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Abstract

We present a brief introduction to braids, in particular simple positive braids,
with a double emphasis: first, we focus on term rewriting techniques, in par-
ticular, reduction diagrams and decreasing diagrams. The second focus is our
employment of the colored braid notation next to the more familiar Artin
notation. Whereas the latter is a relative, position dependent, notation, the
former is an absolute notation that seems more suitable for term rewriting
techniques such as symbol tracing. Artin’s equations translate in this no-
tation to simple word inversions. With these points of departure we treat
several basic properties of positive braids, in particular related to the word
problem, confluence property, projection equivalence, and the congruence
property. In our introduction the beautiful diamond known as the permuto-
hedron plays a decisive role.
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Braid theory is an area residing mostly in pure mathematics, where it oc-
curs in a variety of areas, topology, group theory, homology theory, category
theory, and also in mathematical physics and emerging theories in computer
science such as quantum information. (See Abramsky [1] for many intercon-
nections between such theories.) It is close to the border of mathematics
and theoretical computer science, in particular to universal algebra and term
rewriting.

Braids are interesting for the community of ‘term rewriters’ as they
present several issues that are prominent in term rewriting theory: termina-
tion methods, word problems, completion methods, confluence proof meth-
ods, reduction diagram construction, and residual theory.
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Vice versa, term rewriting is apparently also relevant for braid theory.
This is in particular the case for reduction diagrams and for residual theory,
originated in the study of lambda calculus, Combinatory Logic, and orthog-
onal rewrite systems. The main source for the origins of residual theory is
the work of Huet and Lévy [2, 3, 4, 5].

Lévy introduced for example the Cube equation that was fruitfully applied
by Dehornoy [6, 7], who showed how to combine these notions of residual the-
ory with the familiar rewriting technique of reduction diagrams, constructed
by tiling with elementary reduction diagrams, introduced in Klop [8, 9] for
term rewriting systems and lambda calculus; see also [10].

In this paper we will refer to this method to prove confluence as confluence
by tiling [8, 9]. This method now is known in braid theory as word reversal.
A compendium of all these notions and techniques, pertaining to rewriting
in general, can be found in Terese [10]. See also Axiomatic Rewriting Theory
VI [11] by Paul-André Melliès.

One of the first occurrences of the notion of braids is in the notebooks
of Gauss, as discovered in [12]. The theory of braids was put on the math-
ematical map by Emil Artin [13, 14, 15]. An important step was the work
of Frank Garside, in his ground-breaking thesis [16] and subsequent article
[17]. The work of Artin and Garside was continued by the seminal work of
Brieskorn and Saito [18].

For an extensive survey of classical and recent braid theory see Birman
and Brendle [19]. Another recent much encompassing introduction to the
deeper mathematics of braid theory is the book Kassel-Turaev [20]. However,
in this chapter we will stay much more on the surface than those works. A
short enjoyable popular description of braids and braid groups is contained
in one of the books of Martin Gardner [21], where also some nice anecdotes
are mentioned illustrating the significance of braids in quantum theory. An
encompassing coverage of recent developments in braid theory and Garside
theory is in the books by Dehornoy [6, 7] and coworkers. In this paper we will
occasionally refer to some similar notions and methods as treated in these
works. Our paper will not present new results in braid theory; it is meant
to be methodological, highlighting the connections mentioned above, with
approaches from different sources that in spite of independent developments
have led to very compatible notations and terminology.
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1. Braid notations

The original topological description of braids is as follows:

B2B1

A2A1

B3B2B1

A3A2A1

B4B3B2B1

A4A3A2A1

Each cube represents one braid, so there are 3 braids. For each braid, there is
a finite sequence of initial positions, the dots numbered 1, . . . , n in the upper
row in the cube, and an equally long sequence of final positions 1, . . . , n in a
parallel row at the bottom of the cube. There are flexible strings (or strands)
attached from the upper dots downwards to the final dots. The strings can
be continuously deformed, but with the restriction that they may not leave
the restricted space of the cube, and moreover, they may only ‘go’ downward
and not bending upward again. They also should not intersect each other.

1.1. Artin’s notation

If we ‘flatten’ the cubes above to a thinner slate of space in the viewing
direction, it is clear that there is a way for the strings to cross each other
‘over’ or ‘under’, or depending on our viewing direction, ‘before’ or ‘behind’.
This is just as in the usual representation of knots as two-dimensional figures.
Just as for knots, to suggest that a string is crossing behind (under) another
string, is pictorially suggested by omitting a little bit of the string, as if it
were invisible there.

We can stylise the drawing of braids even more by drawing them on a
kind of music notation paper, with horizontal lines, as in:

1

2

3

1

2

1 2−1 1 2−1 1 2

Now the Artin notation of braids assigns numbers 1, . . . ,n− 1 to the gaps
between consecutive strands, and then records with k a crossing in the k-th
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gap that is ‘positive’ (the higher strand over the lower), k−1 the reverse, the
higher strand under the lower. These crossings are then concatenated to
form a braid word. For instance, the above braid is 12−112−112 in Artin’s
notation.

In this chapter we will only consider positive braid words, so all crossings
are positive.

Definition 1.1 (Positive braids). A braid is positive if all crossings in Artin’s
notation are positive.

So when drawing the braid horizontally, for every crossing the upper
strand crosses over the lower strand.

Example 1.2. For instance, the following braid is positive:

1

2

3

4

5

1

2

3

4

1 2 4 1 3 1 4 3

This braid corresponds to the braid word 12413143 in Artin’s notation.

1.2. The colored braid notation: braid codes

We will now introduce an alternative notation for braids. It is mentioned
in [22], with the name colored braids presentation. Consider the following
positive 3-strand braid:

1

2

3

1

2

1 2 1

It is 121 in Artin’s notation. We note that this notation is a relative notation
with respect to which pair of strands is crossing: the first 1 in 121 signifies
the crossing of strand 1 over 2, numbered from above, but the second 1
signifies the crossing of strand 2 over 3.

In the colored braids presentation, this relativity as to the occurrence of
the symbols does not occur.
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Definition 1.3 (Braid codes). In the colored braids presentation, a braid
over n strands is represented by a word over alphabet

{αij | 1 ≤ i, j ≤ n, i 6= j } ,

and a symbol αij stands for the i-th strand crossing over the j-th strand.

The braid 121 is then rendered as α12α13α23. So this braid code signifies
as the first ‘action’ the crossing of strand 1 over 2, followed by crossing strand
1 over 3, and concluded with crossing 2 over 3.

To avoid repeated use of the phrase ‘colored braid notation’, we will
refer to the words formed from the αij-symbols as braid codes, also for a
clear distinction from the braid words in the usual rendering with symbols
1, 2, 3, . . .. It should be noted that this option is unusual in the standard
mathematical approach, because it does not generalise to the case of some
important classes of Artin monoids. From our term-rewriting inclined view
it is favourable, because in term rewriting techniques, tracing symbols plays
a prominent role.

In the sequel of this chapter we will make extensive use of the braid codes.
Of course the notation is not as compact as Artin notation, but the crossing
symbols αij facilitate the analysis of tracing symbols and drawing conclusions
from such tracings, much better than the Artin notation. But the colored
braid notation has also some disadvantages.

Remark 1.4. The following caveat should be noted for the colored braid
notation. Consider positive 4-strand braids. In the relative notation, any
word over the alphabet { 1, 2, 3 } is a braid. For the colored braid notation,
only a proper subset of the words over the symbols αij denotes a braid. For
instance, α13 cannot occur at the beginning of the braid word. After an
α23 we can have an α13. Also, an α21 or an α32 cannot be the beginning.
Inspecting the permutohedron, to be introduced later on, which displays both
notations, confirms this. In Section 4 we will be more precise about which
positive braid codes are ‘well-formed’.

Remark 1.5. There is another representation for braids that employs gen-
erators αij, known as the BKL presentation; see [19, 22]. There αij indicates
a general swap of strands i and j, not necessarily adjacent.

Remark 1.6. Both Artin’s and colored braid notation are inspired by the
well-known representations of the group Sn of permutations of 1, . . . , n.
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Let us now turn to some interesting problems for positive braids, namely
the question when two braids are equivalent and the question whether posi-
tive braids are confluent.

B5B4B3B2B1

A5A4A3A2A1

B5B4B3B2B1

A5A4A3A2A1

Figure 1: Girl with braided hair: how to prolong the braids to the same result?

The latter problem has been nicely described in Schmidt and Strohlein [23],
in the following anthropomorphic words: A girl has two braids consisting of,
say, 4 strings as shown in Figure 1: The father starts braiding the left braid,
the mother of the girl starts braiding the right braid. After some initial
‘twists’ they notice that they do it in a different way. But they want to
arrive, eventually, at two identical braids. Question: can they go on and still
arrive at braids that are the same? This is the question of confluence, we
consider this question in Section 7. Before we can answer this question, we
need to know:

(i) What does it means to continue braiding? Formally, this is a multipli-
cation of braids; we consider braid multiplication in Section 2.

(ii) What does it mean that two braids that are the same? The question of
braid equivalence has been decisively answered by Artin, see Section 3.

2. Braid multiplication

Braids can be concatenated or multiplied, denoted a · b, as follows:
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1

2

3

4

1

2

3

2 1 2 3

a

1 2 3 2 1 2

b

ab

In the graphical representation, the product a · b is just the concatenation
ab of the graphical representations of a and b. So multiplication coincides
with word concatenation for Artin’s notation. However, this is not the case
for colored braid notation as we will see below. To avoid confusion we write
concatenation of braid words without infix operator, so ‘·’ is reserved for
braid multiplication.

Remark 2.1. Actually, we could be more precise at this point. Whereas
braid words in the usual rendering correspond to a braid monoid, this is no
longer the case for braid codes in this paper with the αij-symbols. They
ask for a more refined setting, and correspond to a category with as objects
permutations of { 1, . . . , n }; two braid codes can be composed only if they
correspond to matching permutations. In fact, this is the adopted categorical
framework in Dehornoy [7].

