
Lazy Productivity via Termination

Jörg Endrullis, Dimitri Hendriks

Vrije Universiteit Amsterdam, Department of Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Dedicated to Jan A. Bergstra on the occasion of his 60th birthday.

Abstract

We present a procedure for transforming strongly sequential constructor-based
term rewriting systems (TRSs) into context-sensitive TRSs in such a way that
productivity of the input system is equivalent to termination of the output
system. Thereby automated termination provers become available for proving
productivity. A TRS is called productive if all its finite ground terms are con-
structor normalizing, and all ‘inductive constructor paths’ through the resulting
(possibly non-wellfounded) constructor normal form are finite. To our knowl-
edge, this is the first complete transformation from productivity to termination.

The transformation proceeds in two steps: (i) The strongly sequential TRS
is converted into a shallow TRS, where patterns do not have nested construc-
tors. (ii) The shallow TRS is transformed into a context-sensitive TRS, where
rewriting below constructors and in arguments not ‘consumed from’ is disal-
lowed.

Furthermore, we show how lazy evaluation can be encoded by strong sequen-
tiality, thus extending our transformation to, e.g., Haskell programs.

Finally, we present a simple, but fruitful extension of matrix interpretations
to make them applicable for proving termination of context-sensitive TRSs.

Keywords: term rewriting, productivity, termination, strong sequentiality,
lazy evaluation, context-sensitive rewriting, matrix interpretations

1. Introduction

An important aspect of program correctness is termination. When dealing
with programs that construct or process infinite objects, termination cannot be
required. But the question whether such a program really computes a unique
total object, that is, a finite or infinite structure assembled from a given set of

Email addresses: joerg@few.vu.nl (Jörg Endrullis), diem@cs.vu.nl (Dimitri Hendriks)

Preprint submitted to Theoretical Computer Science January 17, 2012



‘building blocks’, remains valid. This is the question of productivity. Produc-
tivity captures the intuitive notion of unlimited progress, of working programs
producing values indefinitely, programs immune to starvation.

In lazy functional programming languages such as Miranda [47], Clean [38]
or Haskell [37], the usage of infinite data structures is common practice. For the
correctness of programs dealing with such structures one must guarantee that
every finite part of the infinite structure can be evaluated in finite time; that is,
the program must be productive. This holds both for terminating programs that
employ infinite structures (termination is then possible as only finite parts of
the lazy evaluated infinite structures are queried), as well as for non-terminating
programs that directly construct or process infinite objects.

We study productivity from a rewriting perspective, modelling programs by
term rewriting systems and objects by constructor normal forms, which can be
infinite. A productive TRS rewrites every finite ground term to a constructor
term of a given inductive or coinductive datatype.

For some specifications, productivity is rather obvious. For instance the rule:

zeros→ 0 : zeros

produces a constructor prefix 0 : 2 upon each unfolding of the constant zeros,
thus in the limit resulting in the infinite stream 0 : 0 : 0 : . . . . Productivity of this
example is already guaranteed by the syntactic criterium known as ‘guarded-
ness’ [5, 19]: the recursive call in the right-hand side is guarded by the stream
constructor ‘:’. For other specifications, where, for instance, there is a function
application between guard and recursive call, productivity is less obvious. For
example, consider the following stream specification Ra, taken from [9]:

a→ 0 : f(a)

f(0 : σ)→ 1 : 0 : f(σ) (Ra)

f(1 : σ)→ f(σ)

Productivity of this TRS requires an inductive argument to show that every
finite ground term t over the signature {0, 1, : , a, f} evaluates to a constructor
normal form with infinitely many 0’s: once we have proved the claim for t,
then, starting from f(t), f will always eventually read the symbol 0 and produce
accordingly, leaving behind again a stream with infinitely many 0’s (and 1’s).

Contribution and outline.

We follow [55] by transforming productivity into a termination problem with
respect to context-sensitive rewriting. Thereby termination tools become avail-
able for proving productivity. We present the first complete transformation,
that is, productivity of the input specification is equivalent to termination of
the transformed system. We can handle all examples from [55] directly, that is,
without additional preprocessing steps as employed by [55].

The basic notions of (context-sensitive) rewriting that we need here are ex-
plained in Section 2. In Section 3, we formalize tree specifications as sorted,
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orthogonal, exhaustive constructor TRSs, and define what it means for a tree
specification to be productive. We define a transformation of ‘strongly sequen-
tial’ [21] tree specifications to context-sensitive term rewriting systems such that
rewriting in the resulting system truthfully models lazy evaluation (root-needed
reduction [36]) of the original specification. We present the transformation in a
top-down fashion:

– In Section 4 we sketch how (first-order) functional programs can be ren-
dered as strongly sequential tree specifications;

– In Section 5 we give a transformation from strongly sequential to shallow
tree specifications;

– In Section 6 we show how lazy evaluation on shallow tree specifications
(where pattern matching is only one constructor symbol deep; see Sec-
tion 3) can be modelled using context-sensitive rewriting.

The use of lazy evaluation allows us to do away with the restriction of an
‘independent data-layer’ required in [11, 12, 9, 54, 55], meaning that symbols
of inductive sort are disallowed having coinductive arguments. An independent
data-layer excludes, e.g., the function head(x : y)→ x which takes a coinductive
argument (a stream) and returns an element of an inductive sort.

Many tree specifications have an independent data-layer though. For such
specifications our transformation can be simplified, resulting in smaller trans-
formed systems; see Section 7.

In Section 8 we present a simple extension of matrix interpretations [22, 15]
for proving termination of context-sensitive TRSs. The method is trivial to
implement in any termination prover that has standard matrix interpretations:
we drop the positivity requirement for the upper-left matrix entries of argument
positions where rewriting is forbidden by the replacement map.

In Section 9 we discuss related work. We conclude in Section 10.

2. Preliminaries

For a thorough introduction to term rewriting and context-sensitive rewrit-
ing, we refer to [43] and [31], respectively. We recall some of the main definitions
that we employ here, for the sake of completeness, and fix notations.

2.1. Many-sorted term rewriting, and constructor TRSs.

Definition 2.1 (Sortedness). Let S = {τ1, . . . , τk} be a finite set of sorts.
An S-sorted set A is a family of sets A = {Aτ}τ∈S . For S ′ ⊆ S we define
AS′ :=

⋃
τ∈S′ Aτ . We sometimes write a ∈ A where we mean a ∈ AS , i.e.,

a ∈ Aτ for some τ ∈ S. An S-sorted map is a map f : A→ B between S-sorted
sets A and B such that f(Aτ ) ⊆ Bτ for all τ ∈ S.

An S-sorted signature Σ is an S-sorted set of symbols, where to every symbol
f ∈ Στ is associated a fixed type 〈τ1, . . . , τn, τ〉, where τ1, . . . , τn ∈ S. For f with
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type 〈τ1, . . . , τn, τ〉 we write f :: τ1 × · · · × τn → τ . We use ]f for the arity of f
defined by ]f := n. For constant symbols a ∈ Στ (with ]a = 0) we simply write
a :: τ . We let Σ range over S-sorted signatures and X over S-sorted sets of
variables.

Definition 2.2 (Terms). The set Ter∞(Σ,X ) of (potentially infinite) terms
over Σ and X , is defined as the S-sorted set Ter∞(Σ,X ) = {Ter∞(Σ,X )τ}τ∈S ,
where Ter∞(Σ,X )τ is coinductively defined1 as follows:

(i) Xτ ⊆ Ter∞(Σ,X )τ
(ii) f(t1, . . . , tn) ∈ Ter∞(Σ,X )τ for all symbols f :: τ1× . . .×τn → τ and terms

t1 ∈ Ter∞(Σ,X )τ1 , . . . , tn ∈ Ter∞(Σ,X )τn .

A term is called finite if it is well-founded. The set of finite terms is denoted by
Ter(Σ,X ). We write Var(t) for the set of variables occurring in a term t.

Definition 2.3 (Positions). The set of positions Pos(t) ⊆ N∗ of a term t ∈
Ter∞(Σ,X ) is defined by: Pos(x) = {ε} for x ∈ X and Pos(f(t1, . . . , tn)) =
{ε} ∪ {ip | 1 ≤ i ≤ n, p ∈ Pos(ti)} for f ∈ Σ of arity n. We write root(t) to
denote the root symbol of t (at position ε), and t|p for the subterm of t rooted
at position p ∈ Pos(t), that is, t|ε = t, and f(t1, . . . , tn)|pi = ti. Then root(t|p)
is the symbol at position p in t.

Definition 2.4 (Substitution). A substitution is an S-sorted map σ : X →
Ter∞(Σ,X ) from variables to terms. For terms t ∈ Ter∞(Σ,X ) and substi-
tutions σ, tσ is defined by guarded recursion2: xσ = σ(x) for x ∈ X , and
f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for f ∈ Σ of arity n, and t1, . . . , tn ∈ Ter∞(Σ,X ).

Definition 2.5 (Contexts). Contexts are defined as terms over the extended
signature Σ ∪ {2}, where 2 is a fresh symbol serving as a hole.3 We use
Cxtn(Σ,X ) to denote the set of n-hole contexts over Σ and X : An n-hole context
C ∈ Cxtn(Σ,X ) is a term from Ter∞(Σ ∪ {2},X ) containing exactly n occur-
rences of 2. Counting holes from left to right in C (i.e., by in-order traversal
through the term tree), filling the i-th hole of C (1 ≤ i ≤ n) with a term
s ∈ Ter∞(Σ,X ) is denoted by C[s]i. For C ∈ Cxt1(Σ,X ) we write C[s] for
C[s]1. We define Cxt (Σ,X ) =

⋃
n>0 Cxtn(Σ,X ), the set of all contexts over Σ

and X .

Definition 2.6 (TRS). An S-sorted term rewriting system (TRS) R is a pair
〈Σ, R〉 consisting of an S-sorted signature Σ and an S-sorted set R of rewrite
rules such that:

(i) for all τ ∈ S: Rτ ⊆ Ter(Σ,X )τ × Ter(Σ,X )τ , and

(ii) ` 6∈ X and Var(r) ⊆ Var(`) for all 〈`, r〉 ∈ R.

1That is, take the greatest fixed point of the underlying set functor.
2In the sense of [5, 19].
3To be precise, we extend the signature with a hole symbol for each sort τ ∈ S.
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The rules 〈`, r〉 ∈ R are written ` → r, and we call ` the left-hand side and r
the right-hand side of the rule.

Definition 2.7 (Metric). On the set of terms Ter∞(Σ,X ) we define a metric
d by d(s, t) = 0 whenever s = t, and d(s, t) = 2−k otherwise, where k ∈ N is the
least length of all positions p ∈ N∗ such that root(s|p) 6= root(t|p).

Definition 2.8 (Rewriting). For a TRS R we define →R, the rewrite relation
induced by R as follows: For terms s, t ∈ Ter∞(Σ,X ) we write s→R t if there
exists a rule ` → r ∈ R, a substitution σ, and a context C ∈ Cxt1(Σ,X ) such
that s = C[`σ] and t = C[rσ]. We write s →R,p r to explicitly indicate the
rewrite position p, i.e., when root(C|p) = 2. If R is clear from the context, we
also write s → t. We let →∗ denote the reflexive-transitive closure of →. A
term of the form `σ, for some rule ` → r ∈ R, and a substitution σ, is called
a redex. We define t↓R to denote the normal form of t with respect to R if it
exists and is unique.

