher than the complexity of termination
itself. As the basic technique to prove Π1

1-hardness is by checking whether a
given relation is well-founded, dependency pair problems share a natural proof-
theoretic level with one of the most basic approaches to proving termination:
finding a compatible well-founded order.

A variant of dependency pair problems are dependency pair problems with
minimality flag. We show that for this variant the complexity is back to that of
termination: it is Π0

2-complete.

4

It should be noted that while our results are proved only for (first-order)
TRSs, the hardness results also hold for variants of rewriting that faithfully
simulate the reduction relation of TRSs; this is the case for each of the standard
variants of higher-order rewriting systems, see e.g. [39] for a survey. For such
systems, our completeness results will also hold when the rewrite relation is
decidable and terms are finite: For instance, every reduction in the standard
variants of higher-order rewriting can be encoded as an integer and checked
by suitable decidable predicates P ; hence, both the single term and uniform
versions of CR are Π0

2-complete for combinatory reduction systems (CRS) and
for pattern rewrite systems (PRS). We believe that our results are best presented
by using the standard, simple, and universally accepted notation for TRSs,
whence we leave the straightforward details of lifting our proofs to the various
notations of higher-order systems to the reader.

1.2. Related work on decidability in rewriting
The first undecidability results in rewriting concerned untyped lambda cal-

culus where normalization and termination was shown to be undecidable in 1937
[38]. For first-order term rewriting, uniform termination was shown to be Π0

2-
complete in 1978 by Huet and Lankford [17]. As their construction uses only
unary symbols, the result even holds for string rewriting systems. Since then
for several properties in rewriting undecidability was proved, but all typically
without exact classification in the arithmetical hierarchy. Undecidability of (lo-
cal and global) confluence on ground or non-ground terms is a folklore result
appearing in several textbooks, see for example [37]; one of the approaches is
based on undecidability of the word problem for groups [31, 4] and semigroups
[28]. Undecidability of termination of a single term rewrite rule was proved in
[5]. It is still an open problem whether termination of a single string rewrite rule
is decidable. Undecidability of simple termination was proved in [29]. There
is a substantial literature on more undecidability results in rewriting, including
[21, 9, 42, 11, 12, 19]. Conversely, intense research has been devoted to find-
ing decidable special cases of termination, normalization and confluence, see for
example [18, 6, 30, 40].

For some variants of rewriting systems, certain properties decidable in ordi-
nary TRSs become undecidable. As an example, this holds for all three standard
variants of conditional term rewriting systems (CTRSs), where it is undecidable
whether a term is in normal form, and indeed, the one-step rewrite relation is
undecidable [20, 3]; but as usual, imposing syntactic restrictions garners decid-
able subcases [3]. The classification of undecidability results for CTRSs in the
arithmetical hierarchy has not yet been studied.

There are some results in stream specifications. In [32] it was proved that
equality of streams is a Π0

2-complete problem. In fact this work triggered the
authors to start the investigations leading to the current paper. Also productiv-
ity of stream specifications has been proved to be Π0

2-complete. This has been
observed independently by several people; one proof was given in [35].

5

1.3. Structure of the paper
This paper is organized as follows.

• In Section 2 we give preliminaries on term rewriting, and define the basic
properties to be classfied into the arithmetical and analytical hierarchies

• In Section 3 we present Turing machines.

• In Section 4 we introduce the arithmetic and analytic hierarchy, and out-
line the proof obligations for proving X-completeness where X is one of
Π0

1, Σ0
1, Π0

2 and Π1
1.

• In Section 5 we come to our first results: we give a basic transformation
from Turing machines to TRSs such that (i) the halting of the Turing ma-
chine on the blank tape coincides with termination on a particular starting
term, and (ii) uniform halting of the Turing machine coincides with uni-
form termination. The same construction serves for weak normalization.

• In Section 6 we give a slight extension to this basic construction by which
our results on the basic properties are obtained.

• In Section 7 we give our results on some variants of the unique normal
form property, again by a slight extension to the basic construction.

• In Section 8 we present our results on confluence, both the general and
ground variant. Again the key is an extension of the basic construction
by a few rewrite rules.

• In Section 9 we do the same for local confluence.

• In Section 10 we make the step to the analytic hierarchy: we prove our
results on dependency pair problems.

• In Section 11 we are back in the arithmetic hierarchy: we show that depen-
dency pair problems with minimality flag behave as normal termination.

• Finally, in Section 12 we give conclusions and discuss future work.

2. Term Rewriting

We briefly review the most basic concepts and notation for term rewriting
systems; comprehensive accounts can be found in, for example, [25, 37].

A signature Σ is a finite set of symbols each having a fixed arity](f) ∈ N.
Let Σ be a signature and X a set of variable symbols such that Σ∩X = ∅. The
set Ter(Σ,X) of terms over Σ and X is the smallest set satisfying:

• X ⊆ Ter(Σ,X), and

• f(t1, . . . , tn) ∈ Ter(Σ,X) if f ∈ Σ with arity n and ∀i : ti ∈ Ter(Σ,X).

6

We use x, y, z, . . . to range over variables. The set of positions Pos(t) ⊆ N∗ of
a term t ∈ Ter(Σ,X) is inductively defined by: Pos(f(t1, . . . , tn)) = {ε} ∪ {ip |
1 ≤ i ≤](f), p ∈ Pos(ti)}, and Pos(x) = {ε} for variables x ∈ X . We use ≡ for
syntactical equivalence of terms.

A substitution σ is a map σ : X → Ter(Σ,X) from variables to terms. For
terms t ∈ Ter(Σ,X) and substitutions σ we define tσ as the result of replacing
each x ∈ X in t by σ(x). That is, tσ is inductively defined by xσ := σ(x)
for variables x ∈ X and otherwise f(t1, . . . , tn)σ := f(t1σ, . . . , tnσ). Let 2 be a
fresh symbol, 2 6∈ Σ∪X . A context C is a term from Ter(Σ,X ∪{2}) containing
precisely one occurrence of 2. Then C[s] denotes the term Cσ where σ(2) = s
and σ(x) = x for all x ∈ X .

A term rewriting system (TRS) over Σ, X is a set R of finitely many pairs
〈`, r〉 ∈ Ter(Σ,X), called rewrite rules and usually written as `→ r, for which
the left-hand side ` is not a variable (` 6∈ X) and all variables in the right-hand
side r occur in ` (Var(r) ⊆ Var(`)). Let R be a TRS. For terms s, t ∈ Ter(Σ,X)
we write s→R t if there exists a rule `→ r ∈ R, a substitution σ and a context
C ∈ Ter(Σ,X ∪ {2}) such that s ≡ C[`σ] and t ≡ C[rσ]; →R is the rewrite
relation induced by R. In case R is fixed, we shortly write → for →R.

A rewrite sequence with respect to R is a finite or infinite sequence u1, u2, . . .
of terms such that ui →R ui+1 for all appropriate i. If ~u = u1, . . . , un is a finite
rewrite sequence with t = u1 and s = un, we say that ~u is a rewrite sequence

from t to s and we write t
~u

→∗Rs, occasionally omitting ~u and/or R. If ~u is empty
we just have s = t.

A normal form t with respect to R is a term t such that no term u exists
for which t →R u. We write →∗ for the reflexive transitive closure of →, and
↔∗ for the reflexive symmetric transitive closure of →.

Definition 2.1. Let R be a TRS and t ∈ Ter(Σ,X) a term. Then R

• is strongly normalizing (or terminating) on t, denoted SNR(t),
if every rewrite sequence starting from t is finite.

• is weakly normalizing on t, denoted WNR(t),
if t admits a rewrite sequence t→∗ s to a normal form s.

• is confluent (or Church-Rosser) on t, denoted CRR(t),
if every pair of finite coinitial reductions starting from t can be extended
to a common reduct, that is, ∀t1, t2. t1 ←∗ t→∗ t2 ⇒ ∃d. t1 →∗ d←∗ t2.

• is locally confluent (or weakly Church-Rosser) on t, denoted WCRR(t),
if every pair of coinitial rewrite steps starting from t can be joined, that
is, ∀t1, t2. t1 ← t→ t2 ⇒ ∃d. t1 →∗ d←∗ t2,

• has the unique normal form property on t, denoted UNR(t), if there is is
at most one normal form n satisfying t↔∗ n,

• has the unique normal form property on t with respect to reduction, de-
noted UN→R (t), if there is is at most one normal form n satisfying t→∗ n.

7

The TRS R is strongly normalizing (SNR), weakly normalizing (WNR), confluent
(CRR) or locally confluent (WCRR), or has the unique normal form property
(with respect to reduction) (UNR, respectively UN→R) if the respective property
holds on all terms t ∈ Ter(Σ,X). For each property P , we say that R has the
“ground P”-property if P holds for all ground terms t ∈ Ter(Σ,∅).

A fruitful variant of König’s Lemma is the following.

Lemma 2.2. A finitely branching relation → is terminating on t if and only if
there exists n ∈ N such that every reduction of t has length < n.

