
Data-Oblivious Stream Productivity

Jörg Endrullis1, Clemens Grabmayer2, and Dimitri Hendriks1

1 Vrije Universiteit Amsterdam, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

joerg@few.vu.nl diem@cs.vu.nl
2 Universiteit Utrecht, Department of Philosophy

Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
clemens@phil.uu.nl

Abstract. We are concerned with demonstrating productivity of spec-
ifications of infinite streams of data, based on orthogonal rewrite rules.
In general, this property is undecidable, but for restricted formats com-
putable sufficient conditions can be obtained. The usual analysis, also
adopted here, disregards the identity of data, thus leading to approaches
that we call data-oblivious. We present a method that is provably opti-
mal among all such data-oblivious approaches. This means that in order
to improve on our algorithm one has to proceed in a data-aware fashion.3

1 Introduction

For programming with infinite structures, productivity is what termination is for
programming with finite structures. Productivity captures the intuitive notion of
unlimited progress, of ‘working’ programs producing defined values indefinitely.
In functional languages, usage of infinite structures is common practice. For
the correctness of programs dealing with such structures one must guarantee
that every finite part of the infinite structure can be evaluated, that is, the
specification of the infinite structure must be productive.

da
ta
-o
bl
iv
io
us
ly

re
co
gn
iz
ab
le

pu
re

F
¬F

P
¬P

P = productive

F = flat

Our contribution:
= automated

recognition
= decision

Fig. 1: Map of stream specifications

We investigate this notion for
stream specifications, formalized as
orthogonal term rewriting systems.
Common to all previous approaches
for recognizing productivity is a quan-
titative analysis that abstracts away
from the concrete values of stream
elements. We formalize this by a
notion of ‘data-oblivious’ rewriting,
and introduce the concept of data-
oblivious productivity. Data-oblivious
(non-)productivity implies (non-)productivity, but neither of the converse im-
plications holds. Fig. 1 shows a Venn diagram of stream specifications, high-
lighting the subset of ‘data-obliviously recognizable’ specifications where (non-)

3 This research has been partially funded by the Netherlands Organisation for Scien-
tific Research (NWO) under FOCUS/BRICKS grant number 642.000.502.

2 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

productivity can be recognized by a data-oblivious analysis.
We identify two syntactical classes of stream specifications: ‘flat’ and ‘pure’

specifications, see the description below. For the first we devise a decision algo-
rithm for data-oblivious (d-o) productivity. This gives rise to a computable, d-o
optimal, criterion for productivity: every flat stream specification that can be es-
tablished to be productive by whatever d-o argument is recognized as productive
by this criterion (see Fig. 1). For the subclass of pure specifications, we establish
that d-o productivity coincides with productivity, and thereby obtain a decision
algorithm for productivity of this class. Additionally, we extend our criterion
beyond the class of flat stream specifications, allowing for ‘friendly nesting’ in
the specification of stream functions; here d-o optimality is not preserved.

In defining the different formats of stream specifications, we distinguish be-
tween rules for stream constants, and rules for stream functions. Only the latter
are subjected to syntactic restrictions. In flat stream specifications the defining
rules for the stream functions do not have nesting of stream function symbols;
however, in defining rules for stream constants nesting of stream function sym-
bols is allowed. This format makes use of exhaustive pattern matching on data
to define stream functions, allowing for multiple defining rules for an individ-
ual stream function symbol. Since the quantitative consumption/production be-
haviour of a symbol f might differ among its defining rules, in a d-o analysis one
has to settle for the use of lower bounds when trying to recognize productivity.
If for all stream function symbols f in a flat specification T the defining rules for
f coincide, disregarding the identity of data-elements, then T is called pure.

