
Regularity Preserving but not Reflecting Encodings
Jörg Endrullis

Department of Computer Science
VU University Amsterdam

Amsterdam, The Netherlands
Email: j.endrullis@vu.nl

Clemens Grabmayer
Department of Computer Science

VU University Amsterdam
Amsterdam, The Netherlands
Email: c.a.grabmayer@vu.nl

Dimitri Hendriks
Department of Computer Science

VU University Amsterdam
Amsterdam, The Netherlands
Email: r.d.a.hendriks@vu.nl

Abstract—Encodings, that is, injective functions from words
to words, have been studied extensively in several settings. In
computability theory the notion of encoding is crucial for defining
computability on arbitrary domains, as well as for comparing
the power of models of computation. In language theory much
attention has been devoted to regularity preserving functions.

A natural question arising in these contexts is: Is there
a bijective encoding such that its image function preserves
regularity of languages, but its preimage function does not? Our
main result answers this question in the affirmative: For every
countable class L of languages there exists a bijective encoding f
such that for every language L ∈ L its image f [L] is regular.

Our construction of such encodings has several noteworthy
consequences. Firstly, anomalies arise when models of com-
putation are compared with respect to a known concept of
implementation that is based on encodings which are not required
to be computable: Every countable decision model can be
implemented, in this sense, by finite-state automata, even via
bijective encodings. Hence deterministic finite-state automata
would be equally powerful as Turing-machine deciders.

A second consequence concerns the recognizability of sets of
natural numbers via number representations and finite automata.
A set of numbers is said to be recognizable with respect to a repre-
sentation if an automaton accepts the language of representations.
Our result entails that there exists a number representation with
respect to which every recursive set is recognizable.

I. INTRODUCTION

In order to define computability of number-theoretic func-
tions through computational models that operate on strings of
symbols from an alphabet Σ (rather than defining computabil-
ity directly via recursion schemes) one usually employs (num-
ber) representations, that is, injective functions r : N→ Σ∗. A
function f : N→ N is called r-computable (computable by a
Turing machine using representation r) if there exists a Turing-
computable function ϕ : Σ∗ → Σ∗ such that ϕ◦r = r ◦f . For
representations r that are informally computable (i.e., there
is a machine-implementable algorithm that always terminates,
and computes r), it can be argued on the basis of Church’s
thesis (similar as e.g. in [21, p. 28]) that r-computability does
not depend on the specific choice of r, and coincides with
partial recursiveness.

Shapiro [26] studied the influence that (unrestricted) bijec-
tive representations r have on the notion of r-computability.
He found that the only functions that are r-computable with
respect to all bijective representations r are the almost constant
and almost identity functions; and that there are functions that
are not r-computable for any representation r. Furthermore,

he defines ‘acceptable’ number representations: a bijective
representation r is called ‘acceptable’ if the successor function
lifted to the r-coded natural numbers is Turing computable. He
goes on to show that, a representation r is acceptable, if and
only if r-computability coincides with partial recursiveness.

In this paper we focus on the notion of computability by
finite automata of sets of natural numbers. In particular, we
investigate how number representations determine the sets of
natural numbers that are computable by finite-state automata.
Such sets are called ‘recognizable’: a set S ⊆ N is called
r-recognizable (recognizable with respect to representation r),
if there is a finite automaton that for all n ∈ N decides
membership of n in S when r(n) is given to it as input.

We are interested in comparing representations r with
respect to their computational power as embodied by the
r-recognizable sets. This idea gives rise to a hierarchy via a
subsumption preorder between representations: r1 : N → A∗

subsumes r2 : N → B∗ if all r2-recognizable sets are also
r1-recognizable. There are several natural questions concern-
ing this preorder; to name a few:

(i) When does a number representation subsume another?
(ii) Is the hierarchy proper: do there exist representations r1

and r2 such that r1 subsumes r2, but not vice versa?
(iii) Is there a representation that subsumes all others?
(iv) Is every (injective) number representation subsumed by

a bijective number representation?
(v) What classes C ⊆ ℘(N) of sets of natural numbers are

recognizable with respect to a number representation?
As our computational devices are finite automata, all of

these questions boil down to problems in language theory.
In particular the comparison of number representations is
intimately connected with encodings, injective mappings from
words to words, that have the property that their image func-
tion preserves regularity of languages. For bijective number
representations f : N→ A∗ and g : N→ B∗, we have that f
subsumes g if and only if the set function

(f ◦ g−1)[]

preserves regularity of languages; here we use the notation
h[] to denote the image function of a function h. Regularity
preserving functions play an important role in different areas
of computer science, and have been studied extensively. An
important result in this area is the work [17], [15] of Pin and

1

Silva, providing a characterization of regularity preservation
of preimage functions in terms of uniformly continuous maps
on the profinite topology [15, Cor. 6.2].

A natural question that presents itself then is the following:

Are there bijective functions f : Σ∗ → Σ∗ whose im-
age function f [] preserves regularity of languages,
but whose preimage function f−1[] does not?

For bijective word functions we experienced this to be a very
challenging question, which to the best of our knowledge,
has remained unanswered in the literature. Using the results
of [17], [15], it can equivalently be formulated as follows:

Are there bijective functions f : Σ∗ → Σ∗ such that
f is uniformly continuous, but f−1 is not uniformly
continuous in the profinite topology?

Concerning recognizable sets and the hierarchy of number
representations, the question translates to:

Are there bijective number representations f and g
such that f strictly subsumes g?

If this were not the case, subsumption would imply equiva-
lence for bijective number representations, and the hierarchy
would collapse.

Our main result (Theorem 8), which allows us to answer all
of the above questions, is the following:

Main Theorem. For every countable class L ⊆ ℘(Σ∗) of
languages over a finite alphabet Σ, and for every alphabet Γ
with |Γ| ≥ 2, there exists a bijective encoding f : Σ∗ → Γ∗

such that for every language L ∈ L its image f [L] is regular.

With respect to computability theory and recognizable sets
of natural numbers, this result can be restated as follows:

For every countable decision model M ⊆ ℘(N),
there exists a bijective representation f : N → Σ∗

such that every set M ∈M is f -recognizable.

As a direct consequence, when allowing for arbitrary bijective
number representations, we find the unsought:

Finite automata are as strong
as Turing-machine deciders.

(E)

That is, there is a bijective representation such that finite au-
tomata can recognize any computable set of natural numbers.

Our result also has consequences in the context of the work
by Boker and Dershowitz on comparing the power of com-
putational models, as described below. Models over different
domains are typically compared with the help of encodings
that translate between different number representations. In
order to prevent encodings from changing the nature of the
problem, they are usually required to be ‘informally algo-
rithmic’, ‘informally computable’, or ‘effective’ (see e.g. [21,
p.27]). However, the latter concepts are rather vague, and in
any case non-mathematical. Therefore they are unsatisfactory
from the viewpoint of a rigorous conceptual analysis.

In the formal approach for comparing models of compu-
tation proposed by Boker and Dershowitz in [3], [5], [4],

encodings are merely required to be injective. On the basis
of this stipulation, a computational model M2 is defined to
be ‘at least as powerful as’ M1, denoted by M1 . M2, if
there exists an encoding ρ : Σ∗1 → Σ∗2 with the property that
for every function f computed by M1 there is a function g
computed by M2 such that the following diagram commutes:

Σ∗1 Σ∗2

Σ∗1 Σ∗2

ρ

ρ

f ∈M1 g ∈M2
M1 .ρ M2

(In order to highlight the encoding used,M1 .ρ M2 is writ-
ten.) Although encodings are not required to be (informally)
computable, this approach works quite well in practice.

However, in analogy to what we found for recognizability,
one runs into the anomaly (E) again, namely when comparing
the power of decision models with the preorder .. Our main
result implies C . DFA for every countable class of decision
problems C, where DFA denotes the class of deterministic
finite-state automata. Even stronger, it follows that there is a
bijective encoding ρ such that C .ρ DFA. As a consequence
we obtain that TMD .ρ DFA holds for the class TMD of
Turing-machine deciders, and a bijective encoding ρ.

Further Related Work

For a general introduction to automata and regular languages
we refer to [22], [9]. We briefly mention related work with
respect to regularity preserving functions apart from work [17],
[15] of Pin and Silva that we have already discussed above.
The works [27], [10], [14], [23], [11], [24], [13] investigate
regularity preserving relations; in particular, [24] provides a
characterization of prefix-removals that preserve regularity. In
[16], Pin and Sakarovitch study operations and transductions
that preserve regularity. In [12], Kozen gives a characterization
of word functions over a one-letter alphabet whose preimage
function preserves regularity of languages. The paper [2]
by Berstel, Boasson, Carton, Petazzoni and Pin characterizes
language preserving ‘filters’; a filter is a set F ⊆ N used
to delete letters from words of the language as indexed by
elements of the filter.