Proof. The ‘if’-part is trivial. For the ‘only if’-part assume t has reductions
of unbounded length. As t has finitely many successors, at least one of these
successors has reductions of unbounded length too. Repeating the argument
on this successor yields an infinite reduction, contradicting the assumption of
termination. 2

3. Turing Machines

Definition 3.1. We now recapitulate the notions for Turing machines we need
in the remainder of the paper; comprehensive accounts of Turing machines and
computability can be found in [33, 36, 8].

A Turing machine M is a quadruple 〈Q,Γ, q0, δ〉 consisting of:

• finite set of states Q,

• an initial state q0 ∈ Q,

• a finite alphabet Γ containing a designated symbol 2, called blank, and

• a partial transition function δ : Q× Γ→ Q× Γ× {L,R}.

A configuration of a Turing machine is a pair 〈q, tape〉 consisting of a state q ∈ Q
and the tape content tape : Z→ Γ such that the carrier {n ∈ Z | tape(n) 6= 2} is
finite. The set of all configurations is denoted Conf M. We define the relation→M

on the set of configurations Conf M as follows: 〈q, tape〉 →M 〈q′, tape ′〉 whenever:

• δ(q, tape(0)) = 〈q′, f , L〉, tape ′(1) = f and ∀n 6= 0. tape ′(n+ 1) = tape(n),
or

• δ(q, tape(0)) = 〈q′, f , R〉, tape ′(−1) = f and ∀n 6= 0.tape ′(n−1) = tape(n).

Without loss of generality we assume that Q ∩ Γ = ∅. This enables us to
denote configurations as 〈w1, q, w2〉, denoted w−1

1 qw2 for short, with w1, w2 ∈ Γ∗

and q ∈ Q, which is shorthand for 〈q, tape〉 where tape(n) = w2(n + 1) for
0 ≤ n < |w2|, and tape(−n) = w1(n) for 1 ≤ n ≤ |w1| and tape(n) = 2 for all
other positions n ∈ Z.

The Turing machines we consider are deterministic. As a consequence, final
configurations are unique (if they exist), which justifies the following definition.

8

Definition 3.2. Let M be a Turing machine and 〈q, tape〉 ∈ Conf M. We de-
note by finalM(〈q, tape〉) the →M-normal form of 〈q, tape〉 if it exists and unde-
fined, otherwise. Whenever finalM(〈q, tape〉) exists then we say that M halts on
〈q, tape〉 with final configuration finalM(〈q, tape〉). Furthermore we say M halts
on tape as shorthand for M halts on 〈q0, tape〉.

Turing machines can compute n-ary functions f : Nn → N or relations
S ⊆ N∗. For our purposes, we require only unary functions fM and binary
relations >M ⊆ N× N.

Definition 3.3. Let M = 〈Q,Γ, q0, δ〉 be a Turing machine with S, 0 ∈ Γ. We
define a partial function fM : N ⇀ N for all n ∈ N by:

fM(n) =

{
m if finalM(q0Sn0) = · · · qSm0 · · ·
undefined otherwise

and for M total (i.e. M halts on all tapes) we define the binary relation >M ⊆
N× N by:

n >M m ⇐⇒ finalM(0Snq0S
m0) = · · · q0 · · · .

Observe that the set {>M| M a Turing machine that halts on all tapes } is the
set of recursive binary relations on N.

4. Levels of Undecidability

In the introduction we have briefly mentioned the arithmetical and analytical
hierarchy. We now summarize the main notions and results relevant for this
paper. For details we refer to standard texts on mathematical logic, e.g. [34, 33].
that contain further technical results regarding these hierarchies.

Definition 4.1. Let A ⊆ N. The set membership problem for A, or just the
problem A, is the question of deciding for given a ∈ N whether a ∈ A.

In the following, we usually identify the membership problem for A with the
set A itself, hence we shall refer to A as a problem. There is an obvious relation
between a problem defined as a predicate over the natural numbers and as a
set: ϕ(n) iff n ∈ {m ∈ N|ϕ(m)}, so we will interchange these notions freely.

Definition 4.2. Let A ⊆ N and B ⊆ N. Then A can be many-one reduced to
B, notation A ≤m B if there exists a total computable function f : N→ N such
that ∀n ∈ N. n ∈ A⇔ f(n) ∈ B.

In the remainder of the text, we refer to many-one reductions simply as
reductions.

Definition 4.3. Let B ⊆ N and P ⊆ 2N. Then B is called P-hard if every
A ∈ P can be reduced to B, and B is P-complete whenever additionally B ∈ P.

9

Thus, a problem B is P-hard if, for every problem A ∈ P, we can reduce
a question about A to a question about B: To decide “n ∈ A” we need only
decide “f(n) ∈ B”, where f is the total computable function that reduces A to
B.

The classification results in the following sections employ the following well-
known lemma, which states that whenever a problem A can be reduced via a
computable function to a problem B, then B is at least as hard as A.

Lemma 4.4. If A can be reduced to B and A is P-hard, then B is P-hard. 2

4.1. Preliminaries on encoding
The decidability problems we deal with in this paper are concerned with

term rewriting systems and Turing machines. To phrase these problems in
terms of natural numbers involves a coding step: one encodes a Turing ma-
chine M as a natural number pMq and subsequently transforms the question
‘Does the Turing machine M halt on the blank tape?’ to the problem {n|n =
pMq and M halts on the blank tape}, which is a subset of N.

The above procedure is standard and the actual encodings are therefore
usually not spelled out. The crucial property is that the encoding is computable;
for historical reasons, such computable encodings are usually called ‘effective’:

Definition 4.5. We call an encoding p−q of Turing machines as elements of
N effective in case

(i) one can decide if a number n is the encoding of some Turing machine M,

(ii) one can decide if the encoded Turing machine pMq can do a computation
step 〈q, tape〉 →M 〈q′, tape ′〉.

The second condition means that the set {(m,nq, nt, n′q, n′t)|m = pMq, nq =
pqq, nt = ptapeq, n′q = pq′q, n′t = ptape ′q, 〈q, tape〉 →M 〈q′, tape ′〉} is decidable.

Henceforth we will assume that we have an effective coding for Turing ma-
chines. The existence of such an encoding rests on the fact that we can effectively
encode finite lists of natural numbers as natural numbers. This can, for example,
be done using the well-known Gödel encoding: 〈n1, . . . , nk〉 := pn1+1

1 · . . . pnk+1
k ,

where p1, . . . , pk are the first k prime numbers [33], or by using an encoding of
Turing machines as lists of bits without leading zeroes and observing that each
such list correspons to a unique natural number [27].

Definition 4.6. We call an encoding 〈−〉 of finite list of numbers as elements
of N effective in case

(i) we have a computable length function lth〈n1, . . . , nk〉 = k,

(ii) we have a computable projection function (−)i such that (〈n1, . . . , nk〉)i =
ni (if 1 ≤ i ≤ k),

(iii) it is decidable if a number is the encoding of a list: Seq(n)⇔ ∃n1, . . . , nk(n =
〈n1, . . . , nk〉) is decidable.

10

Using the encoding of finite lists of natural numbers, we can effectively en-
code Turing machines. If fix such an encoding, the following, known as Kleene’s
T -predicate, is a well-known decidable problem: T (m,x, u, y) := m encodes a
Turing Machine M, u encodes the computation of M on x whose end result is y.
Using the Gödel encoding, we can rephrase this as a predicate over N. In the
present paper, we will – as usual – suppress these encodings and just say that

T (M, x, u, y) := u is a computation of M on input x with output y

is decidable. Similarly, we can effectively encode notions from term rewriting as
natural numbers and thus we can cast problems of TRSs as problems over N.
The only requirement of this encoding is that matching (whether a given term
matches a certain pattern) should be decidable.

Definition 4.7. We call an encoding p−q of TRSs as elements of N effective
if for any TRS R, from an encoding of a term psq, we can compute all triples
〈p`q, pσq, pCq〉 such that s ≡ C[`σ]

An effective encoding can easily be constructed for the class of finite first-
order TRSs due to the fact that it is decidable whether a rewrite rule applies
to a term in a (finite) TRS. Furthermore, we will always require that there are
finitely many rewrite rules, whence reduction is finitely branching.

We will leave the encoding implicit and draw a couple of basic consequences
regarding decidability from the existence of an effective encoding of TRSs as
described in Definition 4.7. These will be the basics for all our decidability
results in TRSs

Lemma 4.8. The following TRS properties are decidable.

(i) Given a finite TRS R, it is decidable if a term s is in normal form.

(ii) Given a finite TRS R and two terms t and s in R, it is decidable whether
s→R t

(iii) Given a finite TRS R, two terms t, s and a finite list of terms ~u in R, it

is decidable whether s
~u

→∗R t, that is, whether ~u is a reduction sequence
from s to t.