We say that s rewrites in the limit to t, denoted by s →ω t if there is an
infinite rewrite sequence s = s0 →p0 s1 →p1 . . . such that the depth |pi| of
the rewrite steps tends to infinity and the term t is the limit of the sequence
s0, s1, . . . with respect to the metric d.

We do not consider rewrite sequences of length > ω since we only work with
orthogonal term rewrite systems for which the compression lemma [43] ensures
that every rewrite sequence can be compressed to length at most ω.

Definition 2.9 (Constructor TRS). Let R = 〈Σ, R〉 be a TRS. We define
ΣD := {root(l) | l → r ∈ R}, the set of defined symbols, and ΣC = Σ \ ΣD, the
set of constructor symbols.

The system R is called a constructor TRS if for every rewrite rule ρ ∈ R,
the left-hand side is of the form f(t1, . . . , t]f) where all t1, . . . , t]f ∈ Ter(ΣC ,X )
are constructor terms. Such a rule ρ is called a defining rule for f.

We call R exhaustive for f ∈ Σ if every term f(t1, . . . , t]f) with (possibly
infinite) closed constructor terms ti ∈ Ter∞(ΣC ,∅) (1 ≤ i ≤ ]f) is a redex; R
is exhaustive if it is exhaustive for all f ∈ Σ.

Exhaustivity together with finitary strong normalization guarantees that
finite ground terms rewrite to constructor normal forms, a property known
as sufficient completeness [27]. However, we are typically interested in non-
terminating specifications of infinite data structures. Note that exhaustivity
together with infinitary strong normalization does not imply that every finite
ground term rewrites to a constructor normal form.

2.2. Context-sensitive term rewriting.

Definition 2.10 (Context-sensitive TRS). A replacement map for Σ is a family
ξ = {ξf}f∈Σ of sets ξf ⊆ {1, . . . , ]f}. A context-sensitive term rewriting system
is a pair 〈R, ξ〉 consisting of a TRS R = 〈Σ, R〉 and a replacement map ξ for Σ.

Two context-sensitive TRSs over a signature Σ are said to be compatible if
their replacement maps coincide.
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Definition 2.11 (Context-sensitive rewriting). The set of ξ-replacing positions
Posξ(t) of a term t ∈ Ter∞(Σ,X ) is defined by:

(i) Posξ(x) = {ε} for x ∈ X , and

(ii) Posξ(f(t1, . . . , tn)) = {ε} ∪ {ip | i ∈ ξf , p ∈ Posξ(ti)}.

Rewriting then is allowed only at ξ-replacing positions: s ξ-rewrites to t, denoted
by s→R,ξ t, whenever s→R,p t with p ∈ Posξ(s).

As an example, consider the system R consisting of the single rule:

a→ c(a, b)

and let ξ be given by ξc = {2}. Clearly R is non-terminating, but the context-
sensitive TRS 〈R, ξ〉 is terminating, because the replacement map ξ allows
rewriting only in the second argument of the symbol c.

Lemma 2.12. Let 〈R, ξ〉 be a context-sensitive TRS with R = 〈Σ, R〉 such that
there exists a finite ground term t ∈ Ter(Σ,∅)τ for every sort τ ∈ S. Then
termination on all finite ground terms Ter(Σ,∅) coincides with termination on
all finite terms Ter(Σ,X ).

Proof. The direction ‘⇐’ is trivial. For ‘⇒’, note that every rewrite sequence
over open terms can be mapped to a rewrite sequence (of equal length) of ground
terms by applying a ground substitution to every term in the sequence.

Of course, this applies to ordinary TRSs as well, by taking the replacement
map ξ defined by ξf = {1, . . . , ]f} for all symbols f ∈ Σ.

2.3. Termination and relative termination.

Definition 2.13. A binary relation� ⊆ A×A over a set A is called well-founded
if no infinite decreasing sequence a1 � a2 � a3 � . . . exists.

A (context-sensitive) TRS R is called terminating or strongly normalizing,
denoted by SN(R), if →R is well-founded.

Definition 2.14. Let →1,→2 ⊆ A×A be binary relations. Then we say →1

is terminating relative to →2 if SN(→1/→2), where →1/→2 is defined by:

→1/→2 :=→∗2 · →1 · →∗2

Let R1 and R2 be (context-sensitive) TRSs over Σ. Then R1 is terminating
relative to R2, denoted by SN(R1/R2), if →R1

is terminating relative to →R2
.

If R1 is terminating relative to R2 this means there is no term t that admits
an infinite rewrite sequence t = t1 →R1∪R2

t2 →R1∪R2
. . . containing an infinite

number of→R1
steps. Clearly we also have that SN(R) if and only if SN(R/∅).
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2.4. Persistence.

The notion of persistence has been introduced by Zantema in [49]. A prop-
erty P is called persistent if for every many-sorted TRSs R it holds: R has P
if and only if Θ(R) has P . Here Θ(R) denotes the TRS obtained from R by
dropping sorts (mapping all sorts to a single sort).

The following lemma generalizes [26, Theorem 4.4] to context-sensitive rewrit-
ing. A related result on the modularity of termination for the disjoint union of
left-linear, confluent TRSs has appeared in [46].

Lemma 2.15. Termination is persistent for orthogonal context-sensitive TRSs.

Proof sketch. Let 〈R, ξ〉 be a terminating, many-sorted, orthogonal context-
sensitive TRS. We show that termination is preserved when dropping sorts.

We follow the line of argument of [46]. We partition non-well-sorted terms
into (non-overlapping) well-sorted (multi-hole) contexts such that at every hole
occurrence (that is, the transition between the contexts) there is a sort-conflict.
The rank of an unsorted term is the nesting depth of these partitions.

We make some immediate observations: The pattern of a rule always lies
entirely within one of these partitions, due to well-sortedness. Moreover, as
rewriting respects sorts, it follows that rewriting does not increase the rank of
a term, and the only way to resolve a sort-conflict is if a partition collapses to
one of its holes. We now take a closer look at collapsing partitions.

Consider a collapsing partition, that is, a non-trivial context C[21, . . . ,2n]
which admits a rewrite sequence to one of its holes 2i. Then no rule of R
overlaps with C[21, . . . ,2n] in such a way that a part of the rule pattern is par-
tially above the context, or partially matched by 2i. For otherwise, there are
overlapped symbols on the path from the root of C[21, . . . ,2n] to 2i, which by
orthogonality cannot be rewritten by any rewrite sequence within the context,
contradicting that the context rewrites to 2i. This observation is important
as it guarantees that the partition does not interact with the term above it-
self or within the hole 2i even if the collapse of other partitions resolves the
sort-conflict at these positions. As a consequence, we can remove (collapse)
collapsing partitions without affecting the reduction above it (here we also use
left-linearity).

Assume there exists a non-well-sorted term t that is non-terminating. Let t
have minimal rank among all these terms. Then by minimality it follows that
t admits a rewrite sequence containing infinitely many rewrite steps in the top-
most partition. The above observation on collapsing partitions allows us to
remove (collapse) collapsing, non-topmost partitions without affecting the exis-
tence of a reduction with infinitely many steps in the topmost context. Thus let
t′ be obtained from t by collapsing all non-topmost, collapsing partitions. Then
by orthogonal projection, the infinite rewrite sequence in t gives rise to an infi-
nite rewrite sequence in t′, also containing infinitely many steps in its topmost
partition. However, as t′ contains no collapsing partitions, there cannot be any
interaction between the partitions. Then, in particular, the topmost partition
itself is a well-sorted term that admits an infinite reduction, contradicting the
assumption that R is terminating.
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2.5. Call-by-need and root-neededness.

For a detailed study of call-by-need reductions and root-neededness, we refer
the reader to [36]. We briefly recall the main definitions.

Definition 2.16. Let R = 〈Σ, R〉 be a TRS. A term t ∈ Ter∞(Σ,X ) is
root-stable if it cannot be rewritten to a redex. A reduction strategy is root-
normalizing if it leads to a root-stable form for every term that has a root-stable
reduct.

Definition 2.17 ([36, Definition 4.1]). Let R = 〈Σ, R〉 be a TRS. A redex ρ
in a term t ∈ Ter(Σ,X ) is root-needed if in every rewrite sequence from t to a
root-stable term a descendant of ρ is contracted.

Contracting only root-needed redexes is root-normalizing:

Theorem 2.18 ([36, Corollary 5.7]). Root-needed reduction is root-normalizing
for orthogonal term rewriting systems.

2.6. Σ-algebras and models.

Let Σ be an unsorted signature, that is, an S-sorted signature for a singleton
set S. We give the definition of Σ-algebra:

Definition 2.19. A Σ-algebra A = 〈A, [[·]]〉 consists of a non-empty set A, called
the domain of A, and for each n-ary symbol f ∈ Σ a function [[f]] : An → A,
called the interpretation of f. Given an assignment α : X → A of the variables
to A, the interpretation of a term t ∈ Ter(Σ,X ) with respect to α is denoted by
[[t, α]] and inductively defined by:

[[x, α]] = α(x) [[f(t1, . . . , tn), α]] = [[f]]([[t1, α]], . . . , [[tn, α]])

For ground terms t ∈ Ter(Σ,∅) we write [[t]] for short.

We introduce models with respect to a relation:

Definition 2.20. Let R be a context-sensitive TRS over Σ, A = 〈A, [[·]]〉 be a
Σ-algebra, and � ⊆ A × A a binary relation. Then 〈A,�〉 is a model for R if
[[`, α]] � [[r, α]] for all rules `→ r ∈ R and assignments α : Var(`) → A. If the
Σ-algebra A is clear from the context, we say that � is a model for R.

Note that A is a model in the sense of [50] if and only if 〈A,=〉 is a model
according to the above definition.

3. Tree Specifications and Productivity

3.1. Tree Specifications.

The set of sorts S is partitioned into S = µ∪ν, where µ is the set of data sorts,
intended to model inductive data types such as booleans, natural numbers, finite
lists, and so on; ν is the set of codata sorts, intended for coinductive datatypes
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such as streams and infinite trees. A term t of sort τ is called a data term
if τ ∈ µ, and a codata term if τ ∈ ν. We use x, y, z, . . . to range over data
variables, and use greek letters for codata variables.

Let f :: τ1 × . . . × τn → τ . We write ]µf and ]ν f to denote the data and
codata arity of f, respectively, defined by ]ϕf = |{i | 1 ≤ i ≤ n , τi ∈ ϕ}| for
ϕ = µ, ν; so ]f = ]µf + ]ν f. We assume all data arguments are in front, i.e.,
g :: τ1 × . . . × τm × γ1 × . . . × γk → τ for all g ∈ Σ with ]µg = m and ]νg = k
(hence τi ∈ µ and γj ∈ ν, for all 1 ≤ i ≤ m and 1 ≤ j ≤ k).

Definition 3.1. Let µ and ν be disjoint sets of sorts. A tree specification is a
(µ ∪ ν)-sorted, orthogonal, exhaustive constructor term rewriting system.

Example 3.2. The Fibonacci word is the infinite sequence 0100101001001 . . . ,
which can be defined as the limit of iterating the (non-uniform) morphism h :
{0, 1}∗ → {0, 1}∗, defined by h(0) = 01 and h(1) = 0 starting on the word 0.