II. PRELIMINARIES

We use standard terminology and notation, see, e.g., [1].
Let Σ be an alphabet, i.e., a finite non-empty set of symbols.
We denote by Σ∗ the set of all finite words over Σ, and by
ε the empty word. The set of infinite sequences over Σ is
ΣN = {σ | σ : N → Σ} with N = {0, 1, 2, . . .}, the set of
natural numbers.

A deterministic finite-state automaton (DFA) is a tuple A =
〈Q,Σ, δ, q0, F 〉 consisting of a finite set of states Q, an input
alphabet Σ, a transition function δ : Q×Σ→ Q, an initial state
q0 ∈ Q, and a set F ⊆ Q of accepting states. The transition
function δ is extended to δ∗ : Q× Σ∗ → Q by

δ∗(q, ε) = q δ∗(q, aw) = δ∗(δ(q, a), w) ,

2

for all states q ∈ Q, letters a ∈ Σ and words w ∈ Σ∗. We
will write just δ for δ∗. A word w ∈ Σ∗ is accepted by A
if δ(q0, w), the state reached after reading w, is an accepting
state. We write Lang(A) for the language accepted by the
automaton A, i.e., Lang(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F}.

A DFA with output (DFAO) is a tuple 〈Q,Σ, δ, q0,∆, λ〉,
with the first four components as in the definition of a DFA,
but with, instead of a set of accepting states, an output
alphabet ∆, and an output function λ : Q → ∆. A DFAO
A = 〈Q,Σ, δ, q0,∆, λ〉 realizes a function mapping words
over Σ to letters in ∆; we denote this function also by A,
that is, we define A : Σ∗ → ∆ by

A(w) = λ(δ(q0, w)) for all w ∈ Σ∗.

A DFA 〈Q,Σ, δ, q0, F 〉 can thus be viewed as a DFAO
〈Q,Σ, δ, q0, {0, 1}, χF 〉 where χF is the characteristic func-
tion of F ; instead of a state being accepting or not, it has
output 1 or 0 respectively.

Two automata A and A′ over the same input alphabet Σ are
equivalent on a set X ⊆ Σ∗ if A(x) = A′(x) for all x ∈ X .
We use this functional notation also for a DFA A, stipulating:
A(x) = 1 (A(x) = 0) iff A accepts x (A does not accept x).

A partition P of a set U is a family of sets P ⊆ ℘(U) such
that ∅ 6∈ P ,

⋃
A∈P A = U , and for all A,B ∈ P with A 6= B,

A ∩B = ∅.
The pigeon hole principle (PHP) states that if n pigeons

are put into m pigeonholes with n > m, then at least one
pigeonhole contains more than one pigeon. PHP for infinite
sets is that if infinitely many pigeons are put into finitely many
holes, then one hole must contain infinitely many pigeons.

Let A, B, X , and Y be sets, with X ⊆ A and Y ⊆ B. For
a function A→ B we write f [X] for the image of X under f ,
that is, f [X] = {f(x) | x ∈ X}. Likewise, we write f−1[Y]
for the preimage of Y under f , i.e., f−1[Y] = {x | f(x) ∈ Y }.

A function F : ℘(Σ∗) → ℘(Γ∗) preserves regularity if
F (L) is regular whenever L is a regular language.

III. MAIN RESULTS

In this section, we prove our main results. We work to-
wards Theorem 8 stating that for every countable class L of
languages there exists a bijective encoding f : Σ∗ → Γ∗ such
that f [L] is regular for every language L ∈ L. We first prove
the existence of injective encodings with (a weakening of) this
property (Lemma 2), and then strengthen this result to bijective
functions (Lemma 6). From Theorem 8 we then obtain the
existence of bijective functions that are regularity preserving
but not regularity reflecting, Theorem 9.

For injective encodings we do not require that the images
f [L] are regular. For our construction, we use the weaker
property that f [L] is recognizable among f [Σ∗]. This means
that there exists an automaton that for every w ∈ Σ∗, on the
input of the code f(w) decides whether w ∈ L. This leads to
the notion of ‘relatively regular in’ which also is crucial for
recovering the ‘fiber lemma’ for c-automatic sequences, see
Lemma 26.

Definition 1. Let L,M ⊆ Σ∗ be formal languages over the
alphabet Σ, with L ⊆ M . Then L is relatively regular in M
if there exists a regular language R such that L = R ∩M .

So a regular language S ⊆ Σ∗ is relatively regular in Σ∗.

Lemma 2. Let Σ and Γ be finite alphabets, with |Γ| ≥ 2.
Let L ⊆ ℘(Σ∗) be a countable set of formal languages. There
exists an injective function f : Σ∗ → Γ∗ such that for every
L ∈ L, f [L] is relatively regular in f [Σ∗].

Proof. Let L1, L2, L3, . . . be an enumeration of L, and let
v0, v1, v2, . . . be an enumeration of Σ∗. For i ≥ 1, we write
χi : Σ∗ → {0, 1} for the characteristic function of Li, that is,

χi(v) =

{
1 if v ∈ Li
0 otherwise

for all v ∈ Σ∗.

Without loss of generality we assume Γ = {0, 1, . . . , k − 1}
for some k ≥ 2. Define the function f : Σ∗ → Γ∗ by

f(vn) = χ1(vn)χ2(vn) · · · χn(vn) , for all n ∈ N.

For every i = 1, 2, . . ., we construct a DFAO Ai and show that
f [Li] = Lang(Ai) ∩ f [Σ∗] witnessing that f [Li] is relatively
regular in f [Σ∗], as required.

Fix an arbitrary integer i ≥ 1. Define Ai = 〈Q,Γ, δ, 0, λ〉
where Q = {0, 1, . . . , i− 1}∪ {i0, i1}, Γ = {0, 1, . . . , k− 1},
δ : Q× Γ→ Q is defined by

δ(q, a) = q + 1 for all q ∈ {0, 1, . . . , i− 2} and a ∈ Γ,
δ(i− 1, 0) = i0

δ(i− 1, a) = i1 for all a ∈ Γ \ {0},
δ(ij , a) = ij for all j ∈ {0, 1} and a ∈ Γ,

and λ : Q→ Γ is defined, for all q ∈ {0, 1, . . . , i− 1}, by

λ(q) = χi(vq) λ(i0) = 0 λ(i1) = 1 .

We show that f [Li] = Lang(Ai)∩ f [Σ∗]; equivalently, for all
v ∈ Σ∗,

v ∈ Li ⇐⇒ f(v) ∈ Lang(Ai) .

Let v ∈ Σ∗, so v = vn for some n ∈ N. Note that |f(vn)| = n.
Hence, if n ≤ i, the automaton Ai is in state n after having
read the word f(vn) and outputs χi(vn). If n ≥ i, then after
having read f(vn), the automaton is in state ij , where j is the
i-th letter of f(vn), that is, j = χi(vn). In both cases we get
vn ∈ Li if and only if f(vn) ∈ Lang(Ai).

For lifting the result of Lemma 2 from injective to bijective
encodings, we need some preliminary notions and results.

Definition 3. Let U be a set and I, C ⊆ U . The set C is
attracted to I if C ⊆ I whenever C ∩ I is finite. For a
partition E of U , we say that E is attracted to I , when, for
every C ∈ E, C is attracted to I .

Equivalently, E is attracted to I if every finite C is included
in I and every infinite C has an infinite intersection with I .

3

Lemma 4. Let E = {C0, C1 . . . , Cn−1} be a finite partition
of Σ∗ with Ci ⊆ Σ∗ a regular set for every i ∈ {0, 1, . . . , n−
1}. Let I ⊆ Σ∗ and assume that E is attracted to I . For
every DFA A there exists a DFA A′ such that A′ is equivalent
to A on I and the refined partition

E′ = {C ′i,j | i ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1}}

is attracted to I , where, for i ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1} ,

C ′i,j = Ci ∩ {u ∈ Σ∗ | A′(u) = j} .

Proof. We start with A′ = A, and repeatedly adapt A′ (and
therewith E′) until E′ is attracted to I , in such a way that
equivalence with A is upheld.