2.1. Product in Artin’s notation

In Artin’s notation, the braid word ab is simply the concatenation of the
braid words for a and b; we have

a = 2123

b = 123212

a · b = 2123123212

2.2. Product in colored braid notation

For the colored braid notation, multiplication is more difficult. Due to
the tracing of strands we need to take the permutation effect of a on b into
account when computing a ·b. In the above example, let us numerate strands
with 1, 2, 3, 4 from top to bottom. In the colored braid notation we have:

a = α23α13α12α14

b = α12α13α14α34α42α23
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Note that a causes the following permutation σ of the strands:

σ(1) = 4 σ(2) = 2 σ(3) = 1 σ(4) = 3

For computing a ·b we need to apply the inverse of the permutation of a to b:

σ−1(b) = α32α34α31α41α12α24

Then a · b is the concatenation of a with σ−1(b):

a · b = α23α13α12α14α32α34α31α41α12α24

3. Equivalence of braids : Artin’s equations

Two braids are equivalent if they can be transformed into each other by
means of a continuous deformation1 of the strands such that the strands
never leave the cube and never intersect and the start and end points are
kept fixed throughout. For instance the following two braids are equivalent:

B3B2B1

A3A2A1

B3B2B1

A3A2A1

continuous
transformation

Think of the strands as rubber bands that are fixed on the top and the
bottom. For the example of these two braids, it is not difficult to see that
both braids can be transformed into each other by dragging the rubber bands
inside the cube. While this topological definition of braid equivalence gives
some intuition, it is not easy to work with.

1See e.g. [24] for a precise description how a continuous deformation is ‘modelled’ by
small discrete transformations.
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3.1. Equivalence in Artin’s notation

Artin has shown in his classical papers [13, 14, 15] that the topological
equivalence can be characterised by simple equations on the braid represen-
tations. The braid 13 is ‘the same’, topologically viewed, as 31, just by
shifting the crossings in the other order:

1

2

3

4

1

2

3

1 3

equivalent to

1

2

3

4

1

2

3

3 1

Also 14 is equivalent with 41. We will write 13 = 31, and 14 = 41. In
general we have:

i j = j i if |i− j| > 1

For adjacent gaps like 1 and 2, respective crossings do not commute:

1

2

3

1

2

1 2

not equivalent to

1

2

3

1

2

2 1

But it is not hard to see that starting with 12 and 21, we can make them
(topologically) equal by continuing 12 with 1 and 21 with 2. So 121 = 212:

1

2

3

1

2

1 2 1

equivalent to

1

2

3

1

2

2 1 2

Note that 121 and 212 are indeed topologically the same; an experiment
with actual strings of wire will demonstrate this. In fact, one of the so-called
Reidemeister moves for the equivalence of knots is at stake here. In general
we have:

i j i = j i j if |i− j| = 1
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The equations above completely define the topological equivalence con-
sidered (see Artin [13, 14, 15]). Historically, these relations were proved by
Artin to be a representation of the braid group; that they also constitute a
presentation of the positive braid monoid was proved only in 1967 by Gar-
side. For more background, see [25]. For an authoritative introduction to the
algebraic theory of positive braids, together with complexity considerations
of interest to computer scientists, see [26, Chapter 9].

Theorem 3.1 (Positive braid relations). Two positive braids with n strands
are (topologically) equivalent if and only if the corresponding braid words in
Artin’s notation are equal modulo the following system of equations:

i j = j i if |i− j| > 1 (1)

i j i = j i j if |i− j| = 1 (2)

for all i, j ∈ { 1, . . . , n }.

Example 3.2. In the following example in Figure 2 we give the convertibility
class of ∆4 = 123121. We also give there the colored braid notation that
will be introduced next:

3.2. Equivalence in colored braid notation

Using braid codes, the relations of Artin and, for positive braids, Garside,
take a different pleasant form. For instance 121 = 212 becomes

α12α13α23 = α23α13α12

For braids with n strands, the braid equations are now (see Bangert [22]):

Theorem 3.3 (Braid equivalence for braid codes). Two positive braid di-
agrams with n strands are (topologically) equivalent if and only if the cor-
responding braid codes are equal modulo the following system of equations
between braid codes:

αklαij = αijαkl if i, j > k, l (3)

αijαikαjk = αjkαikαij (4)

for all pairwise distinct i, j, k, l ∈ { 1, . . . , n }.
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123121
α12α13α14α23α24α34

123212
α12α13α14α34α24α23

132312
α12α34α14α13α24α23

312312
α34α12α14α13α24α23

132132
α12α34α14α24α13α23

312132
α34α12α14α24α13α23

321232
α34α24α14α12α13α23

321323
α34α24α14α23α13α12

121321
α12α13α23α14α24α34

212321
α23α13α12α14α24α34

213231
α23α13α24α14α12α34

231231
α23α24α13α14α12α34

213213
α23α13α24α14α34α12

231213
α23α24α13α14α34α12

232123
α23α24α34α14α13α12

323123
α34α24α23α14α13α12

Figure 2: The connections denote conversion steps between the 16 positive simple
braid words convertible with Garside’s fundamental word ∆4. There are two
symmetries: left-right is inversion for Artin’s notation and up-down is Garside’s
renaming R, swapping the generators 1,2,3 to 3,2,1, so R(1) = 3, R(2) =
2, R(3) = 1. For the braid codes rendering, the symmetries are a bit more
complicated.
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We write x ≈ y if x is convertible with y by equational reasoning using
Artin’s equations (both for Artin’s notation and for braid codes).

The equation (4) occurs in several areas, e.g. quantum groups, and is
often called the Yang-Baxter equation. The equations in the relative notation,
121 = 212, etc., are sometimes also called by that name.

So the braid axioms are now just inversions of certain factors in braid
codes.

Definition 3.4 (Inversion). Let w = a1a2 · · · an be a word in Σ∗ for some
alphabet Σ, then inv(w) = anan−1 · · · a1, the inversion of w.

Proposition 3.5. Both in Artin and braid code notation:

α ≈ β ⇔ inv(α) ≈ inv(β)

Proof. Obvious since the axioms are invariant under inversion.

An extensive example is given in Figure 2 which will also be relevant
when we study the permutohedron P4 later on.

Remark 3.6. Figure 2 illustrates the following three observations that have
easy proofs, left to the reader:

(i) Conversion and translation (between Artin and braid code notation)
commute.

(ii) Inversion and conversion commute, both for Artin and braid code no-
tation.

(iii) However, inversion and translation notation do not commute.

Before continuing our development of the basic theory both for the usual
Artin notation of braid words, and for our alternative version of braid codes,
it is time for a brief recapitulation of the nontrivial ontology of notions in
the set-up so far. There are several types of objects involved. In Figure 3 we
have surveyed these types of objects in an entity-relationship diagram.

Note how striking it is that purely continuous topological notions can
be captured fully in the discrete setting of words, word rewriting, finite au-
tomata, complete string rewrite systems, and corresponding algorithms to
efficiently compute normal forms.
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Figure 3: Ontology of braids: from continuous to discrete.
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4. Translating between Artin notation and braid codes

Using string diagrams for positive braid words as in the preceding figures,
it is easy to convert Artin notation involving 1, 2, 3, . . . into braid codes
involving α12, α23, . . .. But in general this is too cumbersome and we need
a simple algorithm for interchanging notations, and also to see which braid
codes are well-formed. In fact these braid codes constitute a regular language.
We will now give a finite state automaton (FSA) for this regular language and
a finite state transducer (FST) [27, 28, 29] for interchanging Artin notation
and braid codes. In fact, this FSA and FST present themselves in a very
easy way; they are known as the permutohedron of order n, Pn for short.
The permutohedron P2 is a line segment, P3 is the hexagon in Figure 4 and
P4 is in Figure 6.

123

213

231

132

312

312

1 | α21

1 | α12

2 | α132 | α31

1 | α23

1 | α32

2 | α32

2 | α23

1 | α311 | α13

2 | α12

2 | α21

Figure 4: Permutohedron P3 as the finite state transducer translating Artin’s
notation of braids with 3 strands into braid codes. A braid word in Artin’s notation
is entered at the top 123 and translated following the arrows, registering at each
step the translation instruction a | b. Also the reverse translation, after flipping
each a | b into b | a.

5. Simple braid words

There is a particular important subset of braids, consisting of the simple
braids, that is braids that not have multiple crossings of the same pair of
strands. With the braid codes we can state this more precisely.
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Definition 5.1 (Simple braid codes). A braid code αi1j1αi2j2 · · ·αimjm is
simple if for every 1 ≤ k < l ≤ m we have { ik, jk } 6= { il, jl }.

So a simple braid code contains neither: two occurrences of αij, nor both αij
and αji. For instance, the braid code α12α13α31 is not simple.

As we are only interested in positive braids, we moreover require simple
braids to be positive.

Definition 5.2 (Simple braid). A braid is simple if it is positive and corre-
sponds to a simple braid code.

The salient feature of simple braids is that their convertibility classes
correspond 1-1 with permutations of 1, 2, 3, . . . , n, for braids working on n
strands.

Theorem 5.3. Every positive braid is the product of simple braids. Let A
be a positive braid, then there exist n ∈ N and simple braids B1, B2, . . . , Bn

such that

A = B1 ·B2 · · · · ·Bn

Example 5.4. Figure 5 gives an example how to cut up a braid into simple
braid code constituents:

α12α13α14α23 α41α21α24 α14α34α31 α41α43α42α13

= α12α13α14α23 · α34α24α23 · α23α13α12 · α12α13α14α23

Here we have indicated the cutting points by extra spacing.

Remark 5.5. Cutting up a positive braid word in factors that are simple, is
very much akin to the well-known method in λ-calculus and term rewriting
of cutting up a whole reduction (rewrite) sequence into simple pieces, known
as developments ; see [10, Chapter 4] and [30]. In such a development, no
created redex may be contracted; in a simple braid word, no earlier crossing
may be repeated.

Remark 5.6. We note that the minimal number of cuts into simple parts
depends on which word in the conversion class is considered, as also noted
in [7, Example 1.11]. For instance:

11335577 = 1 · 13 · 35 · 57 · 7
≈ 13571357 = 1357 · 1357
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α12
α13 α14

α23

α41
α21

α24

α14

α34
α31

α41
α43

α42

α13

Figure 5: Positive non-simple braid partitioned in four simple braids

6. The permutohedron

We will now investigate the permutohedron, which is a thing of beauty
and also a key to much of the basics for braids.