We give a tree specification Rfib = 〈Σ, R〉 computing the Fibonacci word.
We use a sort B for bits 0, 1, and a sort S for streams of bits; so µ = {B} and
ν = {S}. Let Σ = {0, 1, :, fib, h, tail} with types:

0, 1 :: B : :: B× S→ S h, tail :: S→ S fib :: S

and let R consist of the rewrite rules:

fib→ h(0 : tail(fib)) h(0 : σ)→ 0 : 1 : h(σ)

tail(x : σ)→ σ h(1 : σ)→ 0 : h(σ)

The partitions of Σ are ΣCµ = {0, 1}, ΣDµ = ∅, ΣCν = {:}, and ΣDν = {fib, h, tail}.
By the transformations introduced in the sequel, we can show that this tree
specification is productive indeed. See Examples 5.2 and 6.7. This ensures that,
e.g., the term fib rewrites in ω many steps to an infinite constructor normal
form (the Fibonacci word):

fib→ω 0 : 1 : 0 : 0 : 1 : 0 : 1 : 0 : 0 : 1 : 0 : 0 : 1 : . . .

This stream specification is not data-obliviously productive [9] for the stream
constant fib. The reason is that if we set 0 = 1 = •, then we have to take the
identity function as lower bound of the production modulus of h, that is, to be on
the safe side, for evaluating h-terms we may use only the rule h(• :σ)→ • : h(σ).
But then we get:

tail(fib)→ tail(h(• : tail(fib)))→ tail(• : h(tail(fib)))→ h(tail(fib))

and so fib is not data-obliviously productive. We note that this can be remedied
by rewriting the right-hand side of the fib-rule:

fib→ 0 : 1 : h(tail(fib))
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Remark 3.3. In tree specifications data symbols can have codata as arguments.
For example, the commonly used ‘observation’ function for streams:

head(x : σ)→ x

takes codata to data. Data symbols with non-zero codata arity are excluded
from the specification formats used in [12, 9, 54, 55]. The approach we take lifts
this restriction as we transform lazy evaluation on data as well as codata into a
termination context-sensitive termination problem.

The work [12, 9] aimed at a decision algorithm for (data-oblivious) produc-
tivity for certain formats of stream specifications. There ‘stream dependent’
data symbols like head are disallowed, for their presence immediately makes
productivity a Π0

2-hard problem, as shown in [10]. The extra complication aris-
ing from allowing data symbols with non-zero codata arity is that they may
cause reference to a part of the infinite structure that becomes available only in
future unfoldings, as in the following example.

Example 3.4. Let k ≥ 0. Consider the stream specification from Sijtsma [41]:

Tk → 0 : nth(k,Tk) : Tk

nth(0, x : σ)→ x

nth(s(n), x : σ)→ nth(n, σ)

where k denotes the numeral sk(0). Two sorts are involved, N for numerals, and
S for streams. We set µ = {N}, ν = {S}, and Σ = { : ,Tk, nth, 0, s} with types:

: :: N× S→ S Tk :: S nth :: N× S→ N 0 :: N s :: N→ N

Note that the data symbol nth takes a codata argument. For k = 2, we get that
nth(s(s(t)),T2) →∗ nth(t,T2) for all numerals t, and nth(1,T2) →∗ nth(2,T2),
and hence T2 →ω 0 : 0 : 0 : . . ., producing the infinite stream of zeros. But if we
take k = 3, the evaluation of each term nth(n,T3) for odd n eventually ends up
in the loop:

nth(3,T3)→∗ nth(1,T3)→∗ nth(3,T3)→∗ . . .

Hence we get T3 →ω 0 :⊥ : 0 :⊥ : . . . (where ⊥ stands for ‘undefined’) and T3 is
not productive. In general, Tk is productive if and only if k is even.

Productivity of specifications like these, where the evaluation of stream el-
ements needs to be delayed to wait for ‘future information’ (lazy evaluation),
is adequately analyzed using the concept of ‘set productivity’ in [41]. Hitherto,
all methods studied the proper subclass of ‘segment productivity’ only, where
well-definedness of one element requires well-definedness of all previous ones.
Our method applies to set productivity, or, lazy productivity as we call it.

3.2. Properties of Tree Specifications.

For the restricted formats of [12, 9, 54, 55], productivity was coinciding (and
usually defined as) constructor normalization:
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Definition 3.5. A tree specification 〈Σ, R〉 is constructor normalizing if all
finite ground terms t ∈ Ter(Σ,∅) rewrite (t →ω s) to a (possibly infinite)
constructor normal form s ∈ Ter∞(ΣC ,∅).

By orthogonality of tree specifications all normal forms are unique [28, 29]. For
constructor normal forms, the uniqueness follows also from [32].

Note that we consider only finite ground terms t ∈ Ter(Σ,∅). Considering
all (finite and infinite) terms is not appropriate for productivity, for otherwise
even trivially productive specifications like:

zeroid→ id(0 : zeroid) id(x : σ)→ x : id(σ)

would not be constructor normalizing due to infinite terms like id(id(id(. . .))).
The global requirement that all finite ground terms be constructor normaliz-

ing does not in general imply productivity of functions defined by a specification,
in the sense of mapping totally defined objects (constructor normal forms) to
totally defined objects. It only tells you that the function returns a constructor
normal form when applied to any finite ground term that can be formed in the
specification. For instance the rules for f on page 2 do not define a total func-
tion on all infinite terms. For instance, when applied to the stream 1 : 1 : 1 : . . .,
nothing is ever produced.

The following lemma is immediate:

Lemma 3.6 ([55, Proposition 3.3]). A tree specification 〈Σ, R〉 is constructor
normalizing if and only if every finite ground term t ∈ Ter(Σ,∅) rewrites in
finitely many steps to a term s with a constructor at its root (root(s) ∈ ΣC).

As we allow for a very general specification format, constructor normalization
is no longer equivalent to productivity. Roughly speaking, we need to ensure
that data terms are finite. Actually, the setting is slightly more involved as
we allow for data constructors to have (infinite) codata arguments, so as to
form, e.g., a tuple of streams. Therefore we require that, descending through
any constructor normal form of a term t ∈ Ter(Σ,∅) one always eventually
encounters a codata constructor. First we define a notion of ‘path’ in a term.

Definition 3.7. Let t ∈ Ter∞(Σ,X ), and Γ ⊆ Σ. A Γ-path in t is a (finite or
infinite) sequence 〈p0, c0〉, 〈p1, c1〉, . . . such that ci = root(t|pi) ∈ Γ and pi+1 =
pij with 1 ≤ j ≤ ]ci.
Definition 3.8. A tree specification 〈Σ, R〉 is data-finite if for all finite ground
terms t ∈ Ter(Σ,∅) and constructor normal forms s of t (that is, t→ω s): every
ΣCµ-path in s (containing data constructors only) is finite.

In other words, every infinite path in a constructor normal form of a data-
finite tree specification contains infinitely many codata constructors.

Example 3.9. The well-known ‘ams0 -TRS’ for addition and multiplication of
numerals:

a(0, y)→ y m(0, y)→ 0

a(s(x), y)→ s(a(x, y)) m(s(x), y)→ a(y,m(x, y))
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is productive: all finite ground terms rewrite to a (finite) constructor normal
form. If we extend the ams0 -TRS (an example due Jan Willem Klop) with a
constant ∞ and a rule for computing the infinite term s(s(s(. . .))):

∞→ s(∞)

then the so obtained TRS, call it R, is no longer productive: If we take 0 and s
to be constructors of an inductive sort N ∈ µ, then clearly R is not data-finite.
On the other hand, if 0 and s are constructors of a coinductive sort N ∈ ν
(representing the set of extended natural numbers N ∪ {∞}), then constructor
normalization of R fails, due to the existence of root-active terms m(∞, 0):

m(∞, 0)→ m(s(∞), 0)→ a(0,m(∞, 0))→ m(∞, 0)→ . . .

Note that in the coinductive interpretation of 0 and s in R, the rules for m can
be made productive by a second case analysis in the s-case, that is, by replacing
the rule for m(s(x), y) by the following two rules:

m(s(x), 0)→ 0

m(s(x), s(y))→ a(s(y),m(x, s(y)))

This also shows that the partitioning into data and codata sorts (as done by
the programmer) is essential to determine productivity. For example, the single
rule TRS ∞→ s(∞) is productive if the symbol s is a codata constructor, but
not if it is a data constructor.

Remark 3.10. Data-finiteness is similar to what is called ‘properness’ in [25].
However, properness is a stronger condition where on every infinite path in a
constructor normal form eventually only coinductive symbols are encountered.

We arrive at our definition of productivity:

Definition 3.11. A tree specification R is productive if R is constructor nor-
malizing and data-finite.

3.3. A Global Assumption.

We make the following assumption for all signatures of tree specifications,
and justify it in the subsequent remark.

Assumption 3.12. There exists a finite ground term t ∈ Ter(Σ,∅)τ of sort τ ,
for every sort τ ∈ µ ∪ ν.

Remark 3.13. The motivation for Assumption 3.12 is based on the fact that
we consider global productivity, that is, productivity of all finite ground terms.
Let τ ∈ µ ∪ ν be a sort. If there exist no finite ground terms of sort τ , then
rules containing symbols (or variables) of this sort are not applicable in any
reduction starting from a finite ground term. Hence, productivity is independent
of whatever the rules look like. For example, consider the specification:

none(x)→ none(x) (1)

12



Now, for all finite ground terms this TRS is productive, as there are none.
The assumption of the existence of finite ground terms of every sort is lacking

in [39]. The system (1) extended with the overflow rule x : σ → overflow is not
balanced outermost terminating, but vacuously productive.

Note that the set of sorts S ′ ⊆ S for which there exist finite ground terms
is computable; S ′ is the smallest set A such that: τ ∈ A if for some f ∈ Σ with
f :: τ1 × . . . × τ]f → τ we have τ1, . . . , τ]f ∈ A. Having computed the set S ′ of
‘non-empty sorts’, we can discard all rules from the specification R that contain
a symbol or variable of a sort from S \ S ′, without affecting productivity: the
thus obtained specification R′ is productive if and only if R is.

3.4. Shallow Tree Specifications.

We now introduce ‘shallow’ tree specifications, where pattern matching is
only one constructor symbol deep. Shallow tree specifications form the target
formalism of the productivity preserving transformation defined in Section 5,
which turns strongly sequential tree specification into shallow ones. And shal-
low tree specifications are the input systems for the transformation to context-
sensitive TRSs T (R) defined in Section 6.

Definition 3.14. A tree specification R = 〈Σ, R〉 is shallow if for every n-ary
symbol f ∈ ΣD we have a set of argument indices If ⊆ {1, . . . , n} such that for
each of its defining rules:

f(p1, . . . , pn)→ r

every pattern pi satisfies the following conditions:

(i) if i ∈ If , then pi is of the form c(x1, . . . , xm) for some m-ary constructor
c ∈ ΣC and variables x1, . . . , xm ;

(ii) if i 6∈ If , then pi is a variable.

Remark 3.15. In shallow tree specifications patterns contain constructors only
at depth one. Moreover, all defining rules for a symbol f are forced to ‘consume’
from the same arguments, namely from those indicated by If . The latter re-
quirement can be relaxed to also allow variables at positions i ∈ If , i.e., replacing
clause (i) by (i)’ :

(i)’ if i ∈ If , then pi is a variable, or it is of the form c(x1, . . . , xm) for some
m-ary constructor c ∈ ΣC and variables x1, . . . , xm ;

For this extended format, the transformation of Definition 6.1 would still be
sound, but no longer complete for proving productivity (Theorem 6.6). The
point is that then evaluation of possibly non-needed subterms is allowed. This
can lead to non-termination of the transformed system, see Example 9.2.