Assume that E′ is not attracted to I . Then there exist i ∈
{0, 1, . . . , n − 1} and j ∈ {0, 1} such that C ′i,j \ I 6= ∅ but
C ′i,j∩I is finite. Without loss of generality, assume that j = 0.
Since Ci = C ′i,j ∪C ′i,1−j it follows that Ci \I 6= ∅ and hence
Ci ∩ I is infinite by assumption. By the pigeonhole principle
(for infinite sets) it follows that C ′i,1∩I is infinite. Since Ci is
a regular set and A′ is a finite automaton, it follows that C ′i,0 is
regular as it is the intersection of two regular sets. As C ′i,0∩I
is finite, also C ′i,0 \ I is regular. As a consequence we can
change the finite automaton A′ to accept the words in C ′i,0 \ I
(and otherwise to behave as before). This adaptation preserves
equivalence, and we now have that C ′i,j is attracted to I for
j = 0, 1, since, after the adaptation, C ′i,0∩I = C ′i,0 and C ′i,1∩I
is infinite. We repeat the procedure until C ′i,j is attracted to I
for every i ∈ {0, 1, . . . , n− 1} and j ∈ {0, 1} .

The following lemma, Lemma 6, is a key contribution of
our paper. It states that every injection f : A → Γ∗ (with A
some countably infinite set) can be transformed into a bijection
g : A→ Γ∗ such that, for all L ⊆ A, g[L] is a regular language
whenever f [L] is relatively regular in the image f [A]. Before
proving the lemma, we sketch the construction. We construct
g as the limit of a sequence of adaptations of f . Roughly
speaking, we make f ‘more bijective’ in every step. We let

– v0, v1, v2, . . . be an enumeration of A, and
– w0, w1, w2, . . . be an enumeration of Γ∗.

Figure 1 sketches an injective function f ; an arrow from vi to
wj indicates that f(vi) = wj .

v0 v1 v2 v3 v4 . . .

w0 w1 w2 w3 w4 w5 w6 w7 w8 . . .

Fig. 1. Starting situation: the function f .

The idea is that we change the target of arrows such that all
words wi for i ∈ N become part of the image. For every
natural number n = 0, 1, 2, . . . we will pick (while avoiding
repetitions) a word vkn (for kn ∈ N) from the input domain
and then adapt f by stipulating vkn 7→ wn. Then, in the limit,
every word w ∈ Γ∗ will be in the image. (In order for the limit
of the adaptation to be a function, we also need to guarantee
that every vkn will be picked precisely once.)

The crucial point of the construction is the following: when
changing arrows, we need to ensure that
(?) the limit of the process preserves relative regularity.

Note that for bijective functions g : A→ Γ∗ we have that g[L]
is relatively regular in the image g[A] = Γ∗ if and only if g[L]
is regular. Thus if we can ensure (?), the resulting bijective
function g will have the desired property.

How to pick the vkn for ensuring (?)? Let A0, A1, A2, . . .
be an enumeration of all finite automata over the alphabet Γ.
We write u ∼n v if for every i < n, the automaton Ai
accepts the word u if and only if it accepts the word v.
We then pick for every natural number n ∈ N, a word vkn
such that f(vkn) ∼n wn (and the word vkn has not been
picked before). In other words, we pick vkn such that the
first n automata A0, A1, . . . , An−1 cannot distinguish f(vkn)
from the image wn after the adaptation vkn 7→ wn. This
choice guarantees that every automaton Ai (i ∈ N) is only
affected by a finite number of adaptations, namely the first i
transformation steps. For every further adaptation (j > i),
the behavior of the automaton Ai is taken into account for
the choice of vkj , and as a consequence the modification
vkj 7→ wj preserves the acceptance behavior of Ai. Then for
the limit g of the adaptation process we have for almost all
n ∈ N that Ai accepts f(vn) if and only if Ai accepts g(vn).
In order to guarantee that every vi will be picked eventually
and that the adaptation preserves injectivity, we pick among
the suitable candidates for vkn the one which appears first in
the enumeration w0, w1,

Remark 5. There is a caveat here that we will ignore in this
sketch of the construction. We actually need to make sure that
a word vkn with these properties exists. To ensure this, the
equivalence classes with respect to ∼n must be attracted to
the image of f . This is in general not the case, but we can
employ Lemma 4 to adapt the automata outside of the image
of f . We refer to the proof of Lemma 6 for the details.

We explain this process at the example of the function f
given in Figure 1. For the first step n = 0, we want to adapt
f such that w0 becomes part of the image of f . Note that
the relation ∼0 relates all words of Γ∗. As a consequence we
can pick any word vk0 . We choose vk0 = v1 since the image
f(v1) appears first in the sequence w0, w1, . . ., and we adapt
the function f by v1 7→ w0.

v0 v1 v2 v3 v4 . . .

w0 w1 w2 w3 w4 w5 w6 w7 w8 . . .
0 1 1 0 1 0 0 1 0

Fig. 2. Result of the first adaptation of the function f .

The result of this first adaptation is shown in Figure 2. For
the second step (n = 1) we want that w1 becomes part of the
image. Now ∼1 relates words that have equal behavior with
respect to acceptance by the automaton A0. The numbers 0
and 1 below the words wi in Figure 2 indicate whether A0

4

accepts the word wi (1) or not (0). The word w1 is accepted by
A0 and likewise are f(v2) and f(v4). Among these candidates,
we choose vk1 = v4 since f(v4) appears first in the sequence
w1, w2, We modify the function f by setting v4 7→ w1.

v0 v1 v2 v3 v4 . . .

w0 w1 w2 w3 w4 w5 w6 w7 w8 . . .
01 10 10 01 11 00 00 10 01

Fig. 3. Result of the second adaptation of the function f .

The result of the second adaptation is shown in Figure 3.
Now n = 2 and ∼2 relates words that have equal acceptance
behavior with respect to automata A0 and A1. To this end, we
now write A0(wi)A1(wi) below each word wi in Figure 3.
The word w2 is accepted by A0 but rejected by A1. The only
(displayed) candidate for vk2 exhibiting the same behavior is
f(v2). The result of this third adaptation is shown in Figure 4.

v0 v1 v2 v3 v4 . . .

w0 w1 w2 w3 w4 w5 w6 w7 w8 . . .

Fig. 4. Result of the third adaptation of the function f .

This process continues for every n ∈ N, and the limit of this
process is a bijective function g with the desired properties.
The construction is made precise in the proof of Lemma 6.

Lemma 6. Let A be a countably infinite set. For every
injection f : A → Γ∗ there exists a bijection g : A → Γ∗

such that for all L ⊆ A, if f [L] is relatively regular in the
image f [A], then g[L] is a regular language.

Proof. Let f : A→ Γ∗ be an injective function. Let

– v0, v1, v2, . . . be an enumeration of the set A, and let
– w0, w1, w2, . . . be an enumeration of the set Γ∗, and let
– A0, A1, A2, . . . be an enumeration of all finite-state au-

tomata over Γ.

We abstract away from the domain by defining c : N→ Γ∗ by

c(i) = f(vi) for all i ∈ N.

In this proof, will construct a bijective function d : N → Γ∗

such that for all S ⊆ N, if c[S] is relatively regular in the
image c[N], then d[S] is a regular language.

Then we can define the function g : A→ Γ∗ by

g(wi) = d(i) for all i ∈ N.

The bijectivity of g follows immediately from bijectivity of d,
and for every L ⊆ A with f [L] is relatively regular in f [A], we
have: let S ⊆ N such that L = { vi | i ∈ S }, then c[S] = f(L)
is relatively regular in c[N] = f [A], and hence d[S] = g[L] is
regular. As a consequence, it suffices to construct a function
d with the properties above.

For each i ∈ N we will define a finite-state automaton A′i
with properties described below. For every n ∈ N, we define
the equivalence relation ∼n ⊆ Γ∗ × Γ∗ by

u ∼n u′ ⇐⇒ ∀i ∈ {0, 1, . . . , n− 1}. A′i(u) = A′i(u
′) ,

for all u, u′ ∈ Γ∗. So ∼n relates words that are not distin-
guished by the automata A′0, A

′
1, . . . , A

′
n−1. The relation ∼n

gives rise to a partition

En = { [u]∼n
| u ∈ Γ∗ }

where [u]∼n
= {u′ ∈ Γ∗ | u ∼n u′} is the equivalence class

of u with respect to ∼n.
We are ready to carry out the central construction. We

first describe what objects we will define and their main
properties. Then we give specifications of these objects, and
afterwards we show that the objects are well-defined and that
the properties hold.