In Garside [16, 17] it is mentioned that the Cayley graph of the funda-
mental word ∆4 is the “2-skeleton” of the truncated dodecahedron, which is
also known as the permutohedron.

Definition 6.1. For a braid with N + 1 strands, so N gaps, the Garside
element ∆N is defined as follows:

(i) Πs ≡ 12 · · · s.

(ii) ∆N ≡ ΠNΠN−1 · · ·Π2Π1.

In braid code notation, Garside’s fundamental word ∆N is represented by

n−1∏
i=1

n∏
j=i+1

αij

So,

(i) ∆2 is represented by α12,
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(ii) ∆3 by α12α13α23 (see also Figure 4), and

(iii) ∆4 by α12α13α14α23α24α34 (see also Figures 2 and 6).

The permutohedron can be rendered as a 3-dimensional polytope as dis-
played in Figure 6. We have enriched the 24 nodes of the permutohedron with
the images of the corresponding permutations of the original sequence 1234,
which decorates the top of this structure, which is known to be a complete
lattice. The bottom is the swapped sequence 4321. On the edges there are
the generators 1, 2, 3 of Artin’s notation of braids, and also the correspond-
ing αij for the braid codes. There are 6 squares and 8 hexagons and these
14 facets demarcate the 16 simple braid words in both notations, mutually
convertible, representing the Garside element ∆4, displayed in Figure 2, in
Artin’s notation and as braid codes.

We note in advance that the squares and hexagons are precisely the two
elementary diagrams that will be encountered in Section 7 about diagram
constructions.

Remark 6.2.

(i) Note the symmetry with respect to the centre of the sphere: not
only the ‘states’ 1234, . . . , 4321 are mirrored, also the ‘transitions’
α12, α23, . . . (6 in number) are preserved in this symmetry, both in
Artin’s and in colored notation.

(ii) Apart from these obvious symmetries, the permutohedron has the
group of permutations S4 as group of symmetries: Given two of its
nodes s1 and s2, then the permutation transposing the label of s1 into
that of s2, and performed on all vertices, constitutes a symmetry of P4

mapping s1 to s2. In other words, P4 is vertex-transitive with respect
to the action of S4 on P4 as described.

(iii) A third symmetry of P4 (and of Pn in general) is that it is ‘edge-label
transitive’ in the following sense. Consider the node s = 3241 ∈ P4

and use the corresponding permutation ρ as a rotation of P4 such that
s becomes the top 1234. Then the Artin labels 1, 2, 3 are invariant
under ρ:

s1
i
→ s2 ⇒ ρ(s1)

i
→ ρ(s2)
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2α
2
3

1
α 13 3α

24

3α
24 1

α 13

2α
34

2
α12

2
α
1
4

1α
2
3

3
α
1
4

3
α12 1α

34

1234

2134
1243

2143

2314

3214

2341

3241

1423

1432

4123

4132

2413

2431
4213

4231

1324

3124
1342

3142

3412
3421

4312

4321

1
α12 3α

343α
34 1

α12

2α
24

2
α 13

2
α
1
4

3
α 13 1α

24

1α
24 3

α 13

3α
2
3

1
α
1
4

1
α
1
4

3α
2
3

3
α
1
4

1α
2
3

1α
34 3

α12

2
α 13

2α
24

2α
2
3

2
α12

2α
34

Figure 6: Permutohedron of order 4 with Artin notation and colored braid no-
tation. The 24 vertices contain the permutations of 1, 2, 3, 4, the elements of the
symmetric group S4. The edges are labelled with the elementary transpositions
generating S4. The 14 facets, 6 squares and 8 hexagons, are identical to the
non-trivial elementary braid diagrams in Definition 7.2.

The braid code generators αij are renamed

s1
αij
→ s2 ⇒ ρ(s1)

αρ(i)ρ(j)
→ ρ(s2) .

(iv) The order on P4 from top 1234 to bottom 4321 is also called the Bruhat
order.

A remarkable feature of P4 is that it tessellates the 3-dimensional space
R3. Analogous facts hold for Pn+1, tessellating Rn, n = 1, 2, . . .. Indeed,
the unit segment P2 tessellates the whole line R, just as the hexagon P3

tessellates the plane R2. That P5 tessellates R4 is harder to see. We wonder
if this tessellation property has a significance for braids.

The permutohedron possesses an interesting property, that we will call
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the ‘homotopy property’, because it is reminiscent of that notion in algebraic
topology.

Proposition 6.3 (Homotopy property). Any two paths on Pn having the
same start point s1 and end point s2, and such that each step decreases the
Bruhat order, are convertible.

The well-known Bruhat order < is defined on permutations by

σ < τ ⇔ swaps(τ) ( swaps(σ)

where swaps(σ) = { 〈i, j〉 | i < j, σ(i) > σ(j) }. Equivalently, on simple
braids we have x > y if ∃z. xz = y.

The permutohedron is such a wonderful object that we like to contemplate
it a bit more. As we have seen, it is the domain of simple positive braids.
Enriched with the two styles of notations, the Artin notation and the braid
codes, it is also a finite state transducer, translating the two notations into
each other, not only for simple but for general positive braid words. The
permutohedron is also suitable as a location for general positive braid words,
not only simple ones that start from the north pole 1234 to the south pole
4321, all the way or part of the way.

There are 16 ways to go from 1234 to 4321 if we go only downwards. See
Figure 2. But we can also enter general positive braid words starting from
1234 when we use the back arrows (also labelled with 1, 2, 3), or as braid
codes with αji for a reversed αij arrow. The general positive braid word can
then travel as a ‘curve’ all over the globe P4, possibly with cycles. Even
so, we can recognise which factors of the braid word are simple: they are
the parts of the curve where the arrows are uni-directional. Only when the
direction of the travel of the curve is altered, a simple part is ending, and a
new simple part is starting. Thus e.g. the cyclic curve 1111 · · · splits in a
new simple part after each step, all just one step 1.

Braid words thus travelling over the globe P4 in whatever way, can be
‘continuously’ transformed into others, where a part of the word is nudged
or swapped in a 4 or 6-cell to the other side.

Garside has, as is well-known, a beautiful theorem stating that any posi-
tive braid ‘curve’, travelling over Pn, can by nudging in the elementary cells
(or elementary diagrams as we have used), be transformed to wind itself a
certain number of times around the globe Pn, followed by some tail that
cannot make a total orbit around the globe; the tail is then ‘prime’ to ∆.
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Primeness is easy to relate to the geometry of the globe Pn: if the curve does
not travel through two antipodal points on the globe, it is prime to ∆.

Thus any positive braid has a unique ‘winding number’ n and a unique
tail modulo convertibility. A braid thus is reminiscent of a wave: it contains
a fixed number of maximal waves, followed by a tail of small waves. The
medium that is oscillating, is the state space 1234, . . . , 4321. Moreover the
big waves commute with the small waves, they can be at will preponed or
postponed as Garside demonstrated in his algebraic calculations in [17]:

1∆ ≈ ∆3 2∆ ≈ ∆2 3∆ ≈ ∆1

for P4, and for general Pn:

∆∆i ≈ i∆∆

The verification is omitted here, it is in Garside [17] and many introductions
to braid theory. It is a simple exercise.

7. Confluence and equivalence via reduction diagrams

The confluence problem is now: given two elements u, v of this braid
semi-group, can we always find elements x, y such that ux ≈ vy?

Theorem 7.1 (Confluence). Positive braids are confluent, that is

∀u, v. ∃x, y. ux ≈ vy

This was first proven by Garside. Actually he proved ∀u, v. ∃x, y. xu ≈ yv,
but this is easily seen to be equivalent to confluence using Proposition 3.5.
Garside’s proof involved an ingenious computation for general positive braids,
relying on the use of his fundamental word ∆n. We will follow a quite different
road, employing reduction diagrams.

Reduction diagrams, a familiar technique from term rewriting, allow for
an elegant proof of confluence of positive braids. Reduction diagrams have
been used in many of the early papers on the lambda calculus, and in the
more general theory of term rewriting systems. In Klop [8] reduction dia-
grams with empty steps were introduced. These reduction diagrams are built
by gluing together simple elementary diagrams. For braids we use the el-
ementary diagrams as shown in Definition 7.2. They are just a graphical
way of rendering the defining equations for braid equivalence. We have also
included the necessary trivial elementary diagrams that involve empty sides,
including the one with all sides empty.
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Definition 7.2 (Elementary diagrams for braids). For a braid with n strands,
we have the following elementary diagrams

αkl

αij αij

αkl

αjk

αij
αik

αij

αik αjk

for pairwise distinct i, j, k, l ∈ { 1, . . . , n }, and trivial elementary diagrams

αij

αij αij αij

αij

αij

for i, j ∈ { 1, . . . , n }, i 6= j. Here the dotted lines without arrowhead stand
for empty steps.

The (non-trivial) diagrams express the braid code equations αijαkl =
αklαij and αijαikαjk = αjkαikαij. The trivial elementary diagrams stand for
trivial equations such as εαij = αijε and εε = εε, where ε is the empty step,
functioning as a unit element.

Remark 7.3 (Elementary diagrams in Artin’s notation). In Artin’s notation
the elementary diagrams for braids with n strands look as follows:

i

j j

i

for |i− j| > 1

i

j
j

i

i j

for |i− j| = 1

and trivial elementary diagrams

i

i i i

i

i
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for i, j ∈ { 1, . . . , n }.

In the theory of term rewriting such elementary diagrams are familiar for
confluence proofs. Confluence is obtained when tiling an initial pair of finite,
divergent reduction sequences, leads to a completed reduction diagram with
converging sides that are tantamount to confluence. So we now naturally
apply the tiling effort in the present issue of confluence for braids.

The elementary diagrams are scalable, both horizontally and vertically,
so they can be glued together with adjacent diagrams having multiple steps.
Now confluence of braids is obtained by a simple tiling game as illustrated
in the following example.