Proof. The first is obvious. For the second,

s→R t ≡ ∃`→ r ∈ R ∃σ ∃C (s = C[`σ] ∧ t = C[rσ])

Each of these existential quantifiers is bounded, so they amount to a finite
search; hence, this is a decidable problem. The fact that the TRS is finite is

crucial here. For the third, s
~u

→∗Rt just means

s = u1 ∧ u1 →R u2 ∧ u2 →R u3 ∧ · · · ∧ un−1 →R un ∧ un = t,

so this follows from the second.

11

4.2. The arithmetical and analytical hierarchies
Undecidable problems can be divided into hierarchies of increasing complex-

ity, the most well-known of which is the arithmetical hierarchy. An example of
a problem in this hierarchy is the problem whether t reduces in finitely many

steps to s: t →∗R s, i.e. whether ∃~u(t
~u

→∗Rs). Observe that as terms, term
rewriting systems and reduction sequences may be encoded as natural numbers,
we may regard the example as a “problem” in the sense of Definition 4.1.

The problem is undecidable in general and resides in the class Σ0
1, which is

the class of problems A ⊆ N such that A = {n|∃x ∈ NP (x, n)} where P (x, n)
is a decidable problem. Similar to Σ0

1, there is the class Π0
1, which is the class

of problems A such that A = {n|∀x ∈ NP (x, n)} with P (x, n) a decidable
problem. If we continue this procedure in the obvious manner, we obtain the
classes Σ0

n and Π0
n for every n ∈ N. Before we introduce the classes Σ0

n and Π0
n,

we recall and fix some conventions.

Remark 4.9. • We will suppress the domain of the existential quantifier:
modulo an effective encoding as natural numbers, the domain may be any
countable (or finite) set.

• As there exists an effective bijective encoding of natural numbers as finite
lists of natural numbers (Definition 4.6), we may replace any quantification
over Nk by a single quantification over N, and any problem over Nk can
thus be seen as a problem over N. Therefore we identify, for example, a
problem over N2 with a problem over N.

• A finite sequence of existential quantifiers can always be replaced by a sin-
gle existential quantifier, because ∃x, y(P (x, y))⇐⇒ ∃z ∈ N(P ((z)1, (z)2)).
Similarly for the universal quantifier.

Definition 4.10. Set Σ0
0 := Π0

0 := REC, the class of decidable problems.
For n ≥ 1, we define:
The class of problems Σ0

n consists of the A such that A = {n|∃x ∈ NP (x, n)}
where P is in Π0

n−1.
The class of problems Π0

n consists of the A such that A = {n|∀x ∈ NP (x, n)}
where P is in Σ0

n−1.
Finally, ∆0

n := Σ0
n ∩Π0

n.

Thus, a problemA(x) in Σ0
n can be written as ∃y1∀y2 . . . Qyn(R(x, y1, . . . , yn)),

where Q is ∃ or ∀, depending on the parity of n, and R(x, y1, . . . , yn) is decidable.
Similarly, A(x) in Π0

n can be written as ∀y1∃y2 . . . Qyn(R(x, y1, . . . , yn)).
Recall (e.g. from [33]) that the set of formulas in first-order arithmetic are

built from propositional connectives, quantifiers, equality, and a small set of
constants for multiplication, addition and comparison of natural numbers. The
usefulness of Definition4.10 is illustrated in the following lemma; we refer to
[33, 16, 34] for a proof and further details.

12

Σ0
1 Σ0

2

REC = ∆0
1

-

∆0
2

-
-

∆0
3

-

-

Π0
1

-
-

Π0
2

-
-

-

Figure 1: Arithmetical Hierarchy

Lemma 4.11. Every formula in first order arithmetic is equivalent to a formula
in prenex normal form, i.e. a formula with all quantifiers on the outside of the
formula.

Together with the fact that a sequence of quantifiers of the same type can
be replaced by one, as pointed out in Remark 4.9, we may conclude that every
problem that can be described by a formula in first order arithmetic is in one
of the classes Σ0

n or Π0
n.

The reason for the superscript “0” in Σ0
n and Π0

n is that all quantifiers in
the formulae characterizing the classes range over “the lowest possible type”:
N; there are no quantifiers over elements of higher type, e.g. elements of N→ N.

A natural question is whether the classes defined in Definition 4.10 are dis-
tinct. The following fundamental result in logic says that they are (see also [34],
[33] or [16]).

Lemma 4.12. REC = ∆0
1 and for all n ∈ N, ∆0

n (Σ0
n (∆0

n+1 and ∆0
n (

Π0
n (∆0

n+1. For all n ∈ N and all A ⊂ N, A ∈ Σ0
n ⇔ A ∈ Π0

n.

The arithmetical hierarchy is usually depicted as in Figure 1, where every
arrow denotes a proper inclusion. Schematically, one often writes ∃REC for
Σ0

1, ∀∃REC for Π0
2, etc. All classes are closed under bounded quantification:

if A(n) ⇔ ∃y < f(n)P (n, y), with f computable and P is decidable, then A
is decidable (and similarly for other classes in the hierarchy). To put it more
succinctly: ∀ < P = P for all classes P in the arithmetical hierarchy.

Let P be some class in the arithmetical hierarchy. It is easy to see that if the
set A is P-hard, and A is an element of some other class C in the arithmetical
hierarchy, then P ⊆ C. Consequently, if A is P-complete, Lemma 4.12 yields
that A is ‘essentially’ in P, i.e. not lower in the hierarchy.

Hence, to determine if a problem A is essentially in a certain class P, we
first show that A can be expressed with a formula of P (showing that A is in P
or lower). To prove that A is not lower, we then prove that A is P-hard.

Above the arithmetical hierarchy, there is the analytical hierarchy, where
we also allow quantification over infinite sequences of numbers—equivalently,
quantification over higher types such as N → N. As variables ranging over
infinite sequences we use α, β, etc. An example of an analytical formula is

13

∀α(∀x(α(x) →∗R α(x + 1)) → ∃x(α(x) = α(x + 1))), stating that the rewrite
system is SN. This is a Π1

1-formula. In Section 5 we will see that we can express
SN for finite TRSs with a formula that is much lower in the hierarchy: it is in
fact Π0

2.
The class Π1

1 is the class of problems A such that A = {k|∀α ∃xP (k, α, x)},
where P decidable. Similarly Σ1

1 is the class of problems A such that A =
{k|∃α ∀xP (k, α, x)}, where P is decidable. For analytical problems we have
several kinds of simplification procedures analogous to the ones of Remark 4.11.

Lemma 4.13. In the analytical hierarchy we have the following ways of sim-
plifying a sequence of quantifiers (where quantifiers without superscripts range
over N):

∀1∀1 7→ ∀1 ∀ 7→ ∀1 ∃∀1 7→ ∀1∃ ∀∃1 7→ ∃1∀

For the first two simplifications, we have analogous versions for ∃. For the
proof we refer to the standard literature; here we just give a rough idea. For
example, the meaning of the first simplification is that a formula ∀1α∀1β ϕ(α, β)
is equivalent to a formula of the form ∀1γψ(γ), with ψ in the same class as ϕ.
This can be observed by taking ψ(γ) := ϕ((γ)1, (γ)2), where γ is a variable
ranging over N → N and (−)1 and (−)2 are the projection functions lifted to
the function space, i.e. (γ)1 := λn ∈ N.(γ(n))1 and (γ)2 := λn ∈ N.(γ(n))2. It
is not difficult to show that ψ is in the same class as ϕ and ∀1α∀1β ϕ(α, β) is
equivalent to ∀1γϕ((γ)1, (γ)2).

From these simplifications one derives that each analytic formula is equiv-
alent to one of the form QnαnQn−1αn−1 . . . Q0xP (α1, . . . , αn, x, k) where P is
decidable and ~Q is a sequence of alternating quantifiers.

Definition 4.14. The analytical problems are problems A such that
A = {k|QnαnQn−1αn−1 . . . Q0xP (α1, . . . , αn, x, k)} with P decidable and ~Q a
finite sequence of alternating quantifiers. If n > 0 and Qn = ∃1, then the
problem is in the class Σ1

n. If n > 0 and Qn = ∀1, then it is in the class Π1
n.

∆1
n := Σ1

n ∩Π1
n

For the analytical hierarchy we can draw a similar diagram as the one in
Figure 1: replace Σ0

1 by Σ1
1 etc. We have the same results as Lemma 4.12: each

class is a proper subclass of the ones above it. The entire arithmetic hierarchy
is also a proper subclass of the lowest class, ∆1

1.
For later use, we note the positions of certain “standard” problems for Turing

machines; we refer to [33, 15].

Lemma 4.15. We have the following well-known results:

(i) the blank tape halting problem {M | M halts on the blank tape } is Σ0
1-

complete,

(ii) the initialized uniform halting problem {M | M halts on all inputs } is
Π0

2-complete,

14

(iii) the totality problem {M | M halts on q0S
n for every n ∈ N } is Π0

2-complete,

(iv) the set WF := {M | >M is well-founded } is Π1
1-complete.