The stream specifications for Tk of Example 3.4 are shallow. The speci-
fication Rfib from Example 3.2 is not shallow, but can be made shallow, see
Example 5.2; in fact Rfib is an example of a ‘semi-shallow’ specification, defined
in Section 7.
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Example 3.16. We give an example of a shallow tree specification R = 〈Σ, R〉
with data sorts µ = {B,B∗} and codata sorts ν = {S,T}. The constructor
symbols (in ΣC) are typed as follows:

0, 1 :: B e :: B∗ · :: B∗ × B→ B∗ : :: B∗ × S→ S node :: B∗ × T× T→ T

and the defined symbols (in ΣD) have types:

t :: T f :: B× T→ T lo :: T→ S zip :: S× S→ S

We let R consist of the following rules:

t→ node(e, f(0, t), f(1, t))

f(x, node(w,α, β))→ node(w · x, f(x, α), f(x, β))

lo(node(x, α, β))→ x : zip(lo(α), lo(β))

zip(x : σ, τ)→ x : zip(τ, σ)

The constant t defines an infinite binary tree labeled with all words over {0, 1}∗.
The constructor symbol e represents the empty word, and w · x represents ap-
pending a letter x to a word w; we let the word constructor ‘·’ bind stronger
than the stream constructor ‘:’. The rule for lo defines a function which takes a
labeled binary tree and returns a stream of labels of nodes visited in level-order.
This specification has a particular form, from which constructor normalization
can be derived immediately: all rules produce a constructor; see Proposition 3.17
below.

The term lo(t) rewrites to the lexicographical enumeration of all binary words:

lo(t)→ω e : e · 0 : e · 1 : e · 0 · 0 : e · 0 · 1 : . . .

For a specific class of stream specifications, called ‘friendly’ in [9], construc-
tor normalization follows immediately. This is generalized to trees in [55], see
Theorem 3.4 ibid.

Proposition 3.17. A shallow tree specification R = 〈Σ, R〉 is constructor nor-
malizing if for all rules `→ r ∈ R we have that root(r) ∈ ΣC.

Proof. By Lemma 3.6 it suffices to show that every ground term t ∈ Ter(Σ,∅)
rewrites to a term s with root(s) ∈ ΣC . We proceed by induction on t. Let
t = f(t1, . . . , tn). By the induction hypothesis we have that ti →∗ si with
root(si) ∈ ΣC for every 1 ≤ i ≤ n. So we get t →∗ f(s1, . . . , sn) and by left-
linearity, exhaustivity, and shallowness of R it follows that f(s1, . . . , sn) is a
redex with respect to a rule `→ r. Since root(r) ∈ ΣC we are done.

The difference between Proposition 3.17 and [55, Theorem 3.4] is that we
require shallowness for both data and codata, whereas [55] allows arbitrary
matching on data but requires an independent data-layer. A typical example
which is excluded by either restriction is:

a→ h(a) : a h(0 : σ)→ 0 h(1 : σ)→ 1

Note that this specification is not constructor normalizing.
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4. From Lazy Evaluation to Strongly Sequential Tree Specifications

Lazy evaluation is a class of rewrite strategies employed in functional pro-
gramming languages, such as Haskell [37] and Clean [38], where the evaluation
of a subterm is delayed until it is needed, and only to the extent required by the
calling function. Unfortunately, there is no general definition of lazy evaluation;
every functional programming language has its own variation. Even worse, every
Haskell compiler has its own variation of lazy evaluation; there is no operational
semantics defined for Haskell (in contrast to Clean [38] which is based on graph
rewriting). However, lazy evaluation strategies all have in common that there is
a deterministic order for the evaluation of argument positions. These systems
can be rendered as strongly sequential term rewriting systems [23, 30].

For constructor TRSs it is known that strong sequentiality coincides with
inductive sequentiality, see [21]. A TRS R = 〈Σ, R〉 is inductively sequential if
every symbol has a ‘definitional tree’ [3], that is, a tree that defines the order in
which positions in a term are evaluated. We prefer the name ‘evaluation tree’.

Before we give the definition of evaluation trees, let us consider an example
of a strongly sequential tree specification:

take(0, x)→ nil

take(s(n), nil)→ nil

take(s(n), x : y)→ x : take(n, y)

For ‘take’ the evaluation tree looks as follows:

take(2,2)

take(0,2) take(s(2),2)

take(s(2), nil) take(s(2),2 : 2)

The evaluation position is indicated by underlining. The leaves of the tree are
patterns of the left-hand sides of the rules for take.

Next we give a formal definition of evaluation trees. A tree is a pair 〈V,E〉
consisting of a set V of nodes and a set E ⊆ V ×V of edges, satisfying: (i) there
is a unique node r ∈ V , the root of the tree, that all nodes are reachable from:
rE∗t for all t ∈ V ; (ii) apart from the root, every node has a unique parent
node: ∃!t. tEs for all nodes s 6= r; (iii) E is acyclic, i.e., for no node s we have
sE+s. A tree is finite if its set of nodes is finite. We use Vint to denote the set
of internal nodes of a tree, Vint := {p | ∃q. pEq}, and Vext := V \ Vint for the
external nodes.

Definition 4.1. An evaluation tree is a tuple 〈V,E, λ 〉 where 〈V,E〉 is a finite
tree with V ⊆ Cxt (Σ,∅) and λ : Vint → N is a labeling function, satisfying:

– if p ∈ Cxtn(Σ,∅) is an n-hole context, then λ(p) ∈ {1, . . . , n};
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– if pEq, then q = p[c(2, . . . ,2)]λ(p), for some constructor symbol c ∈ ΣC .

Let R = 〈Σ, R〉 be a tree specification and let f ∈ ΣD be a defined symbol.
An evaluation tree for f is an evaluation tree with root f(2, . . . ,2) such that
the set of leaves coincides with the set of lhs patterns of the f-rules Vext = {`σ2 |
`→ r ∈ R, root(`) = f}, where the substitution σ2 replaces all variables by 2.

The labels λ(p) in the evaluation tree for take above are the underlinings of
holes, indicating the position where to evaluate next. Since pattern matching
in tree specifications is exhaustive (by definition), the number of child nodes of
an internal node p ∈ Vint is equal to the number of constructor symbols of the
sort of the selected hole. Moreover, each child node is ‘one constructor more
specific’ than its parent.

Theorem 4.2 ([21, Theorem 4.14]). A constructor TRS 〈Σ, R〉 is strongly se-
quential if and only if there exists an evaluation tree for every f ∈ ΣD.

Lemma 4.3. Let R = 〈Σ, R〉 be a strongly sequential tree specification. Then,
for every f ∈ ΣD there exists an argument index 1 ≤ i ≤ ]f such that: for all
f-defining rules f(t1, . . . , t]f )→ r ∈ R we have root(ti) ∈ ΣC.

Proof. The argument index is given by λ(p) of the root node p of the evaluation
tree for the symbol f obtained from the constructive proof of Theorem 4.2.

We discuss some examples of Haskell programs and show how to encode
lazy evaluation with ‘rule priorities’ by evaluation trees. We thereby infor-
mally present a transformation from (first-order) Haskell programs to orthogo-
nal, strongly sequential term rewriting systems.

As a start, we consider the rewrite system:

∞→ s(∞)

f(0)→ 0

f(s(x))→ s(0)

We evaluate the term f(∞) using an Haskell-like strategy:

f(∞)→ f(s(∞))→ s(0)

where the evaluation position is indicated by underlining. In the first step, the
symbol ∞ is evaluated since the function f needs its argument to be evaluated
to a term with a constructor at the root. In the second step, the evaluation of
∞ is delayed since f is applicable without further evaluating the subterm.

The evaluation tree of f can be depicted as follows:

f(2)

f(0) f(s(2))
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Let us consider a slightly more complicated example:

g(x : σ, y, a)→ x

g(x, y : τ, b)→ y

g(σ, τ, x)→ a

where the data constructors are a, b, and c.
The rules for g are non-orthogonal (overlapping). In functional program-

ming, these ambiguities are resolved by a priority order on the rules. In this
example, the priority order is top to bottom (where top has the highest priority).

The strategy of Haskell to determine the evaluation position is as follows.
A rewrite rule ` → r is called feasible for a term t if root(t) = root(`) and the
leftmost outermost mismatch between ` and t concerns a defined symbol in t,
that is, a not yet evaluated position in t. The position of this mismatch for the
highest-priority feasible rule is then chosen as evaluation position.

This strategy results in the following evaluation tree of g:

g(2,2,2)

g(2 : 2,2,2)

g(2 : 2,2, a) g(2 : 2,2, b) g(2 : 2,2, c)

g(2 : 2,2 : 2, b) g(2 : 2,2 : 2, c)

In this example, Haskell does not choose an optimal evaluation strategy. It starts
evaluating the first argument since the rule of highest priority for g requires input
from that argument. However, it is the third argument which decides on which
rule to be applied, and hence the optimal choice would be to start evaluating the
third argument. After evaluating the third argument to c, Haskell still considers
the second rule for g as feasible, and thus evaluates the second argument. Clearly
the strategy evaluates unneeded arguments. The leaves in the evaluation tree
correspond to the following slightly adapted rewrite rules:

g(x : σ, τ, a)→ x

g(x : σ, y : τ, b)→ y

g(x : σ, y : τ, c)→ a

These rules together with the above evaluation tree are equivalent to the orig-
inal rewrite system with the rule priority order combined with the evaluation
strategy of Haskell.
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5. From Strongly Sequential to Shallow Tree Specifications

We show that all strongly sequential tree specifications can be turned into
equivalent shallow tree specifications (Definition 3.14), that is, having the same
constructor normal forms and the same behavior with respect to productivity.
In Section 6 we describe a complete method for analyzing productivity of shallow
tree specifications.

Let R = 〈Σ, R〉 be a strongly sequential tree specification, and f ∈ ΣD.
We let (f) stand for the least argument index 1 ≤ i ≤ ]f (bound to exist by
Lemma 4.3) such that for all defining rules f(t1, . . . , t]f) → r ∈ R we have that
root(ti) ∈ ΣC .

Definition 5.1. Let R = 〈Σ, R〉 be a strongly sequential tree specification. We
define a transformation fromR to a shallow tree specification Ξ(R), by iteration:

Let R0 := R. For k = 0, 1, . . ., check whether Rk = 〈Σk, Rk〉 is shallow. If it
is, then set Ξ(R) := Rk, and the iteration terminates. Otherwise, let ρ ∈ Rk be
a non-shallow rule defining a symbol f := root(lhs(ρ)) of type τ1× . . .× τn → τ ,
i := (f), and define:

– Ξk to consist of the following rules, one for each constructor c ∈ ΣC :

f(x1, . . . , xi−1,c(y1, . . . , ym), xi+1, . . . , xn)

→ fc(x1, . . . , xi−1, y1, . . . , ym, xi+1, . . . , xn)

where c :: γ1×· · ·×γm → τi, and fc is a fresh symbol 6∈ Σk (of the induced
type, i.e., fc :: τ1 × · · · × τi−1 × γ1 × · · · × γm × τi+1 × · · · × τn → τ);

– Rk+1 := 〈Σk+1, Rk+1〉 where:

Σk+1 := Σk ∪ {fc | c ∈ ΣC , c :: γ1 × · · · × γm → τi}
Rk+1 := Ξk ∪ {`↓Ξk → r | `→ r ∈ R}

Repeat with Rk+1.