Example 7.4. Let us consider two braid codes with 4 strands:

α23α24α13 and α12α13

We start with an empty reduction diagram where the horizontal reduction
corresponds to one of the two braid words, and the vertical reduction to the
other:

α12

α13

α23 α24 α13

We now tile this reduction diagram by pasting matching elementary dia-
grams. We start with the upper-left corner:

α12

α13

α23 α24 α13

α13 α23

α13

α12
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There are now two peaks and for both we paste the matching elementary
diagrams:

α12

α13

α23 α24 α13

α13 α23

α13

α12
α24

α13

Here the dotted lines without an arrowhead indicate empty steps.
We continue pasting elementary diagrams until there are no more peaks

left and the entire diagram is completed:

α12

α13

α23 α24 α13

α13 α23

α13

α12

α24

α13

α23

α14 α24

α14

α12

α14

α12

α14 α24

This process is somewhat reminiscent of covering a floor with tiles. Therefore
it is frequently referred to as tiling.

Example 7.5. The tiling shown in Figure 7 is a completed reduction diagram
solving the parent’s problem in Figure 1. The bottom and the right side of
the diagram yield the confluent braid word extensions.

Notation 7.6. For a relation → ⊆ A× A we write

(i) ↠ or →∗ for the reflexive, transitive closure of →, and
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3
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1
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1 2

2
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3

4
1

3
1

2 1

1

2

2 1

1

2

3

1

2 4 3 2 1

3 2

2

3

2
4 3 2 1

3 3
4 3

3

4

2 1

4

2

4 1 4

2

4

1

4

3 4

4

3

2

4 4 4

3 2 1

2 3

3

2

3 3 3
2 1

2 2 2 2 2
1

1 3 4 2 3 1

Figure 7: Solution of the parent’s braiding problem in Figure 1

(ii) →= for the reflexive closure of →.

Definition 7.7 (Confluence by tiling). Let A be a set and → ⊆ A× A be
a relation. A complete set of elementary diagrams consists for every peak
b ← a → c of an elementary diagrams of the form

a

b

c

d

for some d, and it contains trivial elementary diagram of the form
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a b

b b

a a

b b

a b

a b

c c

c c

for every a → b and c ∈ A. Here the dotted lines stand for empty steps.
Tiling is the process of repeated adjunction of elementary diagrams to a
partially completed reduction diagram.

If tiling is terminating using some complete set of elementary diagrams
is terminating, then → is said to be confluent by tiling2 (with respect to this
set of elementary diagrams).

It will always be clear what set of elementary diagrams we are using, so
we will omit explicit mention of this set and just speak of ‘confluence by
tiling’.

Proposition 7.8. Confluence by tiling implies confluence.

Proof. Obvious: the right and bottom side of the completed reduction dia-
gram provide confluent joining reductions.

The rationale of the trivial elementary diagrams with the empty steps
is first to keep reduction diagrams in a rectangular orthogonal shape which
facilitates tracing of symbols inside such a diagram. Another reason is that
the first trivial elementary diagram which expresses absorption of identical
steps is instrumental in comparing reduction sequences as to the ‘work’ done
by crossing out common steps against each other; see later on the notion
of Lévy equivalence. One might think that the empty steps could present a
complication with respect to termination of tiling. But it is an easy exercise
to prove that an infinite reduction diagram must possess an infinite proper
reduction, that is one without empty steps. An appeal to König’s Lemma
will readily yield this fact.

7.1. Completeness and uniqueness

The set of elementary diagrams from Definition 7.2 is complete in the
sense that we cannot get stuck during tiling. There always is a unique match-
ing elementary diagram for every peak of compatible steps.

2In [8, Section 6.1, pages 58–69], confluence by tiling is called CR+ and this property
is established for lambda calculus and extensions. See further also [31].

25



Definition 7.9. Two braid codes u and v are compatible if there exists a
braid code w such that wu and wv are positive braid codes.

Example 7.10. The steps α12 and α13 are not compatible, they cannot be
an extension of the same braid code. Either strand 1 is directly left of strand
2 or strand 3, but not both at the same time.

Lemma 7.11 (Completeness and uniqueness of the elementary diagrams).
For every pair of compatible braid codes u ∈ {αij, ε } and v ∈ {αkl, ε } there
exists precisely one elementary diagram of the form

u

v

in Definition 7.2.

Proof. Straightforward case analysis.

Assume that we are tiling a reduction diagram

u

v

for compatible braid codes u and v. Then all peaks encountered during
tiling arise from compatible steps, and thus can be filled by a matching
elementary diagram. This ensures that we can continue tiling until there are
no more peaks, and the reduction diagram is completed.

But is the process of tiling guaranteed to terminate? Does it stop after
a finite number of steps? Apparently, we were lucky in the above examples
that the tiling procedure was terminating. But how do we prove that this is
so in general? We give two proofs of termination in Sections 7.4 and 7.5.

Before we prove termination, we observe that completed reduction dia-
grams are unique.

Lemma 7.12 (Determinism of tiling). Let u, v be compatible positive braid
codes. If there exists a completed reduction diagram
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u

v

then every way of tiling

u

v

will terminate in the same completed reduction diagram.

Proof. Let D be the completed reduction diagram. The non-determinism in
tiling arises from the choice which peak to fill next. For each single peak
there is a unique elementary diagram by Lemma 7.11. So locally the choice
is deterministic. This implies the following invariant during tiling: every
partially completed reduction diagram is a subdiagram of D. Furthermore,
the number of tiling steps is bounded by the number of tiles in D. Hence
every tiling terminates with result D.

7.2. Path equivalence

We start with an important observation stating that paths in a reduction
diagram having the same start and end points are convertible with respect
Artin’s equations. The way to retrieve the conversion from the diagram em-
ploys a view used in Klop [8] for lambda calculus, elaborated axiomatically in
Melliès’ series of foundational papers for lambda calculus and rewriting [11].
This is the dual view of reading an elementary reduction diagram:

confluence

conversion

A path in a reduction diagram is an alternation of nodes and steps with
the understanding that the steps follow the arrows or empty steps in the
direction right or down. If we speak of a path u then u is the word obtained
by concatenating the labels encountered on the steps (the empty word ε for
empty steps).
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Theorem 7.13 (Path equivalence in reduction diagrams). In a (partially
completed) reduction diagram, all paths having the same start and end point
are equivalent modulo Artin’s equations (or its braid code version).3

Proof. We prove the theorem by induction on the number of elementary
diagrams in the area surrounded by the paths. In this proof, we write an
arrow → for steps in the reduction diagram, tacitly including empty steps.
Sot let ρ1 and ρ1 be paths having the same start and end points in the
reduction diagram. This can be illustrated as follows:

ρ1

ρ2

If the surrounded area is 0, then both paths are identical (ρ1 = ρ2).
So assume that the surrounded area is not empty. Then there exists a

tile (an elementary diagram)

a

b

c

d

u

v

v′

u′

in the surrounded area such that a
v
→ c

u
↠ d is a part of ρ1 or ρ2; without loss

of generality say ρ1. In the above reduction diagram this tile is highlighted (in
green). Then we have vu′ ≈ uv′ as this holds for every elementary diagram
(Definition 7.2). Let ρ′1 be obtained from ρ1 by replacing

3See further [8, Corollary 10.2.10 on page 105] and [10, Figure 4.31 on page 118].
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a c

d

v

u′ with

a

b d

u

v′

Then ρ1 ≈ ρ′1 and the area between ρ′1 and ρ2 is smaller than the area between
ρ1 and ρ2. Thus by induction hypothesis we have ρ′1 ≈ ρ2 and hence ρ1 ≈ ρ2.

Above we have given an intuitive, visual argument that there is a tile
in the surrounded area with the claimed properties. We now give a more
formal argument. Consider a node x where the paths ρ1 and ρ2 join; so there
are steps y → x in ρ1 and z → x in ρ2 such that y 6= z. Then one of these
steps is horizontal (to the right) and the other one is vertical (downwards).
Without loss of generality we may assume that the step y → x in ρ1 is
vertical. Let a → c be the last horizontal step in ρ1 before y → x. This step
exists since the paths ρ1 and ρ2 have the same start points and the node
z in ρ2 lies left of the node y in ρ1. By the construction of the reduction
diagram, the node a also admits a vertical step a → b (downwards). The
vertical reduction c↠ y that is part of ρ1 must have been created (partially)
by pasting an elementary reduction diagram into the peak b ← a → c with
joining reductions b↠ d↞ c. As z lies left of y and hence left of c, this tile
lies within the area surrounded by the paths ρ1 and ρ2. Moreover a → c↠ d
is part of ρ1.

Example 7.14. The proof of Theorem 7.13 is illustrated in the following
sequence of reduction diagrams where one path is step by step converted
into another path:

α12

α13

α23 α13

α13 α23

α13

α12 α12

α23

α12

α13

α23 α13

α13 α23

α13

α12 α12

α23
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α12

α13

α23 α13

α13 α23

α13

α12 α12

α23

α12

α13

α23 α13

α13 α23

α13

α12 α12

α23

α12

α13

α23 α13

α13 α23

α13

α12 α12

α23

α12

α13

α23 α13

α13 α23

α13

α12 α12

α23

From the reduction diagrams we can extract the conversion:

α23α13εα12ε

≈ α23α13α12εε

≈ α12α13α23εε

≈ α12α13α23εε

≈ α12α13εα23ε

≈ α12α13εα23ε

Without the empty steps ε and trivial conversion steps, we have:

α23α13α12 ≈ α12α13α23

Remark 7.15. We note that extracting a conversion from a completed re-
duction diagram has the following benefit: it yields a standardised conversion
where the conversion steps move from right to left. This is very much analo-
gous to the situation in lambda calculus where also standard reductions are
extracted from completed reduction diagrams [8, Chapter 9, Theorem 10.2.6
and Figures on page 100–105].
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7.3. Tiling preserves simplicity

Lemma 7.16 (Simplicity is preserved under equivalence). If v is a simple
braid code and v ≈ w, then w is simple.