These sets will be the basis for the hardness results in the following sections: we
will show that {M | M halts on the blank tape } is many-one reducible to “WN
for a single term” and thus conclude that “WN for a single term” is Σ0

1. This
will be done by effectively giving for every Turing machine M, a TRS RM and
a term tM such that

M halts on the blank tape iff WNRM
(tM)

Similar constructions will be carried out for the other problems that we con-
sider.

5. Strong and Weak Normalization

We use the translation of Turing machines M to TRSs RM from [25]; we give
the basic details of the translation in the following.

Definition 5.1. For every Turing machine M = 〈Q,Γ, q0, δ〉 we define a TRS
RM as follows. The signature is Σ = Q ∪ Γ ∪ {.} where the symbols q ∈ Q
have arity 2, the symbols f ∈ Γ have arity 1 and . is a constant symbol, which
represents an infinite number of blank symbols. The rewrite rules of RM are:

q(x, f(y))→ q′(f ′(x), y) for every δ(q, f) = 〈q′, f ′, R〉
q(g(x), f(y))→ q′(x, g(f ′(y))) for every δ(q, f) = 〈q′, f ′, L〉

together with four rules for ‘extending the tape’:

q(., f(y))→ q′(.,2(f ′(y))) for every δ(q, f) = 〈q′, f ′, L〉
q(x, .)→ q′(f ′(x), .) for every δ(q,2) = 〈q′, f ′, R〉

q(g(x), .)→ q′(x, g(f ′(.))) for every δ(q,2) = 〈q′, f ′, L〉
q(., .)→ q′(.,2(f ′(.))) for every δ(q,2) = 〈q′, f ′, L〉 .

We introduce a mapping from terms to configurations to make the connection
between the M and the TRS RM precise.

Definition 5.2. We define a mapping ϕ : Ter(Γ ∪ {.},∅)→ Γ∗ by:

ϕ(.) := ε ϕ(f(t)) := fϕ(t)

for every f ∈ Γ and t ∈ Ter(Γ∪ {.},∅). We define the set of (intended) terms:

TerM := {q(s, t) | q ∈ Q, s, t ∈ Ter(Γ ∪ {.},∅)} .

Then we define a map Φ : TerM → Conf M by:

Φ(q(s, t)) := ϕ(s)−1qϕ(t) ∈ Conf M .

15

Here .−1 denotes the reverse of a string. For example, if Γ contains (amongst
others) the two symbols 0 and 1, and s = 1(1(0(.))) and t = 0(0(1(.))), we have
Φ(q(s, t)) = 011q001.

The function Φ is introduced for simulating Turing machines by rewriting,
as is expressed in the following lemma of which the proof is straightforward.

Lemma 5.3. Let M be a Turing machine. Then RM simulates M, that is:

(i) ∀c ∈ Conf M. Φ−1(c) 6= ∅,

(ii) for all terms s ∈ TerM: s →RM
t implies t ∈ TerM and Φ(s) →M Φ(t),

and

(iii) for all terms s ∈ TerM: whenever Φ(s)→M c then ∃t ∈ Φ−1(c). s→RM
t.

The following is an easy corollary.

Corollary 5.4. For all s ∈ TerM: SNRM
(s)⇐⇒ M halts on Φ(s).

Proof. Induction on item (ii) of Lemma 5.3. 2

Let us elaborate a bit on Turing machines and the encoding of term rewriting.

Remark 5.5. As discussed in Section 4.1, terms and term rewriting systems
can be encoded as natural numbers. Finite rewrite sequences σ : t1 → . . . → tn
can be encoded as lists of terms. Then there is a Turing machine that, given the
encoding of a rewrite sequence as input, computes the length of |σ| := n of the
sequence, every term t1,. . . ,tn, in particular the first first(σ) := t1 and the last
term last(σ) := tn. There is a Turing machine that, given the TRS as input,
can check whether a natural number n corresponds to a valid rewrite sequence,
that is, check ti → ti+1 for every i = 1, . . . , (n − 1). Furthermore for a given
term t and n ∈ N it can calculate the set of all reductions of length ≤ n admitted
by t and thereby check properties like ‘all reductions starting from t have length
≤ n’ or ‘t is a normal form’.

We arrive at our first results.

Theorem 5.6. The properties SN and WN for single terms are Σ0
1-complete.

Proof. For Σ0
1-hardness we reduce the blank tape halting problem to a ter-

mination problem for single terms. Therefore, let M be an arbitrary Turing
machine. Then SNRM

(q0(., .)) if and only if M halts on the blank tape by
Corollary 5.4. Moreover observe that RM is orthogonal and non-erasing, thus
the SN and WN coincide [37]. Hence both properties SN and WN for single
terms are Σ0

1-hard by Lemma 4.4.
To show that SN is in Σ0

1, let R be a TRS and t ∈ Ter(Σ,X) a term. Since
R is finite, the rewrite relation is finitely branching. So by Lemma 2.2 the
following formula holds:

SNR(t)⇐⇒ ∃n ∈ N. all reductions starting from t have length ≤ n.

16

Thus we have one existential number quantifier and by Remark 5.5 the predicate
following the quantifier is recursive. Hence SN for single terms is Σ0

1-complete.
To show that WN is in Σ0

1, let R be a TRS and t ∈ Ter(Σ,X) a term. The
term t is WN if there exists a reduction to a normal form:

WNR(t)⇐⇒ ∃u, s. (t
u

→∗Rs ∧ sis a normal form).

This is a Σ0
1-formula, hence WN for single terms is Σ0

1-complete. 2

For showing Π0
2-completeness of the uniform properties SN and WN we would

like to use the equivalence “SN(RM)⇐⇒ M halts on all inputs”, in combination
with Lemma 4.15 (ii). However, this does not work because of the following two
problems:

(1) In RM we have terms of the form q(w, v), where q is not the start state and
wv is some arbitrary (finite) tape content. That M halts on all inputs, does
not guarantee that M halts when started in configuration 〈q, wv〉.

(2) In RM we have terms that do not correspond to a configuration at al, for
instance terms of the form q(q(w, v), u).

To deal with problem (2), we can use a technique [41, 37]. This technique
states that by introducing sorts in an unsorted TRS, termination on all terms is
equivalent to termination of well-sorted terms. As this introduction of sorts is
a kind of typing, it is called type introduction. This equivalence holds for TRSs
that are non-collapsing or non-duplicating; here it applies since RM satisfies
both. Thus, the goal is to assign sorts in such a way that well-sorted terms
correspond to proper configurations. We assign sort s0 → s0 to every f ∈ Γ,
sort s0 to . and sort s0 × s0 → s1 to every q ∈ Q. The terms of sort s0 are
normal forms. The (non-variable) terms of sort s1 are in TerM after replacing
all variables by ., and by Corollary 5.4 for all terms t ∈ TerM we have SNRM

(t)
if and only if M halts on Φ(t). Hence SNRM

holds if and only if M halts on all
configurations Conf M.

We now need to deal with problem (1); we would like that M halts on all
configurations Conf M if and only if M halts on all inputs, starting from the initial
state, but unfortunately this does not hold. We need a lemma about Turing
machines; we use the following result from [15].

Lemma 5.7 ([15]). For every Turing machine M that computes a function
f : N→ N we can effectively construct a Turing machine M̂ such that

(i) M̂ also computes f ,

(ii) M halts on all configurations if and only if f is total

So, if M halts on all inputs (when started in the initial state), then M̂ halts on
all configurations. This solves problem (1) and we have the following Corollary,
which follows from the fact that the initialized uniform halting problem (set

17

(ii) in Lemma 4.15) many-one reduces to the uniform halting problem (the set
in the Corollary), using Lemma 4.4. Basically, this corollary has already been
stated and proved in [15].

Corollary 5.8. The uniform halting problem

{M | M halts on all configurations 〈q, tape〉 ∈ Conf M }

is Π0
2-complete.

Theorem 5.9. The properties uniform SN and WN are Π0
2-complete.

Proof. For Π0
2-hardness: we have seen how the uniform halting problem for

M many-one reduces to the uniform termination problem for RM. Since RM is
orthogonal and non-erasing SN and WN coincide [37]. Hence SN and WN are
both Π0

2-hard by Lemma 4.4. That the uniform properties SN and WN are in
Π0

2 follows from the fact that these properties for single terms can be described
by Σ0

1-formulas and the uniform property ‘adds’ a universal number quantifier.
2

6. Reduce, Join and Convert

For two terms t, u and a rewrite relation → we consider the following three
basic properties:

• reduction: t→∗ u,

• joinability: t→∗ · ←∗ u, and

• conversion: t↔∗ u.

We will prove that all of these properties are Σ0
1-complete. For proving Σ0

1-
hardness, we extend the TRS RM from Definition 5.1 by extra rules by which
a fresh constant T can only reached from terms representing halting Turing
machine configurations.

Definition 6.1. For an arbitrary Turing machine M we define the TRS HM to
consist of the rules

q(x, f(y))→ T for every f ∈ Γ, q ∈ Q with δ(q, f) is undefined
q(x, .)→ T for every q ∈ Q with δ(q,2) is undefined.

where T is a fresh constant.