To justify the notation Ξ(R), which suggests a deterministic transformation,
we note that although the selection order of non-shallow rules may vary, the
outcome is unique (up to the names of the freshly chosen symbols).

We give two examples of this Ξ-transformation.

Example 5.2. Reconsider the strongly sequential tree specification Rfib from
Example 3.2, where the defining rules for the stream function h are not shallow
due to the presence of the constructor symbols 0, 1 as argument of the stream
constructor ‘:’ in the left-hand sides. Using the algorithm from Definition 5.1
we obtain the following shallow tree specification Ξ(Rfib):

fib→ h(0 : tail(fib)) h(x : σ)→ h:(x, σ)

tail(x : σ)→ σ h:(0, σ)→ 0 : 1 : h(σ)

h:(1, σ)→ 0 : h(σ)

where h: is a freshly introduced symbol of type B× S→ S.
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Example 5.3. Consider the non-shallow strongly sequential TRS:

f(a, σ)→ r1 f(b, x : y : σ)→ r2

with some arbitrary right-hand sides r1 and r2. We follow Definition 5.1 and
transform this TRS into a shallow TRS. We have (f) = 1. Hence we introduce
fresh symbols fa and fb and replace the above rules by:

f(a, σ)→ fa(σ) f(b, σ)→ fb(σ)

fa(σ)→ r1 fb(x : y : σ)→ r2

The rule for fb is not shallow yet. Hence we proceed. Introduce a fresh sym-
bol fb:, and replace the fb-rule by the following two rules:

fb(x : σ)→ fb:(x, σ) fb:(x, y : σ)→ r2

The iteration ends. We have obtained a shallow TRS, consisting of five rules.

Definition 5.4. Let R1 = 〈Σ1, R1〉 and R2 = 〈Σ2, R2〉 be tree specifications
with Σ1 ⊆ Σ2. We say that R2 simulates R1 if the following conditions hold:

(i) →R1
⊆ →R2

, and

(ii) R1 is productive if and only if R2 is productive.

We prove that the transformation to shallow tree specifications from Defini-
tion 5.1 preserves productivity as well as non-productivity. More precisely:

Theorem 5.5. Let R = 〈Σ, R〉 be a strongly sequential tree specification. Then
Ξ(R) simulates R.

Proof. We use the notations from Definition 5.1. By transitivity, it suffices to
prove that for every transformation step k it holds: Rk+1 simulates Rk. Assume
that Rk is not shallow, and let f, i and Ξk be as in the definition.

First we show →Rk ⊆ →Rk+1
. Let ` → r ∈ Rk, we prove that ` →∗Rk+1

r.

If root(`) 6= f, then ` → r ∈ Rk+1. Thus, assume root(`) = f. By the choice
of i = (f) there is a rule ρ in Ξk matching `, and by orthogonality of Ξk this

rule is unique. Thus `
ρ→ `′, and `′ is a normal form with respect to Ξk as

f has been replaced by a fresh symbol fc. Hence, {ρ, `′ → r} ⊆ Rk+1 and
`→Rk+1

`′ →Rk+1
r, which proves the claim.

Secondly, we prove that Rk is productive if and only if Rk+1 is. To this end
we give semantics [[·]] : Ter(Σk+1,∅) → Ter(Σk,∅) to terms, mapping terms
over the extended signature Σk+1 to terms over Σk. Note that every fresh
symbol fc in a term forms a redex occurrence with respect to inverse rules Ξ−1

k .
We define [[t]] = t↓Ξ−1

k
for every t ∈ Ter(Σk+1,∅). Then by definition, the rules

Ξk preserve the semantics.
For the direction ‘⇒’, let Rk be productive, and t ∈ Ter(Σk+1,∅) a ground

term over the extended signature. By assumption [[t]] is productive with respect
to Rk. Consequently, [[t]] is productive with respect to Rk+1 as →Rk ⊆ →Rk+1

.
It follows that t is productive with respect to Rk+1 since [[t]]→∗Rk+1

t.
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For the direction ‘⇐’, assume Rk+1 is productive and let t ∈ Ter(Σk,∅)
be a ground term. We show that whenever t →∗Rk+1

t′ then t →∗Rk [[t′]]; this

implies productivity of t with respect to Rk since the constructor prefix of t′

coincides with that of [[t′]]. We use induction on the length of the reduction
t →∗Rk+1

t′. For the base case, note that t = [[t′]]. For the induction step, we

consider a rewrite sequence t→∗Rk+1
t′ →Rk+1

t′′. Then t→∗Rk [[t′]] by induction

hypothesis. Let ρ ∈ Rk+1 be the rule corresponding to the step ρ′ : t′ →Rk+1
t′′.

If ρ ∈ Ξk then it follows [[t′]] = [[t′′]], and t→∗Rk [[t′′]]. If ρ ∈ Rk then contracting
the (unique) residual of ρ′ in [[t′]] after t′ →∗

Ξ−1
k

[[t′]] yields a step [[t′]]→Rk [[t′′]],

and hence t →∗Rk [[t′′]]. Finally, if ρ 6∈ Rk and ρ 6∈ Ξk then ρ is of the form
`′ → r and there exists a rule `→ r ∈ Rk such that `→Ξk `

′. Then application
of `→ r ∈ Rk in [[t′]] at the residual of the position of ρ′ in t′ after t′ →∗

Ξ−1
k

[[t′]]

results in a step [[t′]]→Rk [[t′′]]. Hence t→∗Rk [[t′′]].

6. From Productivity of Shallow Tree Specifications to Context-Sen-
sitive Termination

In this section we define a transformation from shallow tree specifications to
context-sensitive TRSs in such a way that productivity of the original specifica-
tion is equivalent to termination of the transformed system. In fact, we give two
transformations: one for constructor normalization, and one augmented with
rules that consume all data-constructors in order to capture data-finiteness.

Definition 6.1. Let R = 〈Σ, R〉 be a shallow tree specification. Let φ be a
fresh sort (φ 6∈ µ∪ ν), and for every data sort τ ∈ µ, let τ be a symbol not in
Σ of type τ :: τ → φ. We define two many-sorted context-sensitive TRSs:

1. T(R) := 〈R, ξ〉 with the replacement map ξ defined by:

ξf = If (f ∈ ΣD) ξc = ∅ (c ∈ ΣC)

2. T (R) := 〈R′, ξ′〉 where R′ = 〈Σ′, R′〉 with Σ′ = Σ ∪ { τ | τ ∈ µ} and

(i) R′ is the extension of R with the rules:

τ (c(x1, . . . , xn, σ1, . . . , σm))→ τi(xi)

for all data constructors c ∈ ΣCµ of type τ1× . . .×τn×γ1× . . .×γm → τ ,
where n = ]µc and m = ]νc, and all indices 1 ≤ i ≤ n ;

(ii) ξ′ is the extension of ξ to the signature Σ′, for every τ ∈ µ defined by:

ξ′
τ

= {1} .

The replacement maps ξ and ξ′ are canonical in the sense of [33]. A canonical
replacement map is the most restrictive replacement map guaranteeing that
every non-variable position of a subterm of a left-hand side is replacing. For
shallow tree specifications, it is not only ensured that every non-variable position
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in a left-hand side is replacing, but moreover that the non-variable positions
are exactly the replacing positions. This is crucial to obtain completeness for
proving productivity, see Theorem 6.6.

The replacement map ξ enforces the contraction of root-needed redexes only.
Hence, the context-sensitive reduction with respect to T(R) will lead to (and
end in) a root-stable form with constructor-root (root(t) ∈ ΣC) whenever a term
of this form is reachable with respect to R.

Lemma 6.2. Let R = 〈Σ, R〉 be a shallow tree specification. A ground term
t ∈ Ter(Σ,∅) is in normal form with respect to T(R) if and only if root(t) ∈ ΣC.

Proof. Since ξc = ∅ for every constructor symbol c ∈ ΣC , it suffices to show
that every term t = f(t1, . . . , t]f) with f ∈ ΣD contains a redex with respect to
T(R). We proceed by induction on the term structure of t. If for some i ∈ If the
term ti does not have a constructor at the root, then ti contains a redex by the
induction hypothesis, and thereby t contains a redex since i ∈ ξf . Otherwise, t
is a redex by exhaustivity of R.

Proposition 6.3. Let R = 〈Σ, R〉 be a shallow tree specification. Then T(R)
implements lazy evaluation with respect to R, that is, for all t ∈ Ter(Σ,∅) such
that t→∗R s for some term s with root(s) ∈ ΣC it holds: every T(R) reduction
starting from t reduces only root-needed redexes.

Proof. By induction on the size of t. If root(t) ∈ ΣC , then t is root-stable, and
a T(R)-normal form. Thus, let t = f(t1, . . . , t]f) with f ∈ ΣD. By confluence of
orthogonal TRSs, every R-reduct of t rewrites to a term s with root(s) ∈ ΣC .
As a consequence, every rewrite sequence from t to a root-stable term contains
a rewrite step at the root. The first of these root-steps must be the application
of a defining rule of f. By the shape of the rules, such a rule is applicable at
the root of a term f(s1, . . . , s]f) (if and) only if root(si) ∈ ΣC for all i ∈ If .
Hence, in order for t to reach a root-stable term, first every ti with i ∈ If has
to rewrite to a root-stable term si with root(si) ∈ ΣC . As a consequence, every
root-needed redex of ti at a position p corresponds to a root-needed redex of t
at position ip. By definition ξf = If , and hence rewriting is restricted to terms
ti with i ∈ If . Moreover, by the induction hypothesis, T(R) allows only the
contraction of root-needed redexes for ti. Finally, if root(ti) ∈ ΣC for all i ∈ If ,
then t has a root-needed redex at the root, and by context-sensitive rewriting
this is the only redex that is permitted to be contracted.

Corollary 6.4. Let R = 〈Σ, R〉 be a shallow tree specification. Then T(R) is
terminating for t ∈ Ter(Σ,∅) if and only if t→∗R s with root(s) ∈ ΣC.

Proof. Direct consequence of Lemma 6.2, Proposition 6.3 and Theorem 2.18.

We arrive at our main results:

Theorem 6.5. A shallow tree specification R is constructor normalizing if and
only if T(R) is terminating.
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Proof. By Lemma 3.6 we have thatR is constructor normalizing if and only if ev-
ery finite ground term t rewrites to a term with a constructor at the root, which
in turn holds if and only if T(R) is terminating for all ground terms by Corol-
lary 6.4. The latter is equivalent to termination on all terms by Lemma 2.12.

Theorem 6.6. A shallow tree specification R is productive if and only if T (R)
is terminating.

Proof. For soundness of T (⇐), assume that T (R) is terminating.
First, we prove constructor normalization of R. Since T(R) ⊆ T (R), we

conclude termination of T(R). Then by Corollary 6.4, for every t ∈ Ter(Σ,∅)
we have: t →∗ s such that root(s) ∈ ΣC . Hence R is constructor normalizing
by Lemma 3.6.