Proof. Follows immediately from the fact that Artin’s equations in the braid
codes notation are (special forms of) word reversal. The reversal of factors
does not affect simplicity.

Lemma 7.17 (Tiling preserves simplicity). Let u and v be compatible simple
positive braid codes. Then while tiling the reduction diagram

u

v

all paths in the diagram remain simple.

Proof. We prove that the following invariant holds during tiling:

(?) Every node in the diagram can be reached by a simple path (from the
upper-left corner of the reduction diagram).

From (?) it follows that every path in the reduction diagram is simple. By
Theorem 7.13 all paths with the same start and end point are equivalent,
and by Lemma 7.16 simplicity is preserved under equivalence. Finally, every
factor of a simple path is simple. It follows that every path is simple.

Initially the invariant (?) holds since the words u and v are simple. So
assume that the invariant holds and we paste an elementary diagram into a
peak of the form

a

b

c

u

v

Let w be a path to a. As all paths to a, b and c are simple, it follows that
wu is a simple path to b and wv is a simple path to c. We distinguish cases
according to the form of the elementary diagram matching the peak:

(i) For u = αij and v = αkl with pairwise distinct i, j, k, l ∈ { 1, . . . , n },
we get:
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a c

b d

αkl

αij αij

αkl

As wu and wv are simple, the path w contains none of the symbols
αij, αji, αkl and αlk. From this it follows that wαijαkl and wαklαij are
simple again. So the invariant (?) also holds for d.

(ii) For u = αij and v = αjk with pairwise distinct i, j, k ∈ { 1, . . . , n }, we
get:

a c

b

αjk

αij
αik

αij

αik αjk

Since the node a admits steps αij and αjk it follows that the strand j
is between the strands i and k in a (right of i and left of k). As argued
before, w contains none of the symbols αij, αji, αjk and αkj. So the
strand i is left of j throughout w. Likewise the strand k is right of j
throughout w. Thus, w cannot contain the symbols αik and αki. From
this it follows that wαijαikαjk and wαjkαikαij are simple again. So the
invariant (?) is upheld.

In both cases the invariant is preserved.

7.4. Termination of tiling via Newman’s lemma and simple braids

We prove termination of tiling using a classical result by Newman [9] on
confluence of abstract reduction systems. A relation → ⊆ A× A is called
terminating if there are no infinite chains

a0 → a1 → a2 → . . .

Newman’s Lemma [9] states that, for a terminating relation, local confluence
(← · → ⊆↠ ·↞) implies confluence (↞ ·↠ ⊆↠ ·↞).
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Lemma 7.18 (Newman’s Lemma for tiling). Let A be a set and → ⊆ A× A
be a terminating relation such that for every b ← a → c there exist joining
reductions b↠ d↞ c for some d ∈ A. Then → is confluent by tiling.

We define a terminating (well-founded) relation � on simple braid codes
similar to the Bruhat order on permutations. For a word u we write

u≈ = {w | u ≈ w }

for the convertibility class of u.

Lemma 7.19 (Extension of simple words is terminating). Let S be the set of
simple braid codes over n strands. We define � ⊆ S≈ × S≈ by u≈ � (uαij)

≈

for every word uαij ∈ S. The relation � is terminating.

Proof. The size of the set { { i, j } | 1 ≤ i, j ≤ n } is n·(n−1)
2

. Thus, for a braid
with n stands, this is the maximum length of a simple braid code. Moreover,
convertible braid codes have the same length.

Lemma 7.20 (Tiling simple braid codes terminates). Let u and v be com-
patible simple positive braid codes. Then tiling the reduction diagram

u

v

terminates.

Proof. We label the nodes in the reduction diagram as follows: if w is a
path from the upper-left corner to a node x, then we label x with w≈. (By
Theorem 7.13, all paths to x are convertible.) We use L(x) to denote the
label of x. By Lemma 7.16 all paths in the reduction diagram are simple.
So, throughout the tiling, all nodes in the diagram have simple labels. As a
consequence, whenever x → y in the reduction diagram, then L(x) � L(y) by
Lemma 7.19. So the restriction of → to the steps occurring (during tiling) in
the reduction diagram is terminating. Thus by Newman’s Lemma 7.18 tiling
of the reduction diagram is terminating.

Theorem 7.21. Let u and v be compatible positive braid codes. Then tiling
the reduction diagram
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u

v

is terminating and confluent. The unique complete tiling

u

v

v′

u′

has the following properties:

(i) If u is simple, then so is u′. If v is simple, then so is v′.

(ii) If u and v are simple, then all paths in the reduction diagram are simple
(in particular, uv′ and vu′).

Proof. Every word w is the concatenation of simple words (a single symbol is
always simple). Thus, by induction on the length of u, it suffices to consider
the case that u is simple. So let u be simple.

If v is simple, then termination follows from Lemma 7.20 and the Prop-
erties (i) and (ii) from Lemma 7.17. If v is not simple, we use induction on
the length of v. For v = ε there is nothing to be shown. Otherwise v = v1v2
for words v1, v2 such that v1 is simple and v1 6= ε. Then we have:

u

v1

v′1

u1

v2

v′2

u′IH

The tiling of the upper-left corner of u against v1 terminates by Lemma 7.20.
By Lemma 7.17, u1 is simple. By the induction hypothesis (v2 is shorter than
v1), the tiling of u1 against v2 is terminating and u′ is simple. So we also
have Property (i) for u and u′ (and it follows by symmetry for v and v′).

Thus tiling is terminating. Finally, confluence of the tiling process follows
from Lemma 7.12.
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7.5. Termination of tiling via decreasing diagrams

We will now give an alternative proof of termination of tiling, and thereby
confluence by diagram completion, using a powerful method in term rewriting
called ‘decreasing diagrams’. This method is based on a theorem of De Bruijn
and Van Oostrom [32, 33, 34, 31, 35], and is the most powerful method in
abstract rewriting to prove confluence by tiling with elementary diagrams.
It has many well-known lemma’s in abstract rewriting as corollaries, such as
Newman’s Lemma and Huet’s Lemma.

Theorem 7.22 (Decreasing Diagrams). Let A be a set and → ⊆ A× A.
Then → is confluent (i.e. ↞ ·↠ ⊆ ↠ ·↞) if the steps can be labelled with

labels from a well-founded partial order (I,<) such that every peak b
β
← a

α
→ c

can be joined by reductions of the form:

a

cb

αβ

< α

β
=

< α ∪ < β

< β
α

=

< α ∪ < β

Note that α, β may or may not (=) ‘cross over’ to the opposite side.
We fix the number of strands n and define n = { 1, . . . , n }. We use B

to denote the set of positive braid codes with n strands. On B we define a
relation → by

w → wαij for every wαij ∈ B

We are interested in establishing confluence of →, that is, ↞ ·↠ ⊆ ↠ ·↞.

We also write →αij or
αij
→ for a step w → wαij. So → =

⋃
i,j ∈n →αij .

Let perm(w) : n → n be the permutation arising from a code w ∈ B. So
perm(w)(i) is the position of the i-th strand after w. We write idn for the
identity function on n. For a permutation p : n → n we define

order(p) = { 〈i, j〉 | p(i) < p(j) }

We have |order(p)| = n · (n− 1)/2.
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Example 7.23. Let n = 4 and define p : n → n by(
1234

3124

)
In the sequel we will denote a permutation by the image tuple, 3124 in this
case. Then order(p) = { 〈3, 1〉, 〈3, 2〉, 〈3, 4〉, 〈1, 2〉, 〈1, 4〉, 〈2, 4〉 }.

We define moves : B → P(n× n) as follows:

moves(ε) = ∅

moves(wαij) =

{
moves(w) \ { 〈i, j〉 }, if 〈i, j〉 ∈ moves(w)

order(perm(w)) \ { 〈i, j〉 }, if 〈i, j〉 6∈ moves(w)

Lemma 7.24. For every w ∈ B we have: moves(w) ⊆ order(perm(w)) and
moves(w) is transitive.

Proof. Clearly, the claimed properties hold for moves(ε). It suffices to show
that the properties are invariant under extension of braid codes. Let wαij ∈
B such that moves(w) ⊆ order(perm(w)) and moves(w) is transitive. We
have

order(perm(wαij)) = (order(perm(w)) \ { 〈i, j〉 }) ∪ { 〈j, i〉 } (5)

We distinguish cases:

(i) For 〈i, j〉 ∈ moves(w) we have:

moves(wαij) = moves(w) \ { 〈i, j〉 } ⊆ order(perm(w)) \ { 〈i, j〉 }

(ii) For 〈i, j〉 6∈ moves(w) we have:

moves(wαij) = order(perm(w)) \ { 〈i, j〉 }

In both cases moves(wαij) = order(perm(w))\{ 〈i, j〉 } ⊆ order(perm(wαij))
by (5).

Transitivity of moves(wαij) can be seen as follows. Let k, l,m such that
〈k, l〉, 〈l,m〉 ∈ moves(wαij). From moves(wαij) ⊆ order(perm(w)) it follows
that the strand l is between the strands k and m after w. Thus the strands
k and m are not adjacent after w. Thus 〈k,m〉 6= 〈i, j〉 since wαij ∈ B and
only adjacent strands can be swapped. We again distinguish cases:
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(i) For 〈i, j〉 ∈ moves(w) we have 〈k, l〉, 〈l,m〉 ∈ moves(w) as a conse-
quence of moves(wαij) ⊆ moves(w). Then 〈k,m〉 ∈ moves(w) by tran-
sitivity of moves(w). Thus 〈k,m〉 ∈ moves(wαij) since 〈k,m〉 6= 〈i, j〉.

(ii) For 〈i, j〉 6∈ moves(wαij) we have 〈k, l〉, 〈l,m〉 ∈ order(perm(w)). Then
〈k,m〉 ∈ order(perm(w)) by transitivity of order(perm(w)), and 〈k,m〉 ∈
moves(wαij) since 〈k,m〉 6= 〈i, j〉.

Thus moves(wαij) is transitive.

We define the height of w ∈ B by

height(w) = |moves(w)| .

We show that all elementary diagrams for braids are decreasing when the
steps are labelled with the height of their target.