Lemma 6.2. Let M be any Turing machine and let → be the rewrite relation
with respect to RM ∪HM, as defined in Definition 5.1 and Definition 6.1. Then
the following properties are equivalent:

(i) M halts on the blank tape,

18

(ii) q0(., .)→∗ T,

(iii) q0(., .)→∗ · ←∗ T,

(iv) q0(., .)↔∗ T.

Proof. (i)⇒(ii): Let Φ(q0(., .)) →∗M Φ(s) be the halting computation on the
blank tape. Then q0(., .)→∗ s according to Lemma 5.3, and s→HM

T according
to the definition of HM.

(ii)⇒(iii): trivial.
(iii)⇒(iv): trivial.
(iv)⇒(i): Assume q0(., .)↔∗ T. Take such a conversion of minimal length.

The last step in this conversion is of the shape s→HM
T where Φ(s) is a halting

configuration. Due to minimality the conversion q0(., .)↔∗ s does not involve
T and is completely in RM. From Lemma 5.3 we now conclude that the initial
blank tape configuration is →M-convertible with a halting configuration. So it
remains to show that a configuration is halting if and only if it is→M-convertible
with a halting configuration. This follows by induction on the length of the
conversion from the observation that if c→M d then c is halting if and only if d
is halting, which follows from the fact that the Turing machine is deterministic.

2

Theorem 6.3. Given a TRS R with rewrite relation →, and two terms t, u, all
of the following three properties are Σ0

1-complete:

• reduction: t→∗ u,

• joinability: t→∗ · ←∗ u, and

• conversion: t↔∗ u.

Proof. As all reductions, joins and conversions can be enumerated, all of these
properties, being of the shape ∃ · · · , are in Σ0

1. For the first one this is immediate
from Lemma 4.8 (iii), the rest is similar.

From Lemma 6.2 we conclude Σ0
1-hardness, and hence Σ0

1-completeness, of
all three basic properties. 2

With the same argument as in Lemma 6.2, but now for an arbitrary configu-
ration rather than only the initial configuration, we obtain the following lemma,
which will be used later for results on confluence.

Lemma 6.4. Let M be any Turing machine and let → be the rewrite relation
with respect to RM ∪HM, as defined in Definition 5.1 and Definition 6.1. Then
for all configurations c ∈ Conf M and terms t ∈ Φ−1(c) we have that M halts on
c if and only if t→∗ T. 2

19

7. Unique Normal Forms

Recall that a TRS R

• has the unique normal form property on t, denoted UNR(t), if there is is
at most one normal form n satisfying t↔∗ n,

• has the unique normal form property on t with respect to reduction, de-
noted UN→R (t), if there is is at most one normal form n satisfying t→∗ n.

In the literature these notions are mainly considered in their uniform variants,
but as they admit the single term versions, we include those as well. In this
section we prove that all of these properties are Π0

1-complete. In order to do so
we take RM ∪HM and add a few extra rules introducing an extra normal form
U and forcing that T and U are the only normal forms. More precisely, for a
Turing machine M we define the TRS SM to consist of RM∪HM from Definition
5.1 and Definition 6.1, extended by the rules

q0(., .) → U
q(x, y) → q(x, y) for all states q ∈ Q
f(x) → f(x) for all f ∈ Γ

. → .

Lemma 7.1. The following properties are equivalent

(i) M does not halt on the blank tape,

(ii) UN→SM
(q0(., .)),

(iii) UNSM
(q0(., .)),

(iv) UN→SM
(t) for all terms t,

(v) UNSM
(t) for all terms t,

Proof. Write → for →SM
.

(v)⇒(iii)⇒(ii): trivial.
(v)⇒(iv)⇒(ii): trivial.
(ii)⇒(i): Assume M halts on the blank tape. Then according to Lemma 6.2

we have q0(., .) →∗ T. Moreover, we have q0(., .) →∗ U. Since T and U are
normal forms, this contradicts UN→SM

(q0(., .)).
(i)⇒(v): Assume (v) does not hold. Then there are two distinct normal

forms that are convertible. Due to the addition of the rules q(x, y) → q(x, y),
f(x) → f(x) and . → . the only normal forms are T, U and the variables. As
there are no collapsing rules, variables are not convertible to other terms, and
the only possible two distinct normal forms are T and U. Take a conversion
from T to U of minimal length. Then this is of the shape

T↔∗ q0(., .)→ U,

20

in which U is not involved in the conversion T ↔∗ q0(., .). Moreover, again
due to minimality in this conversion no terms are rewritten to itself. Hence this
conversion only uses rules from RM ∪HM. Now by Lemma 6.2 we conclude that
M halts on the blank tape, contradicting (i). 2

Theorem 7.2. The properties UN and UN→ are Π0
1-complete, both uniform

and for single terms.

Proof. From Lemma 7.1 we conclude Π0
1-hardness for all four properties.

It remains to prove that all four properties are in Π0
1. The property UN→R (t)

can be expressed as ∀~u,~vP (~u,~v) for P (~u,~v) being the conjunction of

• ~u = (u1, . . . , un), where u1 = t and ui →R ui+1 for i = 1, . . . , n− 1,

• ~v = (v1, . . . , vm), where v1 = t and vi →R vi+1 for i = 1, . . . ,m− 1,

• if both un and vm are normal forms, then un = vm.

As all ingredients of this characterization are decidable by Lemma 4.8, this
proves that single term UN→ is Π0

1. For single term UN a similar argument is
given by replacing →R in ui →R ui+1 and vi →R vi+1 by ↔R. The uniform
versions are obtained by replacing the requirements u1 = t and v1 = t by
u1 = v1. 2

In this theorem, we consider the uniform properties on the set of all terms,
not just ground terms. Also for the set of ground terms Π0

1-completeness of UN
and UN→ holds, as in Lemma 7.1 we proved equivalence for a single ground
term and all terms, and the set of all ground terms is in between.

8. Confluence and Ground Confluence

We investigate the complexity of confluence (CR) and ground confluence
(grCR), both uniform and for single terms.

For proving Π0
2-completeness of confluence it is natural to try to use an

extension of RM∪HM from Definitions 5.1 and 6.1 augmented with the following
rules:

run(x, y)→ T

run(x, y)→ q0(x, y)

At first glance it appears that q0(s, t) →∗ T if the Turing machine M halts on
all configurations (using rules from RM ∪ HM by Lemma 6.4), but a problem
arises if s and t contain variables, as the resulting term may not represent a
configuration. We solve the problem as follows.

21

For Turing machines M we define the TRS SM to consist of the rules of the
TRS RM ∪HM from Definitions 5.1 and 6.1 extended by the rules:

run(x, .)→ T (1)
run(., y)→ q0(., y) (2)

run(x, S(y))→ run(S(x), y) (3)
run(S(x), y)→ run(x, S(y)) . (4)

It is then easy to see that T and q0(., s) are convertible using the rules (1)–(4)
if and only if s is a ground term of the form Sn(.).

Theorem 8.1. Uniform confluence (CR), and uniform ground confluence (grCR)
are Π0

2-complete.

Proof. For proving Π0
2-hardness we reduce the totality problem to confluence.

Let M be an arbitrary Turing machine. We consider the TRS SM defined above.
By [1], confluence is a persistent property, and we may thus reduce confluence of
SM to confluence of a corresponding many-sorted TRSs. We assign sort s0 → s0
to all symbols from Γ, sort s0 to ., sort s0×s0 → s1 to every symbol in {run}∪Q,
and sort s1 to T. Then, by [1], the obtained many-sorted TRS is confluent if and
only if SM is confluent. Observe first that the terms of sort s0 are normal forms.
For terms of s1 with root symbol 6= ‘run’ the reduction exhibits no branching
as RM ∪HM is orthogonal and all redexes occur at the root as all subterms are
of sort s0. For terms of sort s1 with root symbol ‘run’ we observe that (3) and
(4) are inverse to each other. Hence, whenever s→∗(3)∪(4) t then also s→∗(3) t
or s→∗(4) t.

Therefore it suffices to consider the case

s2 ←(2) s1 ←∗(3) run(t1, t2)→∗(4) s3 →(1) T

where t1, t2 ∈ Ter(Γ ∪ {.},X). From the existence of such reductions we con-
clude that there exists n ∈ N such that s1 ≡ run(.,Sn(.)), s3 ≡ run(Sn(.), .),
and s2 ≡ q0(.,Sn(.)). Conversely, for every n ∈ N such reductions exist. As a
consequence the TRS S is confluent if and only if q0(.,Sn(.)) →∗S T for every
n ∈ N, that is, by Lemma 6.4 if and only if M halts on q0S

n for every n ∈ N.
Moreover, the only terms containing critical pairs are on the form run(t1, t2)
where t1 and t2 are ground terms; hence, ground confluence coincides with
confluence for S, and we have thus proved Π0

2-hardness.
To show that both properties are in Π0

2 let R be a TRS. Then R is confluent
if and only if the following holds:

CRR ⇐⇒ ∀s. ∀u, v. ∀t1, t2. (s
u

→∗Rt1 ∧ s
v

→∗Rt2

⇒ ∃r, q. ∃t3. (t1
r

→∗Rt3 ∧ t2
q

→∗Rt3))

By quantifier compression we can simplify the formula such that there is only
a single universal quantifier followed by a single existential quantifier. The

22

corresponding formula for grCR is almost the same, as the quantification of t
over (encodings of) all terms is merely replaced by a quantification over all
ground terms. Therefore both the uniform properties CR and grCR are Π0

2-
complete. 2

Theorem 8.2. Confluence (CR), and ground confluence (grCR) for single terms
are Π0

2-complete.