Second, we show that R is data-finite. Let a term t be called p-bad if
the (unique [28]) normal form of t contains an infinite path visiting only data
constructors starting from position p. We show that there are no p-bad terms.
Let t ∈ Ter(Σ,∅) be p-bad with constructor normal form s. By compression [43,
Theorem 12.7.1] there exists a strongly convergent reduction σ : t→≤ω s. This
rewrite sequence σ contains, because it is strongly convergent, only finitely
many rewrite steps above depth |p|. Hence, there exists a finite term t′ such
that t →∗ t′ →≤ω s, and t′ coincides with s up to depth |p|. Then t′ consists
up to depth |p| of constructor symbols only, and consequently t′|p →≤ω s|p and
hence t′|p is ε-bad. Thus for data-finiteness it suffices to prove that there exist
no ε-bad terms.

Let t ∈ Ter(Σ,∅) be ε-bad with constructor normal form s. By compression,
it follows that there exists a rewrite sequence of the form:

t→∗ c(t1, . . . , tn)→≤ω s

for some data constructor c ∈ ΣC and finite terms t1, . . . , tn where n = ]c. Then
there exists a 1 ≤ j ≤ n such that tj is ε-bad again. From Corollary 6.4 and
Lemma 6.2 it follows that in T (R) we have a rewrite sequence of the form:

t→∗ c(t′1, . . . , t
′
n)

for some terms t′1, . . . , t
′
n. Let τ and τj be the sorts of t and t′j , respectively.

Then we have in T (R) a rewrite sequence of the form:

τ (t)→∗ τ (c(t′1, . . . , t
′
n))→ τj (t

′
j) (2)

The term c(t′1, . . . , t
′
n) has a constructor normal form (R is constructor normal-

izing), and because it is unique [28], it must be s. Hence t′j is ε-bad again.
Repeating the above construction yields an infinite composition of (2), which
contradicts termination of T (R).

For completeness of T (⇒), assume that R is productive. Termination of
T for terms t ∈ Ter(Σ,∅)τ with τ 6= φ follows from Theorem 6.5. Therefore let
us consider a term t ∈ Ter(Σ,∅)φ. Then t is of the form t = τ (t′) where t′ ∈
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Ter(Σ,X )τ and τ 6= φ by well-sortedness. Then t′ is terminating by Lemma 6.4.
Hence, if t is non-terminating, then the -rules must be applied infinitely often
at the root. However, this is only possible if t′ would ‘produce’ infinitely many
data constructors; contradicting data-finiteness and thereby productivity.

Example 6.7. The transformation T of Definition 6.1 applied to the shallow
tree specification Ξ(Rfib) of Example 5.2 results in the context-sensitive TRS
consisting of the rules of Ξ(Rfib) (there is no rule for B as the data constructors
are constants) and the replacement map ξ defined by:

ξ: = ∅ ξtail = ξh = ξh: = {1}

AProVE [17] fails to prove termination (within 120 sec.); Jambox [7] succeeds by
first rewriting the right-hand side of the fib-rule to 0 : 1 : h(tail(fib)).

We give two examples that can not be shown productive by any previous
method (see Section 9) due to the use of inductive symbols having coinductive
arguments.

Example 6.8. We consider a subsystem ROrd of [25] defining tree ordinals:

x+ O→ x x · O→ O

x+ S(y)→ S(x+ y) x · S(y)→ x · y + x

x+ L(σ)→ L(x+L σ) x · L(σ)→ L(x ·L σ)

x+L (y : σ)→ (x+ y) : (x+L σ) x ·L (y : σ)→ (x · y) : (x ·L σ)

nats(x)→ x : nats(S(x)) ω → L(nats(O))

We use Ord, a data sort for ordinals, and Str, a codata sort for streams of
ordinals. The constructor symbols are:

O :: Ord S :: Ord→ Ord L :: Str→ Ord : :: Ord× Str→ Str

The transformed system T (ROrd) extends the above set of rules with:

Ord(S(x))→ Ord(x)

(Note that there is no such rule for the L-constructor as it has no data argu-
ments.) Furthermore, the replacement map ξ is defined by ξ: = ξS = ξL = ∅,
ξ+ = ξ· = ξ+L

= ξ·L = {2}, ξnats = ∅, and ξ
Ord

= {1}.
Termination of T (ROrd) is proved instantly by AProVE. Hence, by Theo-

rem 6.6, we conclude that ROrd is productive, ensuring that, e.g., the term ω ·ω
produces a data-finite contructor normal form.

Example 6.9. We apply our transformation to Example 3.4. The replacement
map is defined by ξnth = {1, 2}, ξ

N
= {1}, and ξ: = ξs = ∅, and the set of

rules is extended by the rule N(s(n)) → N(n). AProVE proves termination
for k = 0 and k = 2 within 2 minutes.
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Unfortunately, automated termination tools are not directly capable of han-
dling sorted TRSs. From the perspective of unsorted term rewriting, termina-
tion on the set of well-sorted terms is a local termination problem [8], in contrast
to global termination on all terms. The work [8] describes a transformation from
local to global termination, which, in our special case, would boil down to the
elimination of collapsing rules (the right-hand side a variable) by instantiation
of variables with terms covering all ground instances.

However, since T(R) is orthogonal we obtain global termination for free.
More precisely, Lemma 2.15 allows us to simply forget about the sorts:

Proposition 6.10. T(R) is terminating ⇐⇒ Θ(T(R)) is terminating.

The system T (R) is no longer orthogonal due to the -rules. Nevertheless:

Proposition 6.11. T (R) is terminating ⇐⇒ Θ(T (R)) is terminating.

Proof sketch. The proof is an extension of the proof of Lemma 2.15 with the
following observations. Every non-root occurrence of a symbol τ yields a sort-
conflict, and hence each of these occurrences is the root-symbol of one of the
partitions. By the shape of the rewrite rules for the -symbols, partitions (con-
texts) with a root-symbol τ cannot collapse. The remaining partitions do not
contain any -symbols, and as -symbols cannot be created, rewriting within
these partitions is orthogonal (the -rules are never applicable). Moreover, the
only overlaps are between the -rules, and hence, as in 2.15, we can conclude
that collapsing partitions cannot interact with their environment.

As a consequence, when partitioning a non-well-sorted term, all non-topmost
partitions are either with respect to orthogonal rewriting, or can never collapse.
Thus we can again remove (collapse) all non-topmost, collapsing partitions, and
conclude as in the proof of 2.15.

Propositions 6.10 and 6.11 allow us to forget about the sortedness disci-
pline and to feed the context-sensitive TRSs obtained by Theorems 6.5 and 6.6
directly to a termination prover such as AProVE and mu-Term [35].

7. Semi-Shallow Tree Specifications

In this section we consider productivity for the case that data symbols cannot
have codata arguments, and that data terms are supposed to be terminating
with respect to eager (non-lazy) evaluation.

Definition 7.1. A tree specification R = 〈Σ, R〉 has an independent data-layer
if data symbols do not have codata arguments, i.e., ]νc = 0 for every c ∈ Σµ.

This enables us to relax the restrictions on the syntactic format of shallow
tree specifications: only the pattern matching against codata constructors needs
to be shallow (at most one deep).
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Definition 7.2. A tree specification R = 〈Σ, R〉 is semi-shallow if for every
symbol f ∈ ΣD with data arity ]µf = m and codata arity ]ν f = n we have a set
of indices Jf ⊆ {1, . . . , n} such that for every defining rule of the form:

f(p1, . . . , pm, q1, . . . , qn)→ r

the codata patterns qi satisfy the following conditions:

(i) if i ∈ Jf , then qi = c(t1, . . . , tk, x1, . . . , xl) for some codata constructor
c ∈ ΣCν with ]µc = k and ]νc = l, data terms t1, . . . , tk ∈ Ter(Σ,X )µ, and
codata variables x1, . . . , xl ;

(ii) if i 6∈ Jf , then qi is a variable.

This format is closely related to the format used in [55]; our format is slightly
more restrictive in that we fix for every function symbol f ∈ ΣD the codata
arguments (the set Jf) from which there is consumption. This is only a minor
restriction, as was shown in Sections 4 and 5.

Example 7.3. The specification of the Fibonacci word given in Example 3.2 is
semi-shallow, but not shallow.

In Section 5 we have shown that every strongly sequential specification can
be made shallow, and hence semi-shallow. Actually, for the semi-shallow format,
we need strong sequentiality only for the codata matching: we no longer have
restrictions on data patterns. For example, the following non-sequential stream
function (compare with [43, Example 9.2.35]) is semi-shallow:

g(a, b, x)→ a

g(x, a, b)→ b

g(b, x, a)→ a

g(a, a, a)→ a

g(b, b, b)→ b

because there are no codata at all.
Another advantage of the semi-shallow format is, in comparison to the shal-

low format, that it allows for more efficient transformations from non-semi-
shallow to semi-shallow specifications. Here, efficiency is compared with respect
to the number of rules of the transformed system. We illustrate this transfor-
mation on an example, but leave the formal details to the reader:

Example 7.4. To illustrate the transformation to the semi-shallow format, we
consider the following specification R:

h(0 : σ, τ)→ τ

h(s(x) : σ, y1 : y2 : τ)→ x : τ
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Observe that the system is not semi-shallow. We transform the specification
into the following semi-shallow one:

h(0 : σ, τ)→ τ

h(s(x) : σ, τ)→ hh(s(2):2,2)(x, σ, τ)

hh(s(2):2,2)(x, σ, y : τ)→ hh(s(2):2,2:2)(x, σ, y, τ)

hh(s(2):2,2:2)(x, σ, y1, y2 : τ)→ x : τ

where we have introduced fresh symbols hC with C being a prefix of the orig-
inal left-hand side indicating the constructor symbols that have already been
evaluated.

This is to be compared to the result Ξ(R) of the transformation to the
shallow format (Definition 5.1), which consists of the following six rules:

h(x : σ, τ)→ hh(2:2,2)(x, σ, τ)

hh(2:2,2)(0, σ, τ)→ hh(0:2,2)(σ, τ)

hh(2:2,2)(s(x), σ, τ)→ hh(s(2):2,2)(x, σ, τ)

hh(0:2,2)(σ, τ)→ τ

hh(s(2):2,2)(x, σ, y : τ)→ hh(s(2):2,2:2)(x, σ, y, τ)

hh(s(2):2,2:2)(x, σ, y1, y2 : τ)→ x : τ

Having eager termination of data terms, we obtain data-finiteness for free.
As a consequence, we can simplify the transformation of productivity to context-
sensitive termination (Definition 6.1): the -rules are no longer required.

Definition 7.5. Let R = 〈Σ, R〉 be a semi-shallow tree specification. We define
the context-sensitive TRS Tµ(R) = 〈R, ξ〉 with the replacement map ξ:

ξf = {1, . . . , ]µf} ∪ {]µf + i | i ∈ Jf} for f ∈ ΣD

ξc = {1, . . . , ]µc} for c ∈ ΣC

The transformation Tµ(R) to context-sensitive rewriting consists only of
defining a replacement map ξ, that is, restricting the argument positions where
rewriting is allowed, and leaves the set of rules R unaltered. In particular, the
transformation allows rewriting in all data-arguments, but rewriting in codata-
arguments is restricted to defined symbols f, and only to those arguments where
evaluation is needed in order to apply an f-rule (indicated by Jf).

The essential difference with the transformation from [55] is that there
rewriting has been allowed for all codata-arguments of defined symbols. The
restriction of the evaluation to only those codata-arguments where the defining
rules actually consume from is necessary to obtain a complete transformation;
the necessity of this restriction is demonstrated by Example 9.2.