Our decision algorithm for d-o productivity determines the tight d-o lower
bound on the production behaviour of every stream function, and uses these
bounds to calculate the d-o production of stream constants. We briefly explain
both aspects. Consider the stream specification A → 0 : f(A) together with the
rules f(0 : σ) → 1 : 0 : 1 : f(σ), and f(1 : σ) → 0 : f(σ), defining the stream
0 : 1 : 0 : 1 : . . . of alternating bits. The tight d-o lower bound for f is the function
id : n 7→ n. Further note that suc: n 7→ n+1 captures the quantitative behaviour
of the function prepending a data element to a stream term. Therefore the d-o
production of A can be computed as lfp(suc ◦ id) = ∞, where lfp(f) is the
least fixed point of f : N → N and N := N ∪ {∞}; hence A is productive. As
a comparison, only a ‘data-aware’ approach is able to establish productivity of
B → 0 : g(B) with g(0 : σ) → 1 : 0 : g(σ), and g(1 : σ) → g(σ). The d-o lower
bound of g is n 7→ 0, due to the latter rule. This makes it impossible for any
conceivable d-o approach to recognize productivity of B.

We obtain the following results:

(i) For the class of flat stream specifications we give a computable, d-o optimal,
sufficient condition for productivity.

(ii) We show decidability of productivity for the class of pure stream specifica-
tions, an extension of the format in [3].

(iii) Disregarding d-o optimality, we extend (i) to the bigger class of friendly
nesting stream specifications.

(iv) A tool automating (i), (ii) and (iii), which can be downloaded from, and
used via a web interface at: http://infinity.few.vu.nl/productivity.

Data-Oblivious Stream Productivity 3

Related work. Previous approaches [6, 4, 7, 1] employed d-o reasoning (without
using this name for it) to find sufficient criteria ensuring productivity, but did
not aim at optimality. The d-o production behaviour of a stream function f
is bounded from below by a ‘modulus of production’ ν f : Nk → N with the
property that the first ν f(n1, . . . , nk) elements of f(t1, . . . , tk) can be computed
whenever the first ni elements of ti are defined. Sijtsma develops an approach
allowing arbitrary production moduli ν : Nk → N, which, while providing an
adequate mathematical description, are less amenable to automation. Telford
and Turner [7] employ production moduli of the form ν(n) = n+ a with a ∈ Z.
Hughes, Pareto and Sabry [4] use ν(n) = max{c·x+d | x ∈ N, n ≥ a·x+b}∪{0}
with a, b, c, d ∈ N. Both classes of production moduli are strictly contained in
the class of ‘periodically increasing’ functions which we employ in our analysis.
We show that the set of d-o lower bounds of flat stream function specifications is
exactly the set of periodically increasing functions. Buchholz [1] presents a type
system for productivity, using unrestricted production moduli. For a restricted
subclass he gives an automatable method for ensuring productivity, but this
excludes the use of stream functions with a negative effect like odd defined by
odd(x :y :σ)→ y :odd(σ) with a (periodically increasing) modulus νodd(n) = bn2 c.

Overview. In Sec. 2 we define the notion of stream specification, and the syntactic
format of flat and pure specifications. In Sec. 3 we formalize the notion of d-o
rewriting. In Sec. 4 we introduce a production calculus as a means to compute
the production of the data-abstracted stream specifications, based on the set
of periodically increasing functions. A translation of stream specifications into
production terms is defined in Sec. 5. Our main results, mentioned above, are
collected in Sec. 6. We conclude and discuss some future research topics in Sec. 7.

2 Stream Specifications

We introduce the notion of stream specification. An example is given in Fig. 2,

P→ 0 : s(0) : f(P)

f(s(x) : y : σ)→ a(s(x), y) : f(y : σ)

f(0 : σ)→ 0 : s(0) : f(σ)

a(s(x), y)→ s(a(x, y))

a(0, y)→ y

Fig. 2: A flat stream specification.

a productive specification of Pascal’s
triangle where the rows are separated
by zeros. Indeed, evaluating this speci-
fication, we get: P �� 0 : 1 : 0 : 1 : 1 : 0 :
1 : 2 : 1 : 0 : 1 : 3 : 3 : 1 :
We define stream specifications to con-
sist of a stream layer (top) where stream
constants and functions are specified,
and a data layer (bottom) such that the

stream layer may use symbols of the data layer, but not vice-versa. Thus, the
data layer is a term rewriting system on its own. In order to abstract from the
termination problem when investigating productivity, we require the data layer
to be strongly normalizing. Let us explain the reason for this hierarchical setup.
Stream dependent data symbols (whose defining rules do contain stream sym-
bols), like head(x : σ)→ x, might cause the output of undefined data terms. Let
σ(n) := head(tailn(σ)), and consider the following bitstream specifications:

4 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

S→ 0 : S(2) : S T→ 0 : T(3) : T ,

taken from [6]. Here we have that S(n)→∗ S(n− 2) for all n ≥ 2, and S(1)→∗
S(2), and hence S�� 0 : 0 : 0 : . . ., producing the infinite stream of zeros. On the
other hand, the evaluation of each data term T(2n + 1) eventually ends up in
the loop T(3)→∗ T(1)→∗ T(3)→∗ Hence we have that T�� 0 : ? : 0 : ? : . . .
(where ? stands for ‘undefined’) and T is not productive.