Proof. For Π0
2-hardness we use the totality problem. Let M be an arbitrary

Turing machine. We define the TRS S as RM∪HM from Definitions 5.1 and 6.1
extended by:

run(x)→ T

run(x)→ run(S(x))
run(x)→ q0(., x)

The term t := run(.) rewrites to T and q0(.,Sn(x)) for every n ∈ N. Further-
more we have q0(.,Sn(.))→∗S T if and only if M halts on q0S

n by Lemma 6.4.
Consequently, CR and grCR for single terms are Π0

2-hard.
For Π0

2-completeness note that we can formalize CR and grCR for single terms
simply by dropping the universal quantification over all terms (∀t ∈ N) from the
respecitive Π0

2-formulas for the uniform properties in the proof of Theorem 8.1.
2

9. Local Confluence and Local Ground Confluence

We now investigate the complexity of local confluence (WCR) and local
ground confluence (grWCR) both uniform and for single terms.

Theorem 9.1. The properties local confluence (CR) both for single terms and
uniform, and local ground confluence (grCR) for single terms are Σ0

1-complete.

Proof. For Σ0
1-hardness we use the blank tape halting problem. Let M be an

arbitrary Turing machine, and let the TRS S consist of RM∪HM from Definitions
5.1 and 6.1, extended by the following rules:

run→ T

run→ q0(., .)

The only critical pair is T← run→ q0(., .). By the Critical Pairs Lemma [37],
WCR holds if and only if all critical pairs can be joined. As a consequence, for
this system uniform WCR coincides with WCR(t) and grWCR(t) for the single
term t := run. Moreover, we have q0(., .) →∗S T if and only if M halts on the
blank tape by Lemma 6.2. Hence, WCR(t), grWCR(t) and WCR hold if and only
if M halts on the blank tape, and consequently all these properties are Σ0

1-hard.
Let (R, t) encode finite TRS R and term t. There is a Turing machine that on

inputs (R, t) computes all (finitely many) critical pairs, and all (finitely many)

23

one-step reducts of t. For inclusion of all three problems in Σ0
1, it thus suffices

to show that the following problem is in Σ0
1: Decide, on input (i) a finite TRS

S, (ii) n ∈ N, and (iii) terms t1, s1, . . . , tn, sn, whether for every i = 1, . . . , n the
terms ti and si have a common reduct. This property can clearly be described
by the following Σ0

1-formula:

∃~u,~v, ~p. (s1
u1

→∗Rp1

v1
←∗Rt1 ∧ · · · ∧ sn

un

→∗Rpn
vn

←∗Rtn)

2

Surprisingly it turns out that uniform local ground confluence is Σ0
2-complete

and thereby strictly harder than uniform local confluence (on the set of all open
terms).

Theorem 9.2. Uniform local ground confluence (grCR) is Π0
2-complete.

Proof. For Π0
2-hardness we use reduction from the uniform halting problem.

Let M be a Turing machine. We define the TRS S as extension of RM with:

run(x, y)→ T

run(x, y)→ q0(x, y)
q(f(~x), g(~y))→ T for all combinations of symbols f, g such that

the left-hand side is not matched by a rule in RM

where ~x and ~y are vectors of distinct variables chosen such that the left-hand
sides of all the above rules are left-linear.

Assume there exists a configuration c on which M does not halt. Then
by Lemma 5.3 there exists q(s, t) ∈ Φ−1(c), and by Corollary 5.4 RM is not
terminating on q(s, t). Every reduct of q(s, t) is an RM-redex and contains no
further redexes. In particular, none of the rules above are applicable to any
reduct. Hence, q(s, t) 6→∗ T and thus T← run(s, t)→ q(s, t) is not joinable.

Conversely, assume that M halts on all configurations. Let D = {run} ∪Q,
and let V be the set of ground terms having a root symbol in D. Observe that
all symbols not in D are constructor symbols; for local ground confluence, it
thus suffices to show that every reduct of a term in V rewrites to T. Every term
from V is a redex, and all reducts of terms in V are in V ∪{T}. Thus it suffices
to show that no term in V admits an infinite root rewrite sequence.

Claim: There is an infinite root rewrite sequence starting from a term in
V iff if a ground term on the form q(s, t) admits an infinite RM-root rewrite
sequence.

Proof of claim: None of the rules added above can contribute essentially
to such a sequence, and can be omitted. Furthermore, the rules above can only
replace a subterm by T, or a term on the form q0(x, y). As the rules of RM

are non-duplicating, and as no pattern of any rule contains the symbol T, only
a fixed, finite number of contractions of the rules added above can occur in
an infinite reduction. Hence, there exists an infinite RM-root rewrite sequence.

24

Furthermore, observe that, below the root (which is in Q), the left-hand sides
of rules from RM match only symbols from Γ ∪ {.}. Let s′ and t′ be ground
terms obtained from s and t respectively by replacing all subterms having a
root symbol not in Γ ∪ {.} with .. Then q(s′, t′) admits an infinite RM-rewrite
sequence, s′, t′ ∈ Ter(Σ∪{.},∅), and q(s′, t′) ∈ TerM. (End of proof of claim).

Consequently, Φ(q(s′, t′)) is a non-terminating configuration of M by Corol-
lary 5.4, contradicting the assumption that M halts on all configurations. 2

10. Dependency Pair Problems

In this section we present the remarkable result that finiteness of dependency
pair problems, although invented for proving termination, is of a much higher
level of complexity than termination itself: Tt is Π1

1-complete, both for the
uniform property and for the property for single terms. This only holds for the
basic version of dependency pairs; for the version with minimality flag we will
show it is of the same level as termination itself.

For relations→1,→2 we write→1 /→2 =→∗2 · →1. For TRSs R, S instead
of SN(→R,ε / →S) we shortly write SN(Rtop/S); in the literature [14] this is
called finiteness of the dependency pair problem {R,S}. So SN(Rtop/S) means
that every infinite→R,ε ∪ →S reduction contains only finitely many→R,ε steps.
The motivation for studying this comes from the dependency pair approach [2]
for proving termination: for any TRS R we can easily define a TRS DP(R) such
that we have

SN(DP(R)top/R)⇐⇒ SN(R).

The main result of this section is Π1
1-completeness of SN(Rtop/S), even of

SN(Stop/S), for both the uniform and the single term variant. In the subsequent
section we will consider the variant SN(Rtop/min S) with minimality flag which
only makes sense for the uniform variant, and show that it behaves as normal
termination: it is Π0

2-complete.
For proving Π1

1-hardness of SN(Stop/S) we now adapt the translation of
Turing machines to TRSs given in Definition 5.1. The crucial difference is that
every step of the Turing machine ‘produces’ one output pebble ‘•’. Thereby we
achieve that the resulting TRS R•M admits only finitely many steps at root level
even if M does not terminate.

Definition 10.1. For every Turing machine M = 〈Q,Γ, q0, δ〉 we define the
TRS R•M as follows. The signature Σ is Σ = Q∪Γ∪{., •,T} where • is a unary
symbol, T is a constant symbol, and the rewrite rules of R•M are:

`→ •(r) for every `→ r ∈ RM

and rules for rewriting to T after successful termination:

q(x, 0(y))→ T whenever δ(q,S) is undefined
•(T)→ T .

25

Then we obtain the following lemma. (Recall the Definition of >M in 3.3.)

Lemma 10.2. For every Turing machine M = 〈Q,Γ, q0, δ〉 and n,m ∈ N we
have n >M m if and only if q0(Sn,Sm)→∗R•

M
T. 2

Moreover we define an auxiliary TRS Rpickn for generating a random natural
number n ∈ N in the shape of a term Sn(0(.)):

Definition 10.3. We define the TRS Rpickn to consist of the following three
rules:

pickn→ c(pickn) pickn→ ok(0(.)) c(ok(x))→ ok(S(x)) .

The following lemma is straightforward.

Lemma 10.4. The TRS Rpickn has the following properties:

• pickn→∗ ok(Sn(0(.))) for every n ∈ N, and

• whenever pickn →∗ ok(t) for some term t then t ≡ Sn(0(.)) for some
n ∈ N.

We are now ready to prove Π1
1-completeness of dependency pair problems.

Theorem 10.5. Both SN(t, Rtop/S) and SN(Rtop/S) are Π1
1-complete.