We are going to define, by induction on n ∈ N,
(i) a natural number kn ∈ Kn , where

Kn = N \Kn Kn = {k0, k1, . . . , kn−1} ,

such that

c(kn) ∼n wn . (1)

(ii) a bijective map dn : N→ In , where

In = c[Kn] ∪Wn Wn = {w0, w1, . . . , wn−1} ,

(iii) an automaton A′n , such that
(a) ∀u ∈ In. An(u) = A′n(u) , and
(b) En+1 is attracted to In+1.

We will now give specifications of (i)–(iii), and thereafter
show that they are well-defined, and satisfy the above men-
tioned properties.

(i) We define kn ∈ Kn as follows:

kn = c−1(min([wn]∼n
∩ c[Kn])) ,

where min denotes the minimum with respect to the order
< on Γ∗ given by the enumeration w0 < w1 < w2 < · · · .

(ii) The map dn : N→ In is defined for all i ∈ N by

dn(i) =

{
wj if i = kj for some j ∈ {0, 1, . . . , n− 1} ,
c(i) if i ∈ Kn.

(iii) For A′n we choose the automaton A′ guaranteed to exist
by Lemma 4 where the lemma is invoked with A = An,
I = In+1, and E = En.

We note that ∼0 = Γ∗ × Γ∗, and, by definition of ∼n, it
follows that

En is finite and every C ∈ En is a regular language. (2)

We prove that (i)–(iii) are well-defined, and that the follow-
ing properties hold:
(a) c[Kn] ∩Wn = ∅ ,
(b) En is attracted to In,

5

(c) dn is a bijection, and
(d) kn is well-defined.

We first show that, for every n ∈ N, items (c) and (d) follow
from (a) and (b).
(c) We show that dn : N → In is bijective. Surjectivity of

dn is immediate by definition of In. To show injectivity,
assume there exist i1, i2 ∈ N such that dn(i1) = dn(i2).
From (a) and the definition of dn, it follows that either
i1, i2 ∈ Kn or i1, i2 ∈ Kn. If i1, i2 ∈ Kn, then there are
j1, j2 ∈ {0, 1, . . . , n−1} such that i1 = kj1 and i2 = kj2 .
Then it follows that wj1 = dn(i1) = dn(i2) = wj2 , which
can only be in case if j1 = j2. Hence i1 = kj1 = kj2 = i2.
If i1, i2 ∈ Kn, then c(i1) = dn(i1) = dn(i2) = c(i2). By
injectivity of c we have i1 = i2.

(d) To see that kn is well-defined it suffices to show that
[wn]∼n ∩ c[Kn] is non-empty. By (b) we know that either
|[wn]∼n

∩ In| =∞, or [wn]∼n
⊆ In:

– For |[wn]∼n
∩ In| = ∞, it follows that |[wn]∼n

∩
c[Kn]| =∞.

– For [wn]∼n ⊆ In, we get wn ∈ ([wn]∼n ∩ In). Since
In = c[Kn] ∪Wn, and wn /∈ Wn, (a) entails wn ∈
c[Kn], and hence [wn]∼n

∩ c[Kn] 6= ∅.
We note that, indeed, (1) follows by the choice of kn.

We now prove (a) and (b) by induction on n ∈ N. For the
base case we have:
(a) c[K0] ∩W0 = ∅ since W0 = ∅, and
(b) E0 = {Γ∗} is attracted to I0 = c[N].

For the induction step, let n ∈ N be arbitrary. We assume
c[Kn] ∩ Wn = ∅ and that En is attracted to In (induction
hypothesis). We first prove the implication

wn ∈ c[Kn] =⇒ wn = c(kn) . (3)

If wn ∈ c[Kn], also wn ∈ ([wn]∼n ∩ c[Kn]). Since c[Kn] ∩
Wn = ∅ by induction hypothesis, wn is the smallest element
in [wn]∼n

∩ c[Kn]. Hence wn = min([wn]∼n
∩ c[Kn]) and

c(kn) = wn.
(a) By the induction hypothesis we have c[Kn] ∩Wn = ∅,

and so we have c[Kn+1]∩Wn = ∅. To see that c[Kn+1]∩
Wn+1 = ∅, it suffices to show wn 6∈ c[Kn+1]. Assume,
to derive a contradiction, that wn ∈ c[Kn+1]. Then also
wn ∈ c[Kn]. Hence, by (3), we have wn = c(kn). This
contradicts wn ∈ c[Kn+1], since, by injectivity of c, we
have c[Kn+1] = c[Kn] \ {c(kn)} = c[Kn] \ {wn}.

(b) We have to prove that En+1 is attracted to In+1. We first
show that

En is attracted to In+1. (4)

By injectivity of c we have In+1 = c[Kn]\{c(kn)}∪Wn∪
{wn}. Moreover, since by induction hypothesis c[Kn] ∩
Wn = ∅, we have c[Kn]\{c(kn)}∪Wn∪{wn} = (c[Kn]∪
Wn) \ {c(kn)} ∪ {wn}. Hence In+1 = (In \ {c(kn)}) ∪
{wn}. Let C ∈ En be arbitrary. By induction hypothesis
we know that C is attracted to In; we distinguish the
following two cases:

– If |C ∩ In| =∞, then |C ∩ In+1| =∞. Hence C is
attracted to In+1.

– Assume C ⊆ In. If c(kn) 6∈ C, then clearly C ⊆
In+1. If c(kn) ∈ C, then C = [wn]∼n since c(kn) ∼n
wn due to (1). From wn ∈ C ⊆ In, we obtain wn ∈
c[Kn]. Hence, by (3) we have wn = c(kn) and so
In = In+1.

This concludes the proof of (4).
Recall that A′n is the automaton A′ obtained by invoking
Lemma 4 with A = An, I = In+1, and E = En.
Both requirements of the lemma are established above,
in (2) and (4), so the automaton A′n is well-defined. Let,
moreover, E′ be the resulting partition obtained in the
lemma. Lemma 4 guarantees that E′ is attracted to In+1.
Moreover, by definition of En+1, we have E′ = En+1.
Hence En+1 is attracted to In+1.

We now establish that every natural number k will be picked
as a kn eventually. That is, for every k ∈ N there exists n ∈ N
such that kn = k. Let k ∈ N. For every n ∈ N, the set c[Kn]
is the image under c of all natural numbers that have not yet
been picked as a ki for 0 ≤ i ≤ n− 1. Since w0, w1, . . . is an
enumeration of Γ∗, there exists n ∈ N such that c(k) ∈ Wn.
Hence k 6∈ Kn since c[Kn] ∩Wn = ∅ by property (a). Thus
k will be picked eventually.

We define the encoding d : N→ Γ∗ by

d(i) = lim
n→∞

dn(i) (i ∈ N)

These limits are well-defined since, for every i ∈ N: there
exists n ∈ N with i = kn, and we have dm(i) = c(i) for all
m ≤ n and dm(i) = wn for all m > n.

From the above, it follows that the function d has the
following property:

d(kn) = wn for all n ∈ N . (5)

We now show that d is indeed a bijection. Since by construc-
tion, every w0, w1, w2, . . . occurs precisely once in the image
of d, d is injective. Moreover, we have seen above, that the set
{k0, k, k2, . . .}, the domain of d, contains all natural numbers.
Hence d is a bijection.

Finally, we show that for all L ⊆ N, if c[L] is relatively
regular in the image c[N], then d[L] is a regular language. Let
L ⊆ N be such that c[L] is relatively regular in c[N]. Then
there exists a regular language R such that c[L] = R ∩ c[N].
Let m ∈ N be such that R = Lang(Am). Then for all n ∈ N,

n ∈ L ⇐⇒ c(n) ∈ Lang(Am) . (6)

By the above construction we have for all w ∈ Im
w ∈ Lang(A′m) ⇐⇒ w ∈ Lang(Am) .

By definition, Im coincides with c[N] for all but finitely many
words. Hence for almost all n ∈ N

c(n) ∈ Lang(Am) ⇐⇒ c(n) ∈ Lang(A′m) . (7)

By the definition of d, and property (1), we find:

d(kn) = wn ∼n c(kn) for all n ∈ N .

6

Due to ∼n ⊆ ∼m for every n ≥ m, we obtain that

d(kn) ∼m c(kn) for all n ≥ m,

and hence, since N = {kn : n ∈ N} holds, that

d(i) ∼m c(i) for almost all i ∈ N .