Theorem 7.6. A semi-shallow tree specification R with independent data-layer
is productive in combination with termination on the data terms if and only if
Tµ(R) is terminating.

26



Proof. For the direction ‘⇒’, letR be productive and terminating on data terms.
Termination of Tµ(R) follows analogously to termination of T(R) in the proof
of Theorem 6.5. However, in contrast to T(R), Tµ(R) allows rewriting in all
data arguments. Nevertheless, this does not harm termination of Tµ(R) since
by assumption R is terminating on all data terms.

For the direction ‘⇐’, let Tµ(R) be terminating. This immediately implies
termination of R on data terms since R has an independent data-layer, and the
replacement map ξ of Tµ(R) allows rewriting in all arguments of sort data. The
proof of constructor normalization of R is analogous to the proof of Theorem 6.5
by showing that every ground term t with root(t) 6∈ RC contains a Tµ(R) redex.
The difference is that matching against data arguments is unrestricted due to
semi-shallowness of R. This does not disturb constructor normalization of R, as
every data term is strongly normalizing with respect to R. The data-finiteness
of R follows immediately from termination of R on data terms.

As in Section 6, Lemma 2.15 allows us to forget about the sorts:

Proposition 7.7. Tµ(R) is terminating ⇐⇒ Θ(Tµ(R)) is terminating.

Example 7.8. For the specification Rfib introduced in Example 3.2 the trans-
formation of Definition 7.5 defines the replacement map by ξ: = ξh = ξtail = {1},
and leaves the set of rules unmodified. Termination of the resulting (unsorted)
context-sensitive TRS is proved automatically by AProVE, and hence Rfib is
productive by Theorem 7.6.

8. Matrix Interpretations for Proving Context-Sensitive Termination

In the previous sections we have shown how productivity can be transformed
to context-sensitive termination. Here we propose a generalization of matrix
interpretations [22, 15] for proving termination of context-sensitive rewriting:
we drop the positivity requirement for the upper-left matrix entries for argument
positions where rewriting is disallowed. Despite the simplicity of this idea, the
method turns out to be efficient for proving termination of context-sensitive
rewriting, even without the use of advanced techniques like context-sensitive
dependency pairs [20, 1].

In this section we treat only unsorted (context-sensitive) TRSs.

Definition 8.1. A ξ-monotone Σ-algebra 〈A, [[·]],�〉 is a Σ-algebra 〈A, [[·]]〉 and
a binary relation � on A such that for every f ∈ Σ of arity n the function [[f]] is
ξ-monotone with respect to �, that is:

ai � bi =⇒ [[f]](a1, . . . , an) � [[f]](b1, . . . , bn)

for every i ∈ ξf .
A monotone Σ-algebra 〈A, [[·]],�〉 is called well-founded if � is well-founded.

In [51] it has been shown that context-sensitive termination can be charac-
terized by interpretations in ξ-monotone Σ-algebras:
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Theorem 8.2. Let 〈R, ξ〉 be a context-sensitive TRS over Σ. Then SN(R) holds
if and only if there exists a well-founded ξ-monotone Σ-algebra A = 〈A, [[·]],�〉
such that � is a model for R.

Following [15] we generalize this theorem to relative termination as follows.

Definition 8.3. An extended well-founded ξ-monotone Σ-algebra 〈A, [[·]],�,w〉
consists of ξ-monotone Σ-algebras 〈A, [[·]],�〉 and 〈A, [[·]],w〉 such that SN(�/w).

Theorem 8.4. Let R1, R2 be compatible context-sensitive TRSs over Σ. Then
SN(R1/R2) holds if and only if there is an extended well-founded ξ-monotone
Σ-algebra A = 〈A, [[·]],�,w〉 such that � is a model for R1, and w is a model
for R2.

Proof. Straightforward extension of the proof of [15] to context-sensitive rewrit-
ing.

We can employ the theorem for stepwise removal of rules, as follows:

Corollary 8.5. Let R1 and R2 be compatible context-sensitive TRSs over Σ.
Assume that A = 〈A, [[·]],�,w〉 is an extended well-founded monotone Σ-algebra
such that

(i) � is a model for T ⊆ R1 ∪R2,

(ii) w is a model for (R1 ∪R2) \ T .

Then SN((R1 \ T )/(R2 \ T )) implies SN(R1/R2).

As an instance of this general framework, we extend matrix interpreta-
tions [15] to context-sensitive rewriting. The idea is simple: for argument po-
sitions where rewriting is forbidden, we no longer require that the upper-left
element of the matrix is positive.

Definition 8.6. Let 〈R, ξ〉 be a context-sensitive TRS over the signature Σ. A
context-sensitive matrix interpretation is a tuple 〈A, [[·]],�,w〉 where:

– The carrier A = Nd is a vector space of dimension d ∈ N on which binary
relations � and w are defined as follows:

(a1, . . . , ad)
T � (b1, . . . , bd)

T ⇐⇒ a1 > b1 ∧ a2 ≥ b2 ∧ . . . ∧ an ≥ bn
(a1, . . . , ad)

T w (b1, . . . , bd)
T ⇐⇒ a1 ≥ b1 ∧ a2 ≥ b2 ∧ . . . ∧ an ≥ bn

– For every symbol f ∈ Σ of arity n, [[f]] is an affine interpretation:

[[f]](v1, . . . ,vn) = M f
1v1 + . . .+M f

nvn + vf

where M f
1, . . . , M f

n ∈ Nd×d are matrices, and vf ∈ Nd is a vector such
that the upper-left element of M f

i is positive for every i ∈ ξf . Note that
v1, . . . ,vn range over vectors in Nd.
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Theorem 8.7. A context-sensitive matrix interpretation 〈A, [[·]],�,w〉 is an
extended well-founded ξ-monotone Σ-algebra.

Proof. Monotonicity with respect to w is immediate. The ξ-monotonicity with
respect to � follows from the requirement that the upper-left entries of matrices
M f
i are positive for every i ∈ ξf . Finally, SN(�/w) is trivial.

Let 〈A, [[·]],�,w〉 be a matrix interpretation. For the applicability of Theo-
rem 8.4 and Corollary 8.5 we need to determine whether � or w are a model
for some rule ` → r ∈ R1 ∪ R2. As the interpretation of every symbol is an
affine transformation, the interpretations [[`, α]] and [[r, α]] are affine transforma-
tions again. Let Var(`) = {x1, . . . , xk} for some k ∈ N. Then we can compute
matrices L1, . . . , Lk, R1, . . . , Rk, and vectors `, r such that:

[[`, α]] = L1α(x1) + . . .+ Lkα(xk) + `

[[r, α]] = R1α(x1) + . . .+Rkα(xk) + r

For matrices M,N ∈ Nd×d we write M w N if Mi,j ≥ Ni,j for all 1 ≤ i, j ≤ d.
The following is Lemma 1 from [15], rendered in our terminology:

Proposition 8.8 ([15, Lemma 1]). Let 〈A, [[·]],�,w〉 be a matrix interpretation,
`→ r a rewrite rule, and L1, . . . , Lk, R1, . . . , Rk, `, r as described above. Then:

(i) � is a model for `→ r if and only if

Li w Ri for every 1 ≤ i ≤ k and ` � r

(ii) w is a model for `→ r if and only if

Li w Ri for every 1 ≤ i ≤ k and ` w r

Thus in order to remove rules, we have to find a matrix interpretation such
that for all rules ` → r, the interpretation [[`]] of ` is component-wise ≥ than
the interpretation [[r]] of r. Then we remove the strictly decreasing rules, that
is, rules for which the first component of the vector is decreasing ` � r.

Example 8.9. We consider the context-sensitive TRS:

f(f(x))→ f(g(f(f(x))))

where the replacement map is given by: ξf = ∅ and ξg = {1}. Termination of
this system is obvious. However, proving termination using a direct decreasing
interpretation (without transforming the system) is not entirely trivial. First,
observe that the left-hand side is a subterm of the right-hand side. Hence the
context f(g(2)) in the right-hand side has to make the interpretation smaller.
Rewriting within g is allowed, thus its interpretation [[g]] must be strictly mono-
tonic. As a consequence, we have to make the interpretation [[f]] of f weakly
monotonic. However, multiplying the argument with 0 is not possible as then
the left-hand side and the right-hand side will have equal interpretations.
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A solution using context-sensitive matrix interpretations then is as follows:

[[f]](x) =
(

0 1
0 0

)
· x+

(
0
1

)
[[g]](x) =

(
1 0
0 0

)
· x+

(
0
0

)
Note that [[f]] is indeed weakly monotonic as the upper-left matrix element is 0.
The interpretation of the rewrite rule is as follows:

[[f(f(x))]] =
(

0 0
0 0

)
· x+

(
1
1

)
>
(

0 0
0 0

)
· x+

(
0
1

)
= [[f(g(f(f(x))))]]

This interpretation is component-wise ≥ and there is a strict decrease in the
first component of the vector. Hence we conclude termination of the system R
by Theorem 8.4.

Despite the triviality of the idea, context-sensitive matrix interpretations
are very effective in practice. Apart from rewriting right-hand sides, this tech-
nique is the only context-sensitive termination method implemented in Jam-
box. To prove termination of a context-sensitive TRS, Jambox first applies the
context-sensitive matrix method to remove a few rules, and then forgets about
the replacement map and continues by proving standard termination for the re-
maining rules. In particular, Jambox does not make use of the advanced method
for context-sensitive termination like context-sensitive dependency pairs [20, 1].
Nevertheless, Jambox scored first in proving outermost termination in the ter-
mination competition 2008 [44] (based on a transformation from outermost to
context-sensitive rewriting [13, 14]), and performed respectably in the compe-
tition for context-sensitive termination 2009: Jambox proved 28 system termi-
nating; the winners AProVE and mu-Term both scored 34.

9. Related Work

9.1. Data-Oblivious Productivity.

Since Dijkstra [6] coined the name ‘productivity’ there have been several pa-
pers [48, 41, 24, 42, 4, 11, 12] on defining sufficient criteria for proving productiv-
ity. In [9] the methods of [11, 12] are extended, resulting in a decision algorithm
for data-oblivious productivity of certain formats of stream specifications. For
the pure stream format defined in [11, 12] and extended in [9], data-oblivious
productivity coincides with productivity. The term ‘data-oblivious’ refers to
a purely quantitative analysis, where the concrete values of data elements are
ignored—productivity for the color-blind, as it were.

All aforementioned methods for analyzing productivity are data-oblivious,
The method of [9] is the only one that is data-obliviously optimal for a large class
of stream specifications. This means that in order to improve on the algorithm
one has to proceed in a data-aware fashion.

To see the limitations of a data-oblivious analysis, note that the term a in
the TRS Ra above is not data-obliviously productive; if one cannot distinguish
0 from 1, it is not sure whether a produces ever more elements.
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9.2. Data-Aware Productivity via Outermost Termination.

The first ‘data-aware’ method (i.e., one that does take into account the
identity of data) for proving productivity of stream specifications was presented
in [54]. The main theorem of [54] states that a stream specification R is pro-
ductive if and only if R extended with the following rule is terminating with
respect to ‘balanced outermost’ rewriting:

x : σ → overflow

where overflow is a fresh symbol. A balanced outermost rewrite sequence is
an outermost-fair rewrite sequence which contracts only outermost redexes. A
rewrite sequence t0 → t1 → . . . is called outermost-fair [43] if there is no tn
containing an outermost redex which remains an outermost redex infinitely long,
that is, which is never contracted.