Proof. We prove Π1
1-hardness even for the case where R and S coincide. We

do this by using that the set checking well-foundedness of >M Π1
1-complete. Let

M be an arbitrary Turing machine. From M we construct a TRS S together
with a term t such that:

SN(Stop/S)⇐⇒ SN(t, Stop/S)⇐⇒ >M is well-founded .

Let S consist of the rules of R•M]Rpickn together with:

run(T, ok(x), ok(y))→ run(q0(x, y), ok(y), pickn) , (5)

and define t := run(T, pickn, pickn).
As the implication from the first to the second item is trivial, we only have to

prove (1) SN(t, Stop/S)⇐⇒ >M is well-founded and (2)>M is well-founded⇐⇒
SN(Stop/S).

(1) Suppose SN(t, Stop/S) and assume there is an infinite descending >M-
sequence: n1 >M n2 >M Then we have:

run(T, pickn, pickn)→∗ run(T, ok(Sn1(0(.))), ok(Sn2(0(.)))) (∗)
→S,ε run(q0(Sn1(0(.)),Sn2(0(.))), ok(Sn2(0(.))), pickn)
→∗ run(T, ok(Sn2(0(.))), ok(Sn3(0(.))))
→S,ε . . .

26

Note that q0(Sni(0(.)),Sni+1(0(.))) →∗ T (for all i ≥ 1) because M computes
the binary predicate >M. So we have an infinite reduction starting from t,
contradicting SN(t, Stop/S). So there is no infinite descending >M-sequence.

(2) Suppose that >M is well-founded and assume that σ is a rewrite sequence
containing infinitely many root steps. Note that (5) is the only candidate for
a rule which can be applied infinitely often at the root. Hence all terms in
σ have the root symbol run. We consider the first three applications of (5)
at the root in σ After the first application the third argument of run is pickn.
Therefore after the second application the second argument of run is a reduct
of pickn and the third is pickn. Then before the third application we obtained
a term t whose first argument is T, and the second and the third argument
are reducts of pickn. Observe from t on the rewrite sequence σ must be of the
form as depicted above (∗) (c.f. Lemma 10.4) for some n1, n2, . . . ∈ N. Then for
all i ≥ 1: ni >M ni+1 since q0(Sni(0(.)),Sni+1(0(.))) →∗ T. This contradicts
well-foundedness of >M.

It remains to prove that both SN(Rtop/S) and SN(t, Rtop/S) are in Π1
1. Let R

and S be TRSs. Then SN(Rtop/S) holds if and only if all→R,ε ∪ →S reductions
contain only a finite number of→R,ε steps. An infinite reduction can be encoded
as a function α : N → N where α(n) is the n-th term of the sequence. We can
express the property as follows:

SN(Rtop/S)⇐⇒ ∀α : N→ N.
((∀n ∈ N. α(n) rewrites to α(n+ 1) via →R,ε ∪ →S)⇒
∃m0 ∈ N. ∀m ≥ m0. ¬(α(m) rewrites to α(m+ 1) via →R,ε)) ,

containing one universal function quantifier in front of an arithmetic formula.
Here the predicate ‘n rewrites to m’ tacitly includes a check that both n and
m indeed encode terms. For the property SN(t, Rtop/S) we simply add the
condition t = α(1) to restrict the quantification to such rewrite sequences α
that start with t. Hence SN(Rtop/S) and SN(t, Rtop/S) are Π1

1-complete. 2

Infinitary Rewriting
We now sketch how the proof of Theorem 10.5 also implies Π1

1-completeness
of the property SN∞ in infinitary rewriting. For its definition and basic obser-
vations see [26]. Since in Theorem 10.5 we proved Π1

1-hardness even for the case
where R and S coincide, we conclude that SN(Stop/S) is Π1

1-complete. This
property SN(Stop/S) states that every infinite S-reduction contains only finitely
many root steps. This is the same as the property SNω when restricting to
finite terms; for the definition of SNω see [43] (basically, it states that in any
infinite reduction the position of the contracted redex moves to infinity). How-
ever, when extending to infinite terms it still holds that for the TRS S in the
proof of Theorem 10.5 the only infinite S-reduction containing infinitely many
root steps is of the shape given in that proof, only consisting of finite terms.
So SNω for all terms (finite and infinite) is Π1

1-complete. It is well-known that
for left-linear TRSs the properties SNω and SN∞ coincide, see e.g. [43]. Since

27

the TRS S used in the proof of Theorem 10.5 is left-linear we conclude that the
property SN∞ for left-linear TRSs is Π1

1-complete.

11. Dependency Pair Problems with Minimality Flag

A variant in the dependency pair approach is the dependency pair problem
with minimality flag. Here all terms in the infinite →R,ε ∪ →S-reductions are
assumed to be S-terminating. This can be defined as follows. For relations
→1,→2 we write

→1 /min →2 = (→∗2 · →1)∩ →SN(→2),

where the relation →SN(→2) is defined to consist of all pairs (x, y) for which x is
→2-terminating. For TRSs R,S instead of SN(→R,ε /min →S) we shortly write
SN(Rtop/min S). In [14] this is called finiteness of the dependency pair problem
(R,Q, S) with minimality flag ; in our setting the middle TRS Q is empty. Again
the motivation for this definition is in proving termination: From [2] we know

SN(DP(R)top/minR)⇐⇒ SN(R).

For SN(Rtop/min S) it is not clear how to define a single term variant, in par-
ticular for terms that are not S-terminating. In this section we prove that
SN(Rtop/min S) is Π0

2-complete. For doing so first we give some lemmas.

Lemma 11.1. Let R,S be TRSs. Then SN(Rtop/min S) holds if and only if

(→R,ε ∪ →S)∩ →SN(→S)

is terminating.

Proof. By definition SN(Rtop/min S) is equivalent to termination of
(→∗S · →R,ε)∩ →SN(→S). Since

(→∗S · →R,ε)∩ →SN(→S) ⊆ ((→R,ε ∪ →S)∩ →SN(→S))+,

the ‘if’-part of the lemma follows.
For the ‘only if’-part assume that (→R,ε ∪ →S)∩ →SN(→S) admits an

infinite reduction. If this reduction contains finitely many →R,ε-steps, then
this reduction ends in an infinite →S-reduction, contradicting the assump-
tion that all terms in this reduction are S-terminating. Thus, this reduc-
tion contains infinitely many →R,ε-steps, hence can be written as an infinite
(→∗S · →R,ε)∩ →SN(→S) reduction. 2

Lemma 11.2. Let R,S be TRSs. Then SN(Rtop/min S) holds if and only if for
every term t and every m ∈ N there exists n ∈ N such that

for every n-step (→R,ε ∪ →S)-reduction t = t0 → t1 → · · · → tn
there exists i ∈ [0, n] and an m-step →S-reduction of ti.

28

Proof. Due to Lemma 11.1 SN(Rtop/min S) is equivalent to finiteness of all
(→R,ε ∪ →S)-reductions only consisting of →S-terminating terms. Since (→R,ε

∪ →S) is finitely branching, by Lemma 2.2 this is equivalent to:

For every term t there exists n ∈ N such that no n-step (→R,ε

∪ →S)-reduction t = t0 → t1 → · · · → tn exists for which ti is
→S-terminating for every i ∈ [0, n].

Since →S is finitely branching, by Lemma 2.2 →S-termination of ti for every
i ∈ [0, n] is equivalent to the existence of m ∈ N such that no ti admits an m-
step →S-reduction. After removing double negations, this proves equivalence
with the claim in the lemma. 2

Theorem 11.3. The property SN(Rtop/min S) for given TRSs R,S is Π0
2-complete.

Proof. SN(R) is Π0
2-complete and SN(R) is equivalent to SN(DP(R)top/minR),

so SN(Rtop/min S) is Π0
2-hard. That SN(Rtop/min S) is in Π0

2 follows from Lemma
11.2. 2

12. Conclusions and Future work

We have analyzed the proof theoretic complexity of the basic properties of
term rewriting systems and ascertained their positions in the arithmetical and
analytical hierarchies.

The position of Π0
2 of the properties WN and SN is as expected, whereas the

position Π1
1 of dependency pair problems is remarkably high.