Hence for almost all n we have

d(n) ∈ Lang(A′m) ⇐⇒ c(n) ∈ Lang(A′m)

⇐⇒ c(n) ∈ Lang(Am) by (7)
⇐⇒ n ∈ L by (6).

As d is bijective, we obtain

w ∈ Lang(A′m) ⇐⇒ w ∈ d(L)

for almost all w ∈ Γ∗. Hence d(L) differs only by finitely
many elements from a regular language and is consequently
itself regular.

The following proposition states that, under certain con-
ditions, the bijective function g constructed in Lemma 6 is
computable. Obviously, the injective function f that is lifted
to g must be computable to start with. Moreover, we need to be
able to decide for regular languages whether their intersection
with the image of f is empty, finite or infinite. This enables us,
in case of a finite intersection, to compute this intersection, and
to decide whether the equivalence classes En are attracted to
the image of f (and In). This suffices to ensure computability
of g constructed in the proof of Lemma 6.

Proposition 7. Let A be a computable, countably infinite set
and let f : A → Γ∗ be a computable injection such that for
every regular language R (given by an automaton), emptiness
and finiteness of the set R ∩ f [Γ∗] is decidable. There exists
a computable bijection g : A → Γ∗ such that for all L ⊆ A,
if f [L] is relatively regular in the image f [A], then g[L] is a
regular language.

Proof. By close inspection of the proofs of Lemmas 4 and 6 it
can be established that the construction of the encoding g from
the encoding f preserves computability under the stated con-
ditions and by choosing computable enumerations v0, v1, . . .
and w0, w1, . . . of A and Γ∗, respectively.

We are ready to state our main results.

Theorem 8. Let Σ and Γ be finite alphabets, with |Γ| ≥ 2.
Let L ⊆ ℘(Σ∗) be a countable set of formal languages. There
exists a bijective function g : Σ∗ → Γ∗ such that for every
L ∈ L, the image g[L] is a regular language.

Proof. By Lemmas 2 and 6.

The function constructed in the proof of Theorem 8 is not
guaranteed to be computable. What is more, if L contains the
recursive languages, then there is no computable function with
the properties as stated in Theorem 8.

The following theorem justifies the title of this paper.

Theorem 9. There exists a computable bijective function
f : Σ∗ → Γ∗ such that the image function f [] is regularity
preserving, but the preimage function f−1[] is not.

Without the requirement on the function f to be computable,
we could prove the statement as follows: Let L ⊆ ℘(Σ∗)
be the (countable) set of all recursive languages over Σ. By
Theorem 8 there exists a bijective mapping f : Σ∗ → Γ∗

such that f [L] is regular for all L ∈ L. Then, clearly, f []
is regularity preserving while f−1[] is not. However, the
function f obtained in this way is not computable. To obtain
a computable function, we argue as follows.

Proof of Theorem 9. Let Σ = {0, 1}. We define a ‘balanced-
ness’ function b : Σ∗ → Σ for all w ∈ Σ∗ by b(w) = 1 if
the word w contains an equal number of zeros and ones, and
b(w) = 0 otherwise. Then we define f : Σ∗ → Σ∗ by

f(w) = b(w)w

for every w ∈ Σ∗. Then we have:

(i) For every regular language L ⊆ Σ∗, we have that f [L]
is relatively regular in f [Σ∗] (an automaton can simply
ignore the first letter).

(ii) However, the function f−1[] is not preserving (relative)
regularity. To see this, let X = {w | b(w) = 1}. Clearly
f−1[f [X]] = X is not regular. But f [X] is relatively
regular in f [Σ∗], since f [X] consists precisely of those
words in f [Σ∗] that start with letter 1.

We now invoke Proposition 7 for lifting f to a computable,
bijective g. The conditions of the proposition are satisfied since
f is computable, and the image f [Σ∗] of f is a context-free
language. The intersection of a context-free language with a
regular language is context-free, and finiteness and emptiness
are decidable. The proposition guarantees the existence of a
computable, bijective function g : Σ∗ → Σ∗ such that for
every L ⊆ Σ∗ that is relatively regular in f [Σ∗] we have
that g[L] is regular. Then by (i) we have that g[] preserves
regularity. From (ii) it follows that g[X] is regular while
g−1[g(X)] = X is not. Hence g−1[] does not preserve
regularity.

We strengthen the statement of Theorem 9 by extending
it to the preservation of membership in countable classes of
languages that include the regular languages. For this, we use
the following stipulation. For an arbitrary set S of languages
over A, we say that a function F : ℘(A∗)→ ℘(B∗) preserves
membership in S if, for all languages over A, L ∈ S implies
F (L) ∈ S.

Corollary 10. Let S ⊆ ℘(Σ∗) be a countable set of languages
that includes the regular languages. Then there exists a bijec-
tive function f : {0, 1}∗ → {0, 1}∗ such that f [] preserves
membership in S, but f−1[] does not.

Proof. Let S ′ = S ∪ {X} where X is a language not in S.
By Theorem 8 there exists a bijective function f : Σ∗ → Γ∗

such that f [L] is regular for all L ∈ S ′. Then, f [] preserves

7

membership in S while f−1[]; note that f(X) is regular and
hence f(X) ∈ S, but f−1[f(X)] = X 6∈ S.

IV. CONSEQUENCES FOR COMPARING
MODELS OF COMPUTATION

It turns out that our main results have some remarkable con-
sequences in the context of comparing computational models
using concepts proposed by Boker and Dershowitz in a series
of publications [3], [5], [4]. The authors summarize their goal
as follows:

“We seek a robust definition of relative power
that does not itself depend on the notion of com-
putability. It should allow one to compare arbitrary
models over arbitrary domains via a quasi-ordering
that successfully captures the intuitive concept of
computational strength. [. . .]1 ” [5]

This motivation leads them to specific choices of simple
and liberal conditions on encodings. Encodings are typically
used to translate between models of computation that act on
different domains. So an encoding ρ : D1 → D2 can facilitate
the simulation of the input-output behavior of a machine M1

belonging to a model M1 with domain D1 by a machine M2

from a model M2 with domain D2 :

D1 D2

D1 D2

ρ

ρ

M1 M2

To prevent codings from participating too strongly in the
simulation of a computation on a machine M1 through a
computation on a machine M2 (and thereby from substantially
alleviating, for the simulating machine M2, the task that is
solved by the simulated machine M1), codings are usually
required to be computable in some sense. Frequently, one of
the following two restrictions are stipulated (see for example
Rogers’ classic book [21, p.27,28]):
(1) Codings must be ‘informally algorithmic’, ‘informally

computable’, or ‘effective’ in the sense that they can be
carried out by an in principle mechanizable procedure.

(2) Codings are required to be computable with respect to a
specific model, for example by a Turing machine.

Boker and Dershowitz reject such prevalent stipulations:
“Effectivity is a useful notion; however, it is

unsuitable as a general power comparison notion.
The first, informal approach is too vague, while the
second can add computational power when dealing
with subrecursive models and is inappropriate when
dealing with non-recursive models.” [4]

As a consequence, they go on to use classes of encodings
that do not constrain (at least not explicitly) the cost that is

1This passage continues: “Eventually, we want to be able to prove state-
ments like ‘analogue machines are strictly more powerful than digital devices’,
even though the two models operate over domains of different cardinalities.”

necessary to compute an encoding. In particular, they define
three concepts of comparison (see Definition 17 below) that
are, respectively, based on:2

(i) encodings (injective functions) without any additional
requirement;

(ii) encodings that are ‘decent’ with respect to the simulating
modelM2 that shoulders the simulation, in the sense that
M2 is able to recognize the image of the coding;

(iii) bijective encodings.
We will show that each of these concepts admits some quite

counterintuitive consequences. At first these anomalies pertain
only to decision models, the subclass of all models that only
obtain ‘yes’/‘no’ as computation result. But it turns out these
phenomena apply also to more broad classes of models.

In order to formally state our results, we repeat here the ba-
sic definitions in [5], [4], and extend them by straightforward
adaptations for decision models.

By abstracting away from all intensional aspects of models
of computation that concern mechanistic aspects of stepwise
computation processes, Boker and Dershowitz define a model
extensionally as an arbitrary set of (extensionally represented)
partial functions over some domain.

Definition 11 ([5, Def. 2.1]). A model of computation is a
pair M = 〈D,F〉, where D is a set of elements, the domain
of M, and F = {f | f : D → D ∪ {⊥}} is a set of functions
with ⊥ 6∈ D. We write domM for the domain of M. (We
assume that ⊥ is a fixed element not contained in the domain
of any model.)