The idea is that the overflow-rule in combination with the strategy of outer-
most rewriting prohibits rewriting below the stream constructor symbol ‘:’ and
thereby introduces a form of lazy evaluation. Unfortunately, the completeness
part of the main theorem of [54] turns out to be wrong:

Example 9.1. The following tree specification R forms a counterexample to
Theorem 4 of [54]: R = 〈Σ, R〉 is (µ ∪ ν)-sorted with µ = {N} and ν = {S}.
The symbols 0, : ∈ ΣC and b, zeros, f ∈ ΣD are typed as follows:

0 :: N : :: N× S→ S b, zeros :: S f :: S× S× S→ S

We let the set R consist of the following rules:

b→ f(zeros, zeros, b)

zeros→ 0 : zeros

f(x : σ, y : τ, γ)→ x : y : f(σ, τ, γ)

This system extended with the rule x : σ → overflow admits the following bal-
anced outermost rewrite sequence:

b→ f(zeros, zeros, b)

→ f(0 : zeros, zeros, b)

→ f(overflow, zeros, b)

→ f(overflow, 0 : zeros, b)

→ f(overflow, overflow, b)

→ . . .

Hence the extended system is not balanced outermost terminating althoughR is
productive, establishing a counterexample to completeness of Theorem 4 of [54].

The problem is not that the stream function symbol f simultaneously con-
sumes from two arguments; by introducing one auxiliary symbol and rule, we
can construct a similar example where each function consumes exactly from one
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argument. The problem is that rewriting in all coinductive arguments, including
those not consumed from, is allowed.

The transformation from Definition 6.1 solves this problem by using context-
sensitive rewriting to disallow rewriting in exactly those arguments (i 6∈ If).
The replacement map ξ is defined by ξf = {1, 2}, and ξ: = ∅. Without this
restriction the system is not terminating. Note that the transformed system
T (R) = 〈R, ξ〉 contains no -rules; all data symbols are constants (0) and
hence data-finiteness is guaranteed.

In [39], [45] and [13, 14] transformations from outermost termination to stan-
dard, innermost and context-sensitive termination are presented, respectively.
The combination of [54] with these approaches results in a method for proving
data-aware productivity automatically. In [55], Zantema and Raffelsieper ex-
tract the essence of the combination of [54] and [13] and propose a simplified
direct transformation.

9.3. Data-Aware Productivity via Context-Sensitive Termination.

The work [55] introduces an elegant, direct transformation from productivity
to context-sensitive termination. However, in contrast to our transformation, it
is not complete:

Example 9.2. The following specification is given in [55] to illustrate the lim-
itations of their transformation to context-sensitive rewriting:

p→ zip(alt, p)

alt→ 0 : 1 : alt

zip(x : σ, τ)→ x : zip(τ, σ)

The context-sensitive TRS resulting from the transformation in [55] allows
rewriting in all coinductive arguments of defined symbols (hence also in the
second argument of zip), the first rule admits an infinite rewrite sequence by
unfolding the constant p repeatedly.

In [55] this specification is used to show the need of preprocessing specifi-
cations by rewriting right-hand sides. Our transformation does not need this
extra preprocessing, and proves productivity directly by forbidding rewriting
in the second argument of the symbol zip. Nevertheless, rewriting right-hand
sides may simplify termination proofs, also in combination with the methods
proposed here.

9.4. Comparison of Input Formats.

In [52, 53], Zantema defines ‘proper’ stream specifications. These are similar
to shallow tree specifications, but differ in two aspects:

(i) In a ‘proper’ specification, the defining rules of a function symbol are not
required to consume from the same arguments. Giving up on complete-
ness of the transformation in Definition 6.1, the format of shallow tree
specifications can be extended in this direction; see further Remark 3.15.
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(ii) Unlike the shallow format, the ‘proper’ stream format requires the data-
layer to be independent (see Definition 7.1); functions from codata to data,
like head(x :σ)→ x, are excluded. Employing this restriction, the ‘proper’
format allows for arbitrary pattern matching on data (not just one deep).

The format of semi-shallow tree specifications, investigated in Section 7, is even
closer to ‘proper’ specifications: the formats differ only in aspect (i).

We emphasize that restriction (i) of shallow tree specifications hardly influ-
ences the applicability of the method. Specifications of infinite data structures
are typically strongly sequential, and hence can be transformed into the shallow
format.

In [52, 53] it is claimed without proof that every pure specification [9] can
be transformed (‘unfolded’) into a ‘proper’ one. The following (non-strongly
sequential) specification forms a counterexample to this claim:

h( a : σ, b : τ, γ) → γ

h( σ, a : τ, b : γ) → σ

h( b : σ, τ, a : γ) → τ

h( a : σ, a : τ, a : γ) → γ

h( b : σ, b : τ, b : γ) → τ

This function specification is a valid stream specification in the format of [9] (it
is orthogonal, exhaustive and a constructor rewrite system). The first step of
the transformation of [52, 53] (of ‘unfolding’ a specification into a ‘proper’ one)
results in the following intermediate system:

h( x : σ, τ, γ ) → g(x, σ, τ, γ)

g( a, σ, b : τ, γ) → γ

h( σ, a : τ, b : γ ) → σ

g( b, σ, τ, a : γ) → τ

g( a, σ, a : τ, a : γ) → γ

g( b, σ, b : τ, b : γ) → τ

The problem is that non-orthogonality is introduced (the rules for h overlap),
and so the transformation does not yield a ‘proper’ stream specification (the
non-orthogonality remains in the further ‘unfolding’ steps).

Moreover, there is no hope of repairing this shortcoming. The above system
cannot be transformed into the ‘proper’ stream format. Let us briefly elaborate
on this fact. For every argument of h, there is one defining rule that does not
consume from this argument. As a consequence, it is a priori not clear which
argument needs to be evaluated to a term with a constructor at the root. Since
in a ‘proper’ stream specification pattern matching on streams is allowed only
one symbol deep, we can only match against the stream constructor ‘:’. For
that reason it is impossible to distinguish the three different cases: either one
fixes an evaluation order on the arguments, or one loses orthogonality.
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Hence, contrary to the claim in [52, 53], their ‘unfolding’ transformation
does not work for all specifications. Only strongly sequential specifications can
be ‘unfolded’ to ‘proper’ specifications. However, even for strongly sequential
specifications, the ‘unfolding’ transformation needs to be adapted: in order to
avoid overlap, the order in which the arguments are unfolded is important. For
example, consider the left-hand sides f(x :y :σ, a :τ) and f(σ, b :τ). Then, ‘unfold-
ing’ the first argument would introduce an overlap again. Our transformation
of turning non-shallow into shallow specifications given in Definition 5.1, deals
with this problem by unfolding only those arguments that every defining rule
consumes from.

We remark that the ‘proper’ format defined in [55] is slightly more general,
allowing pattern matching on data even below a stream constructor. Neverthe-
less, the general problem remains, and a similar counterexample can be given.
In particular, it is not hard to construct (non-strongly sequential) specifications
which can automatically be proven productive by the method of [9], but are out
of the scope of [52, 53, 55] as well as of the current paper. For example, consider
the following, rather artificial, stream specification:

W→ a : b : g(W,W,W)

g( x : a : σ, b : τ, γ) → a : g(b : σ, τ, γ)

g( σ, a : τ, b : γ) → a : g(τ, γ, σ)

g( x : b : σ, τ, a : γ) → b : b : a : g(τ, τ, τ)

g( x : a : σ, a : τ, a : γ) → a : b : g(σ, τ, γ)

g( x : b : σ, b : τ, b : γ) → x : x : x : g(σ, τ, γ)

This specification cannot be transformed into the format of [52, 53, 55]. How-
ever, productivity of W is proved automatically by the tool of [9].

9.5. Lazy Evaluation.

Lazy evaluation has been introduced in [16] using graph rewriting. In [34]
Lucas presents a transformation from lazy evaluation to context-sensitive rewrit-
ing based on an extension of the rewrite system with so-called activation rules.
In [40] Schernhammer and Gramlich improve this transformation to make it
complete with respect to termination.

There are several differences with the transformation proposed by us. First,
our transformation proceeds in several simple steps: (i) from lazy rewriting of
R to a strongly sequential R′ (Section 4), (ii) to a shallow specification Ξ(R′)
(Section 5), and finally (iii) to a context-sensitive rewrite system T(Ξ(R′))
(Section 6). We think our transformation is easier to understand and implement.

Second, we sketch a transformation that works for every deterministic lazy
evaluation strategy. The works [34, 40] restrict themselves to a particular non-
deterministic lazy evaluation strategy, that is, the strategy allows freedom (non-
determinism) in the order of evaluation of arguments. For the termination
behavior, non-determinism can only have a negative impact as it allows for
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‘choosing the worst case’. For example, consider the specification:

non→ f(g, non) f(a, x)→ a

g→ a f(b, b)→ b

f(b, a)→ b

The term non is non-terminating with respect to the strategy from [34, 40] as the
activation relation allows for activating the first as well as the second argument
of f (activating the second argument leads to non-termination). If we replace
the rule non→ f(g, non) by:

non→ f(g, f(non, g)) ,

then we even obtain a system where every deterministic lazy evaluation strategy
is terminating. On the other hand, the non-deterministic strategy from [34, 40]
leads to non-termination. For this reason deterministic strategies are clearly
preferable.

The term ‘lazy evaluation’ usually refers to evaluation strategies such as
those used in functional programming languages such as Haskell and Clean.
These languages employ deterministic evaluation strategies, and hence, apart
from their higher-order nature, are in the scope of the transformation described
in Section 4. In Haskell and Clean, the above specification would be terminating.

9.6. Context-Sensitive Matrix Interpretations

In Section 8 we present an extension of matrix interpretations [22, 15] to
context-sensitive termination. A similar extension has been proposed in [2]
where matrices over real coefficients are considered. We argue that its sim-
plicity is what makes our proposal interesting. As an historical note we want
to mention that Jambox was the first tool to use context-sensitive matrix in-
terpretations, namely in the Termination Competition of 2008 [44] in the cat-
egory of Outermost Termination, using the transformation from outermost to
context-sensitive rewriting from our paper [14]. The context-sensitive termina-
tion method employed by Jambox in this competition is described in Section 8.

10. Conclusion

We defined tree specifications as sorted, exhaustive, orthogonal constructor-
based TRSs and have presented a transformation from strongly sequential [23]
tree specifications R to context-sensitive TRSs T (Ξ(R)) such that R is pro-
ductive if and only if T (Ξ(R)) is terminating (Theorems 5.5 and 6.6). Here,
the transformation Ξ is an intermediate step from strongly sequential to shallow
tree specifications, where pattern matching is only one constructor symbol deep.

This is the first complete transformation from productivity to termina-
tion. Moreover we have extended the input format with respect to existing
formats [55]. Strongly sequential tree specifications allow data functions to
carry codata arguments.
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We argued that first-order Haskell programs can be viewed as strongly se-
quential rewrite systems. Future work should investigate as to how far our
method can be generalized to productivity and termination analysis of higher-
order programs. In particular, we envisage improving the existing Haskell termi-
nation analysis [18] using the method proposed here to more adequately model
lazy evaluation.

Acknowledgements. We thank Aart Middeldorp, Hans Zantema and the anony-
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and fruitful discussions on its topic.
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