Definition 7.25 (Good and bad steps). We say that a step u
αij
→ w is good

if 〈i, j〉 ∈ moves(u) and bad, otherwise.

Basically, the intuition is ensuing from the fact that a braid code can be
cut into simple factors; when leaving such a simple part apparently something
‘drastic’ happens and this is a bad step.

Example 7.26. Let n = 4 and consider the code w = α12α13α14α34α31α24α21.
Then

braid code perm moves height good/bad

ε 1234 0

α12 2134 13, 14, 23, 24, 34 5 bad

α12α13 2314 14, 23, 24, 34 4 good

α12α13α14 2341 23, 24, 34 3 good

α12α13α14α34 2431 23, 24 2 good

α12α13α14α34α31 2413 24, 23, 21, 43, 41 5 bad

α12α13α14α34α31α24 4213 23, 21, 43, 41 4 good

α12α13α14α34α31α24α21 4213 23, 43, 41 3 good

In the moves column we write ij as shorthand for 〈i, j〉. The travel over P4

corresponding to this word is displayed in Figure 8. The upshot is that the
word is indexed with heights as follows

w =
0
α125

α134
α143

α342
| α315

α244
α213

.
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α
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α 13 α
24

α
24

α 13

α
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α
1
4

α
1
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α
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α
1
4

α
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3

α
34

α12

α 13

α
24

α
2
3

α12

α
34

5

4

3

2

5

4
3

1234

2431

4321

1342

inv(1234) =

inv(2431) =

Figure 8: Re-adjustment of travel goals during travel over P4. Residing at 1234
the traveller decides not to stay but starts travelling to 4321, the antipodal point
of 1234. Each step in the direction of the goal 4321 the amount of travel still to
do decreases by 1. Arriving in 2431, the traveller veeres off from reaching the goal
4321, and heads for a new goal, the antipodal point of 2431 as the next goal, 1342.
This is a red (bad) step, increasing the steps to do to 5 again. Two more green
(good) steps are done towards 1342. Not reaching that goal, the travel stops in
4123.

Let H = n · (n− 1)/2− 1. The following two lemmas are immediate:

Lemma 7.27. For every w ∈ B we have 0 ≤ height(w) ≤ H.

Lemma 7.28. For a step u → w we have height(u) > height(w) if the step
is good, and height(w) = H if and only if the step is bad.

Lemma 7.29. For w ∈ B and a simple braid code αi1j1 · · ·αimjm, the se-
quence

w1 →αi1j1 w2 →αi2j2 · · · →αimjm wm+1
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contains at most 1 bad step.

Proof. It suffices to consider the case that w1 →αi1j1 w2 is a bad step. Since
the step w1 →αi1j1 w2 is bad, we have

moves(w2) = order(perm(w1)) \ { 〈i1, j1〉 }

As the braid code αi1j1 · · ·αimjm is simple we have perm(w1)(ik) < perm(w1)(jk)
and thus 〈ik, jk〉 ∈ order(perm(w1)) for every k ∈ { 1, . . . ,m }. It follows that
〈ik, jk〉 ∈ moves(wk) for every k ∈ { 2, . . . ,m }. Hence the remaining steps in
the sequence are good.

Theorem 7.30. Extension of positive braid codes is confluent by tiling.

Proof. We show that braid extension→ on positive braid codes B is confluent
by tiling. For this purpose, we use decreasing diagrams where we tacitly label
steps x → y by height height(y) of their target. So, when we speak of the
height of a step x → y we refer to height(y). For confluence by tiling of →
it suffices to show that every peak b ← a → c can be joined by decreasing
elementary diagrams as in Theorem 7.22.

So consider a peak b ← a → c. This peak can be joined by one of the
elementary diagrams in Definition 7.2 by Lemma 7.11, say

a b

c d

αkl

αij u

v

for some i, j, k, l ∈ n. For each elementary diagram in Definition 7.2, αij v
and αkl u are simple words. Thus by Lemma 7.29

(i) the reduction a
αij
→ c

v
↠ d contains at most one bad step, and

(ii) the reduction a
αkl
→ b

u
↠ d contains at most one bad step.

By Lemmas 7.27 and 7.28 we have:

(iii) a bad step is greater than a good step, and

(iv) a good step is smaller than every directly preceding step.

We distinguish cases:
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(a) If a
αij
→ c and a

αkl
→ b are bad steps, then by (i), (ii) and (iii) we have:

a b

c d

bad

bad good

good

>

>

This elementary diagram is decreasing.

(b) If a
αij
→ c is good and a

αkl
→ b is bad, then by (i)–(iv) we have:

a b

c d

bad

good good

good bad
=

good

>>=>

This elementary diagram is decreasing. The decreasing height of the
steps is indicated by the dotted lines inside the diagrams.

(c) The case a
αij
→ c is bad and a

αkl
→ b is good, is symmetric to (b).

(d) Finally, assume that both a
αij
→ c and a

αkl
→ b are good.

Then we have 〈i, j〉, 〈k, l〉 ∈ moves(a). We show that then the joining re-
duction do not contain bad steps. Then we have a decreasing elementary
diagram of the form

a b

c d

good

good good

good

>

>

It suffices to consider the non-trivial elementary diagrams:

• If { i, j } ∩ { k, l } = ∅, then
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a b

c d

αkl

αij αij

αkl

From 〈i, j〉, 〈k, l〉 ∈ moves(a) it follows that 〈i, j〉 ∈ moves(b) and
〈k, l〉 ∈ moves(c). Thus the joining steps are good.

• If j = k (or symmetrically i = l), then

a b

c dc′

b′

αjl

αij

αil

αij

αil αjl

From 〈i, j〉, 〈j, l〉 ∈ moves(a) it follows that 〈i, l〉 ∈ moves(a) by
Lemma 7.24. Then 〈i, l〉, 〈i, j〉 ∈ moves(b) and 〈i, j〉 ∈ moves(b′).
Likewise 〈i, l〉, 〈j, l〉 ∈ moves(c) and 〈j, l〉 ∈ moves(c′) Thus all joining
steps are good.

• If i = k or j = l we have a trivial decreasing elementary diagram with
empty joining sides.

Every peak can be joined by a decreasing elementary diagram. Hence by
Theorem 7.22, the relation → is confluent by tiling.

Example 7.31. In this example we write overline w for infinite repetition
of w. We do not consider infinite braid codes, but the cyclic braid code can
be cut-off at any desired point. We write r (red) for bad steps, and g (green)
for good steps.

(i) The cyclic path α12α21 = rr = 55 has only bad steps of height 5.

(ii) The cycle α12α34α21α43 = rgrg = 5454 alternates between bad and
good steps of height 5 and 4, respectively.

(iii) The word α12α13α14α34 = rgggrrr = 5432555, first α not overlined,
then the next three overlined.

(iv) Let w = α12α13α14α34α13α24 = rgggrg, and v = α12α13α34α13α41 =
rgggr. These two braid codes w, v against each other give a reduction
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diagram containing, after the common prefix of the words have can-
celled out each other, an elementary diagram wich is decreasing, and
has a red step crossing over to the other side:

α41

α24

α21

α24

α21 α41

Note that decreasing elementary diagrams with double cross-over are not
possible.

7.6. Reduction diagrams and projection equivalence

We will use completed reduction diagrams to connect projection equiv-
alence ' with convertibility ≈ of positive braid codes. We follow here a
development that is classic in lambda calculus and orthogonal rewriting the-
ory, and has its origins in the work of Lévy [5] for lambda calculus and of
Huet and Lévy [4] for orthogonal rewriting.

Here is the basic definition.

Definition 7.32 (Projection). Let w, v be compatible positive braid codes.
Then w/v is bottom side of the completed reduction diagram setting w hor-
izontally (top side) against v vertically (left side). Pictorially that is:

v

w

w/v

v/w

Definition 7.33 (Projection order). For compatible braid codes v, w we
write v v w if v/w = ε.

Definition 7.34 (Projection equivalence). Two compatible braid codes v, w
are projection equivalent (or Lévy equivalent), denoted v ' w, if v v w and
w v v.

42



Lévy established the following useful equations for projection:

x · ε = x

ε · x = x

x/ε = x

ε/x = ε

x/x = ε

xy/z = (x/z)(y/(z/x))

z/xy = (z/x)/y

They are instrumental for deconstructing reduction diagrams, as sometimes
necessary in inductive proofs concerning projections and projection equiva-
lence. The proof is immediate from the definition and Figure 9. They are
also used in the literature on braid theory, see Section 8.

x x x

x

x

y

z

x/z
z/x

y/(z/x)

(z/x)/y

Figure 9: Lévy’s reduction diagram equations.

Lemma 7.35 (Projection equivalence implies convertibility). If w ' v then
w ≈ v.

Proof. We have w(v/w) ≈ v(w/v) by Theorem 7.13. From the Lévy equiva-
lence we get v/w = w/v = ε, so w ≈ v.

In order to prove the much more difficult reverse implication, we now
establish an important congruence property of convertibility with respect to
projection.

Lévy diagram equations can also be applied fruitfully to give a complete
(terminating and confluent) term rewriting system for projection, where word
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concatenation is associative:

αij/αkl → αij for pairwise distinct i, j, k, l ∈ { 1, . . . , n }
αij/αjk → αikαjk for pairwise distinct i, j, k ∈ { 1, . . . , n }

xε → x

εx → x

x/ε → x

ε/x → ε

x/x → ε

xy/z → (x/z)(y/(z/x))

z/xy → (z/x)/y

This is basically a reformulation of completing reduction diagrams by tiling
with elementary diagrams which has been proved above to be terminating
and confluent.

7.7. Congruence with respect to projection

We prove the following congruence property for projection.

Theorem 7.36. Let u1, v1 be compatible positive braid codes. If u1 ≈ u2 and
v1 ≈ v2, then u1/v1 ≈ u2/v2 and v1/u1 ≈ v2/u2. In other words: conversion
is a congruence with respect to the projection operator.