We define decision models as models of computation con-
sisting of total functions that yield a definite ‘yes’/‘no’ answer.

Definition 12. A decision model (model of computation for
decision models) is a model of computation M = 〈D,F〉,
such that {0, 1} ⊆ D, and f [D] ⊆ {0, 1}, for all f ∈ F . We
say that M is countable if F is countable.

Now codings between domains of models are defined.

Definition 13 ([5, Def. 2.2]). Let D1 and D2 be domains
of models of computation. A coding (from D1 to D2) is an
injective function ρ : D1∪{⊥} → D2∪{⊥} such that ρ(x) =
⊥ if and only if x = ⊥, for all x ∈ D1.

For codings ρ between decision models it could be desirable
to demand that ρ(0) = 0 and ρ(1) = 1. We do not to take
up this restriction, for a pragmatic reason connected to the
definition of ‘simulation’ immediately below. If namely a non-
constant function f in a decision model M1 is simulated via
ρ by a function g in a decision model M2, then it follows
that either ρ(0) = 0 and ρ(1) = 1, or ρ(0) = 1 and ρ(1) = 0.
In both cases it can be said that decisions taken by f are
faithfully modelled by corresponding decisions taken by g.

2Note that encodings of the notions (i) and (ii) here are more liberal than
those in (1) and (2) above, and that therefore the use of such encodings
does not address the concern raised in the preceding quotation regarding the
addition of computational power when dealing with subrecursive models.

8

Definition 14 ([5, Def. 2.3]). LetM1 = 〈D1,F1〉 andM2 =
〈D2,F2〉 be models of computation. Let ρ be a coding from
D1 to D2. We define:

(i) For g ∈ F2 and f ∈ F1 we say that g simulates f via ρ
if g ◦ ρ = ρ ◦ f holds, as in the following diagram:

D1 D2

D1 D2

ρ

ρ

f g

(ii) M2 simulates M1 via ρ, M1 .ρM2, if for every f ∈
F1 there is a g ∈ F2 such that g simulates f via ρ.

The ‘decency’ requirement for codings mentioned before
is defined as follows in [4]. There, Boker stresses that this
requirement follows classic definitions of computable groups
by Rice [19, p. 298] and Rabin [18, p. 343].

Definition 15 ([4, Def. 52]). Let M1 = 〈D1,F1〉 and M2 =
〈D2,F2〉 be models of computation. A coding ρ from D1 to
D2 is called decent with respect to M2 if the image ρ[D1]
can be recognized by M2, in the sense that there is a total
function g ∈ F2 such that ρ[D1] = g[D2] and for all y ∈ D2,
we have g(y) = y if and only if y ∈ ρ[D1].

We note that according to Definition 15 a coding ρ can be
decent with respect to a decision model M2 only if ρ[D1] ⊆
{0, 1}. Since ρ is injective, |D1| ≤ 2 follows, and so M1 can
only be a rather trivial model. Therefore we adapt the notion of
decency in an obvious way to accommodate decision models.

Definition 16. Let M1 = 〈D1,F1〉 and M2 = 〈D2,F2〉
be models of computation. A coding ρ from D1 to D2 is
called decent∗ with respect to M2 if the image ρ[D1] can
be recognized by M2, in the sense that there is a total
function g ∈ F2 and an element d ∈ D2 such that for all
y ∈ D2, we have g(y) = d if and only if y ∈ ρ[D1].

With the concepts ‘model of computation’ and ‘simulation’
defined, Boker and Dershowitz introduce three comparison
preorders for models, which are based on three classes of
codings as mentioned above. In addition to the preorder
induced by decent codings, we also define a variant preorder
induced by decent∗ codings.

Definition 17 ([4, Def. 52]). Let M1 = 〈D1,F1〉 and M2 =
〈D2,F2〉 be models of computation. We define:

(i) M2 is at least as powerful as M1, denoted by
M1 .M2 ,

if M1 .ρM2 for some ρ .
(ii) M2 is at least as powerful as M1 via a decent coding,

which we denote by
M1 .decentM2 ,

if M1 .ρM2 for some decent coding ρ with respect to
M2. M2 is at least as powerful as M1 via a decent∗

coding, which we denote by
M1 .decent∗ M2 ,

if M1 .ρ M2 for some decent∗ coding ρ with respect
to M2.

(iii) M2 is at least as powerful asM1 via a bijective coding,
which we denote by

M1 .bijectiveM2 ,
if M1 .ρM2 for some bijective coding ρ .

With these definitions in place, we are now able to state,
and prove, our results concerning the comparison of decision
models. Let Γ be an alphabet with {0, 1} ⊆ Γ. We write
DFA(Γ) = 〈Γ∗,D〉 for the decision model corresponding to
DFAs, so with D the set of characteristic functions of regular
languages over Γ, that is,

D =
{
f : Γ∗ → {0, 1}

∣∣∣ ∃M DFA ∀w ∈ Γ∗

(f(w) = 1⇔M accepts w)

}
.

The model TMD(Γ) over input alphabet Γ of Turing-machine
deciders is defined analogously.

The proposition below is an easy consequence of Lemma 2.

Proposition 18. Let Σ, Γ be alphabets, where {0, 1} ⊆ Γ.
Then for every countable decision modelM with domain Σ∗,

M . DFA(Γ) (8)

holds, that is, deterministic finite state automata with input
alphabet Γ are at least as powerful as M.

Proof. Every decision model M = 〈Σ∗,F〉 with domain Σ∗

and with countable set F of computed functions corresponds
to the countable set LM = {Lf | f ∈ F} of languages that
are defined, for f ∈ F , as Lf = {w ∈ Σ∗ | f(w) = 1}. By
Lemma 2 there exists an injective function ρ : Σ∗ → Γ∗ such
that ρ[Lf] is relatively regular in ρ[Σ∗], for all f ∈ F . Now
it is straightforward to verify that ρ is a coding between the
domains of the models M and DFA(Γ) that facilitates the
simulation of every f ∈ F by a function g : Γ∗ → {0, 1}
that denotes the acceptance/non-acceptance behavior of a
deterministic finite-state automaton with input alphabet Γ. This
shows (8).

Proposition 19. Let Γ be an alphabet with {0, 1} ⊆ Γ. Then
there is a coding ρ : Γ∗ → Γ∗ such that TMD(Γ) .ρ DFA(Γ)
holds. But any such a coding ρ cannot be computable.

Proof. The main statement follows from Proposition 18. That
ρ cannot be computable can be seen as follows. Suppose that
ρ is computable. Let A0, A1, . . . and w0, w1, . . . be recursive
enumerations of all finite automata and words over Σ. Then the
language L = {wn | n ∈ N, ρ(wn) /∈ Lang(An)} is Turing
computable, but ρ[L] is not regular.

This statement can be strengthened to a bijective, and
therefore (see the proof) also decent∗, simulation with finite-
state automata by using Lemma 6 and Theorem 8.

Corollary 20. Let Σ and Γ be alphabets, where {0, 1} ⊆ Γ.
Then for every countable decision model M with domain Σ∗

the following two statements hold:
(i) M .bijective DFA(Γ),

9

(ii) M .decent∗ DFA(Γ).
That is, deterministic finite-state automata with input alpha-
bet Γ are at least as powerful as the model M, both via
bijective and via decent∗ codings.

Proof. Statement (i) follows by an argumentation analogous
to the proof of Proposition 18 in which the use of Lemma 2
is replaced by an appeal to our main theorem, Theorem 8.

Statement (ii) follows directly from statement (i): For bijec-
tive codings ρ : Σ∗ → Γ∗, the image of ρ coincides with Γ∗,
which is trivially recognizable by a finite-state automaton.

Remark 21. As mentioned above (just before Definition 16),
decent codings in the sense of [4] do not form a sensible notion
for decision models. However, for every countable decision
model M and every alphabet Γ with {0, 1} ⊆ Γ it holds that

M .decent DFAid(Γ)

where DFAid(Γ) is the extension of DFAid(Γ) by adding the
identity function id : Γ∗ → Γ∗.

Sequential finite-state transducers FST(Γ) (see e.g. [22])
over alphabet Γ form a natural computational model that
extends DFAid(Γ). Thus for an alphabet Γ with {0, 1} ⊆ Γ
we also obtain the very counterintuitive result:

M .decent FST(Γ) ,

that is, sequential finite-state transducers are at least as strong
via a decent coding as every countable decision model. (Here
we consider finite-state transducers that are able to recognize
the end of a word.) In particular, every Turing-machine decider
can be simulated by a sequential finite state transducer via a
decent coding.