For confluence problems, we have shown that (ground) confluence is Π0
2-

complete both uniform and for single terms. Surprisingly, there is a difference
between the arithmetical complexity of local confluence (on open terms) and
local confluence on ground terms. While the former is Σ0

1, the latter turns out
to be Π0

2-complete.
There is a wide range of possible future research concerned with gauging the

proof theoretic complexity of properties of propeties of (subclasses of) rewrit-
ing sytems. For example, one may attempt to ascertain, for every property
for which undecidability is known, its precise position in the hierarchies. For
certain properties this is quite easy, e.e. termination of a single term rewrite
rule: Undecidability was proved in [5] by using a reduction from the uniform
halting problem for Turing machines. As a consequence, this problem is Π0

2-
hard. As it is clearly also in Π0

2 as an instance of termination of a finite TRS,
we immediately obtain Π0

2-completeness.
For other properties, earlier undecidability results cannot easily be lifted to

find the exact position in the hierarchies. For instance, in [11] it was proved that
restricting to the subclass of TRSs that are WN, the property SN is undecidable,
so called relative undecidability. The technique used there for proving this is
based on reduction from Post’s Correspondence Problem (PCP), by which it is
not possible to prove hardness for classes higher in the arithmetical hierarchy
than Π0

1 or Σ0
1. Instead by adding a fresh symbol ⊥ and rules f(xn, . . . , xn)→ ⊥

29

for every symbol f ∈ Σ, we easily force our construction from Theorem 5.9 to be
WN without changing validity of SN. In this way it is easily proved that uniform
SN is Π0

2-complete for TRSs satisfying WN. For all other relative undecidability
results obtained in [11, 12] one can wonder what is the precise level in the
hierarchies. For cases where this is higher than Π0

1 or Σ0
1, the constructions

given there will not be helpful, as they are all based on PCP.
Other possible future work includes a further study of the place in the arith-

metical and analytical hierarchies of properties of variations of rewriting: for
example graph rewriting, conditional rewriting, probabilistic rewriting, and in-
finitary rewriting. For some of these variants the proof theoretic complexity
of the various fundamental properties may be expected to be the same as in
the “pure” setting we have considered in this paper. For infinitary rewriting,
we expect that the extension to infinite terms and reductions entails that most
properties will be classified in the low levels of the analytical hierarchy—for
example, we have already sketched a proof of how SN∞ behaves like depen-
dency pair problems yielding Π1

1. For WN∞ we are working on a proof of
Π1

2-completeness (surprisingly higher than SN∞); for other properties, we do
not know.

Finally, we believe it interesting to study restricted classes of rewriting sys-
tems where the properties we consider are undecidable, yet at strictly lower
levels in the hierarchies than proved in this paper. Note that care must be
taken with the notion of “restriction”: For example, local confluence in general
has turned out to be lower in the arithmetical hierarchy than the “restricted”
case of local confluence on ground terms.

References

[1] T. Aoto and Y. Toyama. Persistency of confluence. J. Universal Computer
Science, 3:1134–1147, 1997.

[2] T. Arts and J. Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236:133–178, 2000.

[3] J. Bergstra and J. Klop. Conditional rewrite rules: Confluence and termi-
nation. Journal of Computer and Systems Sciences, 32(3):323–362, 1986.

[4] W. Boone. The word problem. Proceedings of the National Academy of
Sciences, 44(10):1061–1064, 1958.

[5] M. Dauchet. Termination of rewriting is undecidable in the one-rule case.
In MFCS, number 324 in LNCS, pages 262–270. Springer, 1988.

[6] M. Dauchet, T. Heuillard, P. Lescanne, and S. Tison. Decidability of the
confluence of finite ground term rewrite systems and of other related term
rewrite systems. Information and Computation, 88(2):187–201, 1990.

[7] J. Endrullis, H. Geuvers, and H. Zantema. Degrees of undecidability in term
rewriting. In E. Grädel and R. Kahle, editors, Proceedings of Computer

30

Science Logic (CSL09), volume 5771 of Lecture Notes in Computer Science,
pages 255–270. Springer, 2009.

[8] M. Fernandez. Models of Computation: An Introduction to Computability
Theory. Undergraduate topics in computer science. Springer London, 2009.

[9] A. Geser. Omega-termination is undecidable for totally terminating term
rewriting systems. Journal of Symbolic Computation, 23(4):399–411, 1997.

[10] A. Geser, M. A., E. Ohlebusch, and H. Zantema. Relative undecidability
in term rewriting: I. the termination hierarchy. Information and Compu-
tation, 1278(1):101–131, 2002.

[11] A. Geser, A. Middeldorp, E. Ohlebusch, and H. Zantema. Relative unde-
cidability in term rewriting part i: The termination hierarchy. Information
and Computation, 178(1):101–131, 2002.

[12] A. Geser, A. Middeldorp, E. Ohlebusch, and H. Zantema. Relative unde-
cidability in term rewriting part ii: The confluence hierarchy. Information
and Computation, 178(1):132–148, 2002.

[13] A. Geser, E. Middeldorp, A. Ohlebusch, and H. Zantema. Relative unde-
cidability in term rewriting: II. the confluence hierarchy. Information and
Computation, 178(1):132–148, 2002.

[14] J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair
framework: Combining techniques for automated termination proofs. In
F. Baader and A. Voronkov, editors, Proceedings of LPAR’04, volume 3452
of Lecture Notes in Artificial Intelligence, pages 301–331. Springer, 2005.

[15] G. T. Herman. Strong computability and variants of the uniform halting
problem. Zeitschrift für Mathematische Logik und Grundlagen der Mathe-
matik, 17(1):115–131, 1971.

[16] P. G. Hinman. Recursion-Theoretic Hierarchies. Springer, 1978.

[17] G. Huet and D. Lankford. On the uniform halting problem for term rewrit-
ing systems. Technical Report 283, IRIA, France, 1978.

[18] F. Jacquemard. Decidable approximations of term rewriting systems.
In Rewriting Techniques and Applications, 7th International Conference,
RTA-96, New Brunswick, NJ, USA, July 27-30, 1996, Proceedings, volume
1103 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[19] F. Jacquemard. Reachability and confluence are undecidable for flat term
rewriting systems. Information Processing Letters, 87(5):265–270, 2003.

[20] S. Kaplan. Conditional rewrite rules. Theoretical Computer Science,
33(2):175–193, 1984.

31

[21] F. Klay. Undecidable properties of syntactic theories. In Proceedings of
RTA ’91, volume 488 of Lecture Notes in Computer Science, pages 136–
149. Springer-Verlag, 1991.

[22] S. C. Kleene. Recursive predicates and quantifiers. Transactions of the
American Mathematical Society, 53:41–73, 1934.

[23] S. C. Kleene. Arithmetical predicates and function quantifiers. Transac-
tions of the American Mathematical Society, 79:312–340, 1955.

[24] S. C. Kleene. Hierarchies of number theoretic predicates. Bulletin of the
American Mathematical Society, 61:193–213, 1955.

[25] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and
S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 1–116. Oxford University Press, Inc., 1992.

[26] J. W. Klop and R. C. de Vrijer. Infinitary normalization. In We Will Show
Them! Essays in Honour of Dov Gabbay, volume 2, pages 169–192. College
Publications, 2005.

[27] K.-I. Ko and D.-Z. Du. Theory of Computational Complexity. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley
and Sons, Inc., New York, 2000.

[28] Y. Matiyasevich. Simple examples of undecidable associative calculi. Soviet
Mathematics Doklady, 8:555–557, 1967.

[29] A. Middeldorp and B. Gramlich. Simple termination is difficult. Applica-
ble Algebra in Engineering, Communication and Computing, 6(2):115–128,
1995.

[30] T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewrit-
ing systems. Information and Computation, 178(2):499–514, 2002.

[31] P. Novikov. On the algorithmic unsolvability of the word problem in group
theory. Proceedings of the Steklov Institute of Mathematics, 44:1–143, 1955.

[32] G. Roşu. Equality of streams is a Π0
2-complete problem. In Proceedings

of the 11th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’06). ACM, 2006.

[33] H. Rogers. Theory of recursive functions and effective computability. Mc
Graw Hill, 1967.

[34] J. R. Shoenfield. Mathematical Logic. Association for Symbolic Logic, by
A.K. Peters, 1967.

[35] J. G. Simonsen. The Π0
2-completeness of most of the properties of rewriting

you care about (and productivity). In R. Treinen, editor, Proceedings of the
20th Conference on Rewriting Techniques and Applications (RTA), volume
5595 of Lecture Notes in Computer Science, pages 335–349. Springer, 2009.

32

[36] M. Sipser. Introduction to the Theory of Computation. Thomson Course
Technology, 2nd edition, 2006.

[37] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

[38] A. Turing. Computability and λ-definability. Journal of Symbolic Logic,
2:153–163, 1937.

[39] F. van Raamsdonk. Higher-order rewriting. In Proceedings of the 10th
International Conference on Rewriting Techniques and Applications (RTA
’99), volume 1631 of Lecture Notes in Computer Science, pages 220 – 239.
Springer-Verlag, 1999.

[40] R. M. Verma and A. Hayrapetyan. A new decidability technique for ground
term rewriting systems with applications. ACM Transactions on Compu-
tational Logic, 6(1):102–123, 2005.

[41] H. Zantema. Termination of term rewriting: interpretation and type elim-
ination. Journal of Symbolic Computation, 17(1):23–50, 1994.

[42] H. Zantema. Total termination of term rewriting is undecidable. Journal
of Symbolic Computation, 20(1):43–60, 1995.

[43] H. Zantema. Normalization of infinite terms. In A. Voronkov, editor, Pro-
ceedings of the 19th Conference on Rewriting Techniques and Applications
(RTA), volume 5117 of Lecture Notes in Computer Science, pages 441–455.
Springer, 2008.

33