This subsection is devoted to the proof of this theorem. The proof pro-
ceeds in several steps. First, we prove that the theorem holds for u a single
letter and v1 ≈ v2 an instance of one of Artin’s equations for braid codes
(Lemmas 7.37 and 7.38). Next, we lift this result to simple positive braid
codes by induction with respect to the Bruhat order. Finally, we generalise
the result to general positive braid codes by ‘cutting’ the braid codes into
simple parts.

Lemma 7.37. For p, q, i, j, k, l ∈ { 1, . . . , n } such that i, j, k, l are pairwise
distinct, it holds that

(i) αpq/αijαkl ≈ αpq/αklαij, and

(ii) αijαkl/αpq ≈ αklαij/αpq.

Proof. By symmetry of Artin’s equation for braid codes αijαkl ≈ αklαij, we
may assume that i, j < k, l. We distinguish the following cases:
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(i) If { p, q } ∩ { i, j, k, l } = ∅, then αpq/αijαkl = αpq = αpq/αklαij and
αijαkl/αpq = αijαkl ≈ αklαij = αklαij/αpq.

(ii) If p < i and q = i, then:

αpi

αij αkl

αpj αij

αpj

αpi
αkl

αkl

αpj

αpi
αpi

αkl αij

αkl

αpi
αpj

αpi

αpj αij

Here αpjαijαkl ≈ αpjαklαij ≈ αklαpjαij.

(iii) If p = i and q = j, then:

αij

αij αkl

αkl

αij

αkl αij

αkl

αij

(iv) If p = j and q < k, then:

αjq

αij αkl

αiq αij

αiq

αjq
αkl

αkl

αiq

αjq
αjq

αkl αij

αkl

αjq
αiq

αjq

αiq αij

Here αiqαijαkl ≈ αiqαklαij ≈ αklαiqαij.

(v) If p = j and q = k, then:

αjk

αij αkl

αik αij

αik

αjk

αil αkl

αil

αik

αil

αjk
αjl

αjk
αjl αkl

αjk

αkl αij

αjl αkl

αjl

αjk

αil αij

αil

αjl

αil

αjk
αik

αjk
αik αij
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Here we have

αilαikαjlαjk ≈ αilαjlαikαjk

and

αikαijαilαjlαkl

≈ αikαjlαilαijαkl

≈ αjlαikαilαijαkl

≈ αjlαikαilαklαij

≈ αjlαklαilαikαij

(vi) The case p = k and q = l is symmetric to the case p = i and q = j.

(vii) The case p = l and q > l is symmetric to the case p < i and q = i.

The case distinction is exhaustive and we have αpq/αijαkl ≈ αpq/αklαij, and
αijαkl/αpq ≈ αklαij/αpq for each case. So we have proven the claim.

Lemma 7.38. For p, q, i, j, k ∈ { 1, . . . , n } such that i, j, k are pairwise dis-
tinct, it holds that

(i) αpq/αijαikαjk ≈ αpq/αjkαikαij, and

(ii) αijαikαjk/αpq ≈ αjkαikαij/αpq.

Proof. By symmetry of Artin’s equation for braid codes αijαikαjk ≈ αjkαikαij,
we may assume that i < j < k. We distinguish the following cases:

(i) If { p, q } ∩ { i, j, k } = ∅, then αpq/αijαikαjk = αpq = αpq/αjkαikαij
and αijαikαjk/αpq = αijαikαjk ≈ αjkαikαij = αjkαikαij/αpq.

(ii) If p < i and q = i, then:
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αpi

αij αik αjk

αpj αij

αpj

αpi

αik
αpj

αpk αik

αpk

αpi

αpk αjk

αpk

αpj

αpi

αjk
αpi

αjk

αpi

αjk αik αij

αjk

αpi

αpk αik

αpk

αpi
αij

αpk

αpj

αpi
αpj αij

Here the right sides are literally equal and for the bottom sides we have

αjkαpkαikαpjαij

≈ αjkαpkαpjαikαij

≈ αpkαpjαjkαikαij

≈ αpkαpjαikαijαjk

≈ αpkαikαpjαijαjk

(iii) If p = i and q = j, then:

αij

αij αik αjk

αik αjk

αij

αjk αik αij

αik αjk

αik

αij αij

αij

(iv) The case p = j and q = k is symmetric to p = i and q = j.

(v) The case p = k and q > k is symmetric to p < i and q = i.

The case distinction is exhaustive, and for each case we have established that
αpq/αijαikαjk ≈ αpq/αjkαikαij, and αijαikαjk/αpq ≈ αjkαikαij/αpq. So the
lemma is proven.
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We have shown that Theorem 7.36 holds for single steps projected over
Artin’s equations.

We first prove the Theorem 7.36 for simple braid codes.

Proof of Theorem 7.36 for simple braid codes. We prove

(?) For all compatible simple braid codes u1, u2, v1, v2 with u1 ≈ u2 and
v1 ≈ v2, it holds that u1/v1 ≈ u2/v2 and v1/u1 ≈ v2/u2.

We tacitly label the nodes in the reduction diagrams by convertibility classes
of simple braid codes as follows. We write L(x) for the label of the node x.
The upper-left corner of a reduction diagram can be labelled with the con-
vertibility class of any simple word. Whenever there is a step x →αij y in the
reduction diagram and L(x) = w≈, then we let L(y) = (wαij)

≈. Roughly
speaking, every node in the diagram is labelled with the label of the upper-
left corner concatenated with the path to the node. As labels we only allow
(equivalence classes of) simple words; you may also think of these labels as
points on the permutohedron Pn subject to the terminating Bruhat order.
By Lemma 7.17 every reduction diagram for simple words can be fully la-
belled in this way; we can label the upper left corner with ε≈ and all path in
the diagram are simple.

We prove (?) by well-founded induction with respect to the label of the
upper-left corner of the reduction diagram in the order � (Lemma 7.19).

Employing a nested induction on the lengths of the conversions u1 ≈ u2
and v1 ≈ v2 with respect to Artin’s equations, it suffices to consider the case
of a single conversion step (longer conversions can be simulated by repeatedly
applying single steps). By symmetry we may assume that u1 = u2, v1 = xy1z
and v2 = xy2z where where either

(i) y1 = αijαkl and y2 = αklαij, or

(ii) y1 = αijαikαjk and y2 = αjkαikαij,

for all pairwise distinct i, j, k, l ∈ { 1, . . . , n }. Let u = u1 = u2.
For x 6= ε, the claim follows from inspection of the following diagram:
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u

x y1 z

x/u v′′1

u/x u′1

u

x y2 z

x/u v′′2

u/x u′2
=

=

=

=

≈ =

≈

≈IH
IH

v′1 ≈ v′2

v1 ≈ v2

By induction hypothesis (IH) it holds that u′1 ≈ u′2 and v′′1 ≈ v′′2 . Thus also
v′1 ≈ v′2 where v′1 = (x/u)v′′1 and v′2 = (x/u)v′′2 .

For x = ε, we consider the first symbol u, say u = αpqw. Then the picture
is as follows

αpq

w

y1 z

y′1 z′1

α
p
q
/y

1

y1/αpq

w′1

u′1

αpq

w

y2 z

y′2 z′2

α
p
q
/y

2

y2/αpq

w′2

u′2

≈ =

=

≈

≈

=

≈ ≈

≈

≈

Lemma 7.37
Lemma 7.38

IH

IH

v′1 ≈ v′2

v1 ≈ v2

u

49



We have y1/αpq ≈ y2/αpq and αpq/y1 ≈ αpq/y2 for (i) and (ii) by Lemmas 7.37
and 7.38, respectively. Then y′1 ≈ y′2 and w′1 ≈ w′2 by the induction hypoth-
esis, and hence z′1 ≈ z′2 and u′1 ≈ u′2 by another invocation of the induction
hypothesis.

We lift the result from simple braid codes to general positive braid braid
codes.

Proof of Theorem 7.36. We have seen

(?) Theorem 7.36 holds for simple braid codes.

Now we lift this result to general positive braid codes. By induction on
the lengths of the conversions u1 ≈ u2 and v1 ≈ v2 with respect to Artin’s
equations, it suffices to consider the case of a single conversion step. Then
there exist natural numbers k, l and simple words u1,1, . . . , u1,k, u2,1, . . . , u2,k,
v1,1, . . . , v1,l and v2,1, . . . , v2,l such that

u1 = u1,1u1,2 · · ·u1,k v1 = v1,1v1,2 · · · v1,l
u2 = u2,1u2,2 · · ·u2,k v2 = v2,1v2,2 · · · v2,l
∀i. u1,i ≈ u2,i ∀i. v1,i ≈ v2,i

That is, we cut u1, u2, v1, v2 into simple braid codes. Here we use the as-
sumption that there is only one conversion step. For longer conversions it is
not guaranteed that we can cut in a way that the conversions fall into the
simple parts (and do not go across parts). As there is only one conversion
step, all but one of the u1,i ≈ u2,i and v1,i ≈ v2,i will be equalities =.

So we have the picture as shown in Figure 10. This diagram can be fully
tiled using (?) since each peak (left)

x1

y1

x2

y2

≈

≈

x1

y1

y′1

x′1
x2

y2

y′2

x′2

≈

≈

≈

≈

for simple braid codes x1, x2, y1, y2 can be joined as shown on the right with
simple words x′1, x

′
2, y
′
1, y
′
2. Hence u1/v1 ≈ u2/v2 and v1/u1 ≈ v2/u2.
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u1,1

u1,2

u1,k

v1,1 v1,2 v1,l

u2,1

u2,2

u2,k

v2,1 v2,2 v2,l

≈

≈

≈

≈ ≈ ≈

≈ ≈ ≈

≈ ≈

≈ ≈ ≈

≈ ≈ ≈

≈ ≈ ≈ ≈

≈ ≈ ≈

≈ ≈ ≈ ≈. . .

...

. . .

...

. . .

Figure 10: Congruence with respect to projection: from simple to general braid
codes.

7.8. More basic properties

We will now collect the harvest of Theorem 7.36.

Theorem 7.39 (Projection equivalence is convertibility). Let u, v be com-
patible positive braid codes. Then u ≈ v if and only if u ' v.