Remark 22. These results raise the question, whether these
anomalies only concern decision models. In particular, one
may wonder whether the comparison of computational models
avoids counterintuitive results when additional requirements
are imposed on the models that are compared. A candidate
requirement would be to enforce that the output of the models
must have an infinite range. Or, even stronger, we could require
the following property: A class of models M = 〈D,F〉 is
image-complete if for every non-empty computable set I ⊆ D
there exists f ∈ F such that f [D] = I .

Let T = 〈Σ∗,F〉 consist of all Turing machines such that
for every f ∈ F we have there exists a finite set Lf ⊆ Σ∗ and
for all x ∈ Σ∗ we have f(x) ∈ {x}∪Lf∪{⊥} . Thus functions
f ∈ T map words either to themselves or into a finite set that
may depend on f . The class T is a natural model because it
can be implemented by a recursively enumerable set of Turing
machines3. Note that T is a strict extension of Turing-machine
deciders and it is an image-complete model. This can be seen
as follows: Let I ⊆ Σ∗ be any non-empty computable set. Let
i ∈ I and define the function f : Σ∗ → Σ∗ for all x ∈ Σ∗ by:

3The idea is to enumerate all Turing machines and finite sets Lf , and
adapt the machines to check on termination whether the output is in Lf and
otherwise make sure that the output is equal to the input. In this way, we
obtain all machines that are necessary to implement T .

f(x) = x if x ∈ I and f(x) = i, otherwise. Then f [Σ∗] = I
and f ∈ T .

Then the model T can be simulated by two-way sequential,
finite-state transducers [8] via decent codings:

T .decent 2-FST(Γ) .

We have already argued that the Turing-machine deciders can
be simulated by FST(Γ). This can easily be generalized to
a finite number of output words L (finite-state transducers
can output words instead of only symbols). Now we assume
that one symbol w ∈ L symbolizes the identity output; then
the two-way finite-state transducer, instead of producing this
output word, can walk back to the beginning of the input and
reproduce the input word as output word.

Our results suggest that there are definite limitations to
the concepts of power comparison for models of computation
by Boker and Dershowitz. These concepts have an ‘absolute’
flavor insofar as they do not formulate any explicit constraints
on the computability of encodings used for simulations. The
counterintuitive consequences pertain primarily to decision
models (yet this is a blurry concept, see Remark 22), and do
not extend to models that include all partial-recursive functions
(see Corollary 24 below). Yet they demonstrate that these
comparison concepts lack the desired robustness.

We note that our results are not the first indications of
anomalies. In [5, Example 5.1] Boker and Dershowitz show
that Turing-machine deciders are not a complete model of
computation, in the sense that this model can be strictly
extended to incorporate a non-recursive set. Our results
strengthen this example naturally in the following three ways:
(i) to bijective, and decent encodings, (ii) to use finite automata
instead of Turing-machine deciders, and (iii) to arbitrary
countable models as extensions. This is because, as we have
shown, finite automata can be extended, via decent codings,
to any countable decision model, and consequently the same
holds for Turing-machine deciders. Hence, even decent encod-
ings facilitate the simulation of all Turing-machine deciders by
finite automata, more precisely, by finite-state transducers.

The following theorem is an easy consequence of the
concepts developed by Shapiro in [26]. He calls a number
representation r : N → Σ∗ acceptable if it is bijective, and
if the successor function succ : N → N can be simulated by
a Turing machine on the representations, that is, if the lifting
succr : Σ∗ → Σ∗ of succ with the property:

succr(r(n)) = r(succ(n)) , for all n ∈ N,

is Turing computable.

Theorem 23. A bijective encoding f : Σ∗ → Γ∗ is computable
if and only if there is an acceptable number representation r
such that f ◦ r is acceptable as well.

This theorem implies that Corollary 20 (i) does not gener-
alize to models that compute the partial-recursive functions.

10

Corollary 24. There is no bijective encoding ρ : Σ∗ → Σ∗

such that TM(Σ) .ρ 2-FST(Σ) holds, where TM(Σ) is the
model of Turing machines over alphabet Σ.

While certainly more investigation is needed, we also inter-
pret our results as follows. For comparing the computational
power of models of computation over different domains, it
is crucial to make clear how computational power should be
measured for the purpose at hand. After having settled on a
reasonable measure, this measure can then be used to constrain
the computational power of admissible codings that may act
as a trustworthy intermediary between the models.

V. CONSEQUENCES FOR GENERALIZED AUTOMATICITY

Finite-state automata can be used to generate infinite se-
quences, see [1]. This is usually done using the standard base-k
representation (n)k ∈ {0, 1, . . . , k−1}∗ of the natural numbers
n ∈ N. A sequence σ ∈ ∆N is called k-automatic if, for some
deterministic finite-state automaton A with output (DFAO, see
Section II) we have σ(n) = A((n)k) for all n ∈ N.

This concept has been generalized in several ways, where
different number representations are fed to the automaton, see,
e.g., [25], [20], [7]. This motivates the study of automaticity
with respect to arbitrary number representations, which is part
of work in progress of the present authors with Clemens
Kupke, Larry Moss, and Jan Rutten.

Definition 25. Let c : N→ Γ∗ be a number representation. A
sequence σ ∈ ∆N over an alphabet ∆ is c-automatic if there
exists a DFAO A such that σ(n) = A(c(n)) for all n ∈ N.

Lemma 26. Let c : N → Γ∗ be a number representation. A
sequence σ ∈ ∆N is c-automatic if and only if for every a ∈ ∆
the ‘fiber’ {c(n) | σ(n) = a} is relatively regular in c[N].

Proof. Along the lines of Lemma 5.2.6 in [1].

Corollary 27. For every injective function c : N → Γ∗ there
is a bijective function d : N→ Γ∗ such that for every σ ∈ ∆N

we have: if σ is c-automatic, then σ is also d-automatic.

Proof. Let c : N → Γ∗ be an injection. Let d : N → Γ∗

be the bijective function obtained from c by Lemma 6. Let
σ ∈ ∆N be c-automatic. We show that σ is d-automatic by an
application of Lemma 26. Let a ∈ ∆. Then the fiber {c(n) |
σ(n) = a} is relatively regular in c[N] by Lemma 26. By
Lemma 6 we obtain that the fiber {d(n) | σ(n) = a} is regular
(and consequently relatively regular in d[N] = Γ∗). Hence, by
Lemma 26, σ is d-automatic.

The following proposition shows that the implication in
Corollary 27 cannot be strengthened to equivalence of c- and
d-automaticity: not for all injective c there is a bijective d so
that c-automaticity and d-automaticity coincide.

Proposition 28. Define the representation c : N→ {0, 1}∗ by
c(n) = 0n!. Then we have:

(i) For every sequence σ ∈ ∆N, σ is c-automatic if and only
if σ is ultimately constant.

(ii) For every bijection d : N → {0, 1}∗, there is a d-auto-
matic sequence that is not ultimately constant.

Proof. We first prove the two implications of (i).
(⇒) Let σ ∈ ∆N be c-automatic. That is, for some automaton

A, σ(n) = A(c(n)) for all n ∈ N. As there are finitely
many states in A, there exists n0, ` ∈ N such that ` > 0
and δ(q0, 0

n) = δ(q0, 0
n+`) for all n ≥ n0, where δ is

the transition function of A and q0 its starting state. Let
m0 ∈ N be the smallest integer such that m0! ≥ n0 + `.
Then we have δ(q0, 0m!) = δ(q0, 0

m0!) for all m ≥ m0.
The reason is that m0! ≥ n0 and, for all m ≥ m0, m! is
a multiple of ` (so that m! = m0! + k` for some k ∈ N).

(⇐) Let σ ∈ ∆N be ultimately constant, that is, there
exists n0 ∈ N such that σ(n) = σ(n0) for all n ≥
n0. Let m = n0! . We define an automaton A with
states q0, q1, . . . , qm, and transition function δ defined
by δ(qi, 0) = qi+1 for all i ∈ {0, 1, . . . ,m − 1} and
δ(qm, 0) = qm. For the output of qi (0 ≤ i ≤ m) we
take σ(j) if i = j! . The output of the other states is
irrelevant. Clearly we now have σ(n) = A(c(n)) for all
n ∈ N, and so σ is c-automatic.

For (ii), let d : N → {0}∗ be a bijective encoding. Let A
be an automaton such that A(02n) = 0 and A(02n+1) = 1
for all n ∈ N, and define σ ∈ {0, 1}N by σ(n) = A(d(n))
for n ∈ N. Note that σ is d-automatic by definition. As d is
bijective, there are infinitely many m ∈ N such that d(m) is
of the form 02n, and there are infinitely many m ∈ N such
that d(m) is of the form 02n+1. Hence σ is not ultimately
constant.

The following corollaries are reformulations of our main
result, Theorem 8, for recognizability and, more generally,
automaticity, respectively.

Corollary 29. For every countable class C of sets of natural
numbers there is a bijective function r : N → Σ∗ such that
every S ∈ C is r-recognizable (i.e., there is a finite automaton
deciding membership n ∈ S on the input of r(n)).

Corollary 30. Let Γ,∆ be finite alphabets with |Γ| ≥ 2. For
every countable class S ⊆ ∆N of infinite sequences over ∆
there exists a bijective number representation d : N → Γ∗

such that every σ ∈ S is d-automatic.

We briefly comment on the relation with Cobham’s Theo-
rem [6], which states that a sequence is ultimately periodic if
and only if it is both k- and `-automatic for multiplicatively
independent k, ` ∈ N. For example, if a sequence is both 2-
and 3-automatic, then it is ultimately periodic. As Cobham’s
Theorem only pertains to standard number representations, it
does not contradict the following easy consequence of Corol-
lary 30: there exists a bijective ternary number representation
d : N → {0, 1, 2}∗ such that every 2-automatic sequence is
d-automatic.

VI. CONCLUSION AND FURTHER QUESTIONS

Our main result, Theorem 8, states that for every countable
class L ⊆ ℘(Σ∗) of languages over a finite alphabet Σ, and

11

for every alphabet Γ with more than two symbols, there exists
a bijective encoding f : Σ∗ → Γ∗ such that for every language
L ∈ L its image f [L] under f is regular.

Furthermore we have shown that this result has a number
of noteworthy consequences in language theory for regularity
preserving functions, in computability theory for a concept
for comparing the power of models of computation, and in
the theory of automatic sequences for a generalization of this
concept with respect to arbitrary number representations:

(A) There exists a computable bijective function f : Σ∗ → Γ∗

such that the image function f [] of f is regularity
preserving, but the preimage function f−1[] is not (The-
orem 9).

(B) In the sense of [5], finite-state automata are as pow-
erful as any countable decision model (e.g., Turing-
machine deciders) (Proposition 18). This even holds for
the strongest notion of comparison in [5], namely that
with respect to bijective encodings (Corollary 20). Similar
counterintuitive consequences also affect computational
models beyond decision models.

(C) For every countable class C of sets of natural numbers
there is a bijective number representation r : N → Σ∗

such that every set S ∈ C is r-recognizable (i.e., there
is a finite automaton deciding membership n ∈ S on the
input of r(n)) (Corollary 29).
More generally, for every countable class S ⊆ ∆N of
infinite sequences over a finite alphabet ∆, there exists
a bijective number representation d : N → Γ∗ such that
every σ ∈ S is d-automatic (Corollary 30).

These results also answer the questions in Section I con-
cerning the hierarchy of number representations. From (A)
it follows that the hierarchy is proper: there are bijective
representations r1 and r2 such that r1 subsumes r2, but not
vice versa. From (C) it follows that every countable class
C ⊆ ℘(N) of languages is contained in the countable class
of all r-recognizable languages, for some representation r.
Moreover, (C) implies that every injective number represen-
tation is subsumed by a bijective number representation, and
that no representation subsumes all others, since the class of
r-recognizable sets of natural numbers is always countable.

We conclude with two questions:

– How far can computable bijective f : Σ∗ → Γ∗ extend
the class of recognizable languages, that is, what classes
Lf = {L ⊆ Σ∗ | f [L] is a regular language} can we
obtain for a computable bijective f? For example, is there
a computable (bijective) encoding that makes precisely
all context-free languages recognizable?

– Rigo [20] describes a class of number representations that
characterizes the morphic sequences. Our results entail
the existence of a bijective representation r : N → Σ∗

such that every morphic sequence is r-automatic. Is
there a computable bijective representation r such that
precisely the morphic sequences are r-automatic?

ACKNOWLEDGMENT

We want to thank Nachum Dershowitz and Udi Boker for
their remarks and a discussion about our results in Section IV,
as well as for several pointers to specific parts of their papers.

REFERENCES

[1] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications,
Generalizations. Cambridge University Press, New York, 2003.

[2] J. Berstel, L. Boasson, O. Carton, B. Petazzoni, and J.-É. Pin. Op-
erations preserving regular languages. Theoretical Computer Science,
354(3):405–420, 2006.

[3] U. Boker. Comparing Computational Power. Master’s thesis, Tel Aviv
University, 2004.

[4] U. Boker. The Influence of Domain Interpretations on Computational
Models. PhD thesis, Tel Aviv University, 2008.

[5] U. Boker and N. Dershowitz. Comparing Computational Power. Logic
Journal of the IGPL, 14(5):633–647, 2006.

[6] A. Cobham. On the Base-Dependence of Sets of Numbers Recognizable
by Finite Automata. Mathematical Systems Theory, 3(2):186–192, 1969.

[7] J. Endrullis, C. Grabmayer, and D. Hendriks. Mix-Automatic Sequences.
In Proc. of the 7th International Conference on Language and Automata
Theory and Applications (LATA 2013), number 7810 in LNCS, 2013.

[8] J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions
and two-way finite-state transducers. Transactions of the American
Mathematical Society, 2(2):216–254, 2001.

[9] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 2nd edition,
2000.

[10] S. R. Kosaraju. Finite State Automata with Markers. In Proc. 4th Annual
Princeton Conference on Information Sciences and Systems. Princeton,
1970.

[11] S. R. Kosaraju. Regularity preserving functions. SIGACT News, 6(2):16–
17, 1974.

[12] D. Kozen. On regularity-preserving functions. Bulletin of the European
Association for Theoretical Computer Science, pages 131–138, 1996.

[13] P. Květoň and V. Koubek. Functions preserving classes of languages.
In Proc. Conf. on Developments in Language Theory, pages 81–102.
World Scientific, 1999.

[14] A. B. Matos. Regularity-preserving letter selections. DCC-FCUP Interal
Report.

[15] J.-É. Pin. Profinite Methods in Automata Theory. In Proc. of the 26th
Symposium on Theoretical Aspects of Computer Science (STACS 2009),
pages 31–50. IBFI Schloss Dagstuhl, 2009.

[16] J.-É. Pin and J. Sakarovitch. Some operations and transductions that
preserve rationality. In Proc. 6th GI-Conference Theoretical Computer
Science, volume 145 of Lecture Notes in Computer Science, pages 277–
288. Springer, 1983.

[17] J.-É. Pin and P. V. Silva. A topological approach to transductions.
Theoretical Computer Science, 340(2):443–456, 2005.

[18] M. O. Rabin. Computable algebra, general theory and theory of
computable fields. Transactions of the American Mathematical Society,
95(2):341–360, 1960.

[19] H. G. Rice. Recursive and recursively enumerable orders. Transactions
of the American Mathematical Society, 83(2):277–300, 1956.

[20] M. Rigo. Generalization of automatic sequences for numeration systems
on a regular language. Theoretical Computer Science, 244(1-2):271–281,
2000.

[21] H. Rogers. Theory of Recursive Functions and Effective Computability.
MacGraw–Hill, 1967.

[22] J. Sakarovitch. Elements of Automata Theory. Cambridge University
Press, 2009.

[23] J. I. Seiferas. A note on prefixes of regular languages. SIGACT News,
6(1):25–29, 1974.

[24] J. I. Seiferas and R. McNaughton. Regularity-preserving relations.
Theoretical Computer Science, 2(2):147–154, 1976.

[25] J. Shallit. A Generalization of Automatic Sequences. In 6th Symposium
on Theoretical Aspects of Computer Science (STACS 1989), volume 349
of LNCS, pages 156–167. Springer, 1989.

[26] S. Shapiro. Acceptable notation. Notre Dame Journal of Formal Logic,
23(1):14–20, 1982.

[27] R. E. Stearns and J. Hartmanis. Regularity preserving modifications of
regular expressions. Information and Control, 6(1):55–69, 1963.

12