Proof. The direction ‘⇐’ is Lemma 7.35. We consider the direction ‘⇒’. We
have u/u = ε. So by Theorem 7.36 it follows that v/u ≈ ε and u/v ≈ ε.
Hence v/u = u/v = ε.

So we have verified that projection equivalence is indeed an equivalence.

Theorem 7.40 (Tiling is optimal). Let u and v be compatible positive braid
codes. Let u′ be a shortest word such that uv′ ≈ vu′ for some word v′. Then
we have that u′ ≈ u/v and v′ ≈ v/u.

Proof. Let u, v, u′ and v′ as in the theorem. So vu′ ≈ uv′. Let u′′ = u/v and
v′′ = v/u. The property uv′′ ≈ vu′′ holds by Theorem 7.13. By choice of u′

we have |u′| ≤ |u′′|. Consider the reduction diagram
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u

v′

v u′

v′′

u′′

y
x

We know that uv′/vu′ = vu′/uv′ = ε by Corollary 7.42. Moreover u′ ≈ u′′y
and v′ ≈ v′′x by Theorem 7.13. This implies that |u′′| ≤ |u′| and |v′′| ≤ |v′|.
Thus |u′′| = |u′|, |v′′| = |v′| and x = y = ε. Hence u′ ≈ u′′ = u/v and
v′ ≈ v′′ = v/u.

Thus tiling is optimal in the sense that it gives the shortest confluent exten-
sions.

Remark 7.41. The original ingenious confluence proof by Garside provides
much longer solutions to confluence: for given u, v, the solution x, y such
that ux ≈ vy has one of x, y equal to ∆m with m = |x|.

Corollary 7.42. Let u, v be compatible positive braid codes. Then u v v if
and only if uv′ ≈ v for some braid code v′.

Proof. The direction ‘⇒’ follows from Lemma 7.35. For ‘⇐’, let uv′ ≈ v for
some word v′. Then u/v ≈ ε by Theorem 7.40. So u v v.

Corollary 7.43 (Cube identity). Let u, v, w be positive braid codes. Then

(u/v)/(w/v) ≈ (u/w)/(v/w) .

Proof. From Theorem 7.13 it follows that v(w/v) ≈ w(v/w) as these are two
paths from the upper-left corner to the lower-right corner in the reduction
diagram setting v against w. By Theorem 7.36 we obtain

(u/v)/(w/v) = u/(v(w/v)) ≈ u/(w(v/w)) = (u/w)/(v/w) .

Remark 7.44. Note that Figure 11 is a ‘cubification’ of the permutohedron
P4. Here an interesting breakdown of symmetry in the cube identity is dis-
played (not unexpected, since the three overlapping pairs in 1 2 3 4 contain a
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Figure 11: Discrepancy in the cube identity.

middle one). As we have proved, the cube identity is valid up to convertibil-
ity. But it almost holds for 4 strands (n = 4) literally. If A = α12, B = α23

and C = α34, then

(B/C)/(A/C) ≈ ( 6=) (B/A)/(C/A)

The difference is one application of α13α24 = α24α13 as in the red square in
Figure 11, or in Artin’s notation 13 = 31. But

(C/A)/(B/A) = (C/B)/(A/B)

(A/B)/(C/B) = (A/C)/(B/C)
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Proposition 7.45 (Left and right cancellation).

(i) For positive braid codes we have left cancellation:

zx ≈ zy ⇒ x ≈ y

(ii) For positive braid codes we also have right cancellation:

xz ≈ yz ⇒ x ≈ y

Proof. (i) From zx ≈ zy follows zx/zy = zy/zx = ε by Theorem 7.42.
Because z/z = ε and x/ε = x and y/ε = y, we have x/y = y/x = ε:

z y

z

x x

y

Therefore x ≈ y, by Theorem 7.42.

(ii) First observe that x ≈ y ⇒ inv(x) ≈ inv(y). Suppose xz ≈ yz.
Then inv(xz) ≈ inv(yz), hence inv(z)inv(x) ≈ inv(z)inv(y). Now by left
cancellation: inv(x) ≈ inv(y). Hence x = inv(inv(x)) ≈ inv(inv(y)) = y.

8. Concluding remarks and questions

At the end of this paper some remarks in hindsight may be in order. First:
In Section 7 we went to considerable length to establish e.g. confluence-by-
tiling, or the Cube Equation. It should be stressed that we did not aim
for the shortest proof of these properties, but rather have tried to present
a sample of relevant techniques from term rewriting to address this matter,
such as the method of decreasing diagrams. Indeed, modern expositions can
be found in Dehornoy [6, 7] that establish these key theorems considered here
much faster and much more general. As to the vast generality of the current
state of the theory, pertaining to much more monoids than just the braids
monoid, also extending to categories, we refer to [36].
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8.1. Term rewriting techniques applied in braid and Garside theory

Historical reflections. Completing reduction diagrams by tiling is a classic
technique in lambda calculus and in particular in term rewriting. The use
of elementary reduction diagrams with empty steps was developed in [8].4

The notion of the projection operator is prominent in early work of Lévy [5]
and Huet [2, 3, 4]. In particular Lévy’s diagram equations and the Cube
Equation play an important role in that work.

The objective in those developments in lambda calculus and (orthogonal)
term rewriting theory was confluence of reductions, a single reduction relation
or an indexed family of rewrite relations. In braid theory there is also a major
interest in completed reduction diagrams in order to obtain confluence.5 We
note that the terminology in that field has developed in an independent but
quite compatible way. The terminology is left and right word reversing with
an important concern for termination of left/right word reversing.6 Also the
projection operator (residual operator as Lévy called it), including the Cube
Equation that we also needed and have derived in the present paper, plays
an important role in braid theory and Garside Theory. 7

Future prospects. We are hopeful that there is not only a clearly visible histor-
ical common ground in the technical sense between these two areas, lambda
calculus and term rewriting (including string rewriting) versus braids and
Garside theory, but we are also hopeful that there may be a future cross-
fertilisation by mutual inspiration. From the side of term/string rewriting
there is a large tool set that may turn out to be relevant for Garside theory.
Such potentially useful tools include:

(i) decreasing diagrams (part of abstract rewriting theory)

(ii) residual theory,

(iii) termination methods,

4An example of proofs exploiting empty steps in reduction diagrams is also in [7, page
219, Figure 11].

5Indeed, it is mentioned by Dehornoy et al. [7, page 89], that the word reversing
method is in particular useful for ‘complemented presentations’, proving cancellativity
and existence of least common multiples.

6See work of Dehornoy et al. [6, Chapter II, Word reversing] and [7, pages 68–71].
7Lévy’s diagram projection equations are used in [7, page 43, Corollary 2.13]. See

also [7, page 76, Proposition 4.34, and page 154, Notation 3.38].

55



(iv) critical pair completion,

(v) axiomatic rewrite theory,

(vi) string rewrite systems and Tietze moves.

8.2. Complete rewriting systems for the braid monoid

In this paper we have not considered, for reasons of space, the interesting
theme of complete rewrite systems for positive braids, except for a sketch
of Garside’s normal form theorem. There are several versions of complete
rewrite systems yielding normal forms. Krammer [37] contains some elegant
and simple complete rewrite systems, for the Artin notation. For general
methods in a group-theoretic context to obtain complete rewrite systems
for Artin monoids and others, see [38]. There are also complete rewrite
systems obtained by critical pair completion, see e.g. Bangert [22]. In fact,
there are several different notions of normal forms for braids, and there exist
very efficient algorithms to compute them. See for instance the ‘relaxation
algorithms’ of [39].

(i) We expect that analogous versions of such complete rewrite systems as
the ones in Krammer [37] can be given for braid codes.

Here an interesting question turns up, in view of the Kapur-Narendran
phenomenon for the monoid for braids on 3 strands

〈 a, b | aba = bab 〉

While the equality is clearly decidable, as all convertible words have
the same length, there is no finite complete rewrite system yielding this
equality, at least not in the same signature. However, an extension with
a new defined constant, obtained via a Tietze move, with subsequent
critical pair completion, does give a complete rewrite system. A ques-
tion signalled also elsewhere [40], is whether this Kapur-Narendran
phenomenon also pertains to braids with more than 3 strands.

(ii) Another question emerging from the focus in the present paper, is
whether possible versions of complete rewrite systems in the braid code
also ‘suffer’ from the Kapur-Narendran observation, not having a com-
plete rewrite system in spite of their decidable convertibility.
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(iii) At a deeper level, beyond the scope of this paper, one may wonder for
the braid codes about the notion of ‘finite derivation type’ in the sense
of Squier [41], referring to deep properties of monoid presentations
whose absence of finite derivation type forbid the existence of complete
rewrite systems for certain decidable monoid presentations, in a strong
sense, namely even for all possible extensions with new constants added
via Tietze moves.

Acknowledgements. We are grateful to Patrick Dehornoy for very informative
and helpful comments on a draft of the paper that led to many improvements.
Also to Paul-André Melliès [42, 11, 43] and Vincent van Oostrom [44] for
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[13] E. Artin, Theorie der Zöpfe, Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg 4 (1) (1925) 47–72 (Dec 1925).

[14] E. Artin, Braids and permutations, Annals of Mathematics (1947) 643–
649 (1947).

[15] E. Artin, Theory of braids, Annals of Mathematics (1947) 101–126
(1947).

[16] F. Garside, The theory of knots and associated problems, Ph.D. thesis,
University of Oxford (1965).

[17] F. A. Garside, The braid group and other groups, The Quarterly Journal
of Mathematics 20 (1) (1969) 235–254 (1969).

[18] E. Brieskorn, K. Saito, Artin-gruppen und coxeter-gruppen, Invent.
Math. 17 (1972) 245–271 (1972).

[19] J. S. Birman, T. E. Brendle, Braids: a survey, Handbook of knot theory
(2005) 19–103 (2005).

58



[20] C. Kassel, V. Turaev, Braid groups, volume 247 of graduate texts in
mathematics (2008).

[21] M. Gardner, New mathematical diversions, Mathematical Association
of America,, 1995 (1995).

[22] P. D. Bangert, Braids and knots, in: Lectures on Topological Fluid
Mechanics, Springer, 2009, pp. 1–73 (2009).
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