Such examples, where the evaluation of stream elements needs to be delayed
to wait for ‘future information’, can only be productive using a lazy evaluation
strategy like in the programming language Haskell. Productivity of specifica-
tions like these is adequately analyzed using the concept of ‘set productivity’
in [6]. A natural first step is to study its proper subclass called ‘segment pro-
ductivity’, where well-definedness of one element requires well-definedness of
all previous ones. The restriction to this subclass is achieved by disallowing
stream dependent data functions. While conceptually more general, in practice
stream dependent data functions usually can be replaced by pattern matching:
add(σ, τ)→ (head(σ)+head(τ)):add(tail(σ), tail(τ)), for example, can be replaced
by the better readable add(x : σ, y : τ)→ (x+ y) : add(σ, τ).

Stream specifications are formalized as many-sorted, orthogonal, constructor
term rewriting systems [8]. We distinguish between stream terms and data terms.
For the sake of simplicity we consider only one sort S for stream terms and one
sort D for data terms. Without any complication, our results extend to stream
specifications with multiple sorts for data terms and for stream terms.

Let U be a finite set of sorts. A U-sorted set A is a family of sets {Au}u∈U ;
for V ⊆ U we define AV :=

⋃
v∈V Av. A U-sorted signature Σ is a U-sorted set of

function symbols f , each equipped with an arity ar(f) = 〈u1 · · ·un, u〉 ∈ U∗ × U
where u is the sort of f ; we write u1 × . . .× un → u for 〈u1 · · ·un, u〉. Let X be
a U-sorted set of variables. The U-sorted set of terms Term(Σ,X) is inductively
defined by: for all u ∈ U , Xu ⊆ Term(Σ,X)u, and f(t1, . . . , tn) ∈ Term(Σ,X)u
if f ∈ Σ, ar(f) = u1 × . . . × un → u, and ti ∈ Term(Σ,X)ui . Term∞(Σ,X)
denotes the set of (possibly) infinite terms over Σ and X (see [8]). Usually we
keep the set of variables implicit and write Term(Σ) and Term∞(Σ). A U-sorted
term rewriting system (TRS) is a pair 〈Σ,R〉 consisting of a U -sorted signature
Σ and a U-sorted set R of rules that satisfy well-sortedness, for all u ∈ U :
Ru ⊆ Term(Σ,X)u ×Term(Σ,X)u, as well as the standard TRS requirements.

Let T = 〈Σ,R〉 be a U-sorted TRS. For a term t ∈ Term(Σ)u where u ∈ U we
denote the root symbol of t by root(t). We say that two occurrences of symbols
in a term are nested if the position [8, p.29] of one is a prefix of the position of the
other. We define D(Σ) := {root(l) | l → r ∈ R}, the set of defined symbols, and
C(Σ) := Σ \D(Σ), the set of constructor symbols. Then T is called a constructor
TRS if for every rewrite rule ρ ∈ R, the left-hand side is of the form f(t1, . . . , tn)
with ti ∈ Term(C(Σ)); then ρ is called a defining rule for f . We call T exhaustive
for f ∈ Σ if every term f(t1, . . . , tn) with (possibly infinite) closed constructor
terms ti is a redex. Note that, stream constructor terms are inherently infinite.

A stream TRS is a finite {S ,D}-sorted, orthogonal, constructor TRS 〈Σ,R〉
such that ‘:’ ∈ ΣS , the stream constructor symbol, with arity D × S → S is the

Data-Oblivious Stream Productivity 5

single constructor symbol in ΣS . Elements of ΣD and ΣS are called the data
symbols and the stream symbols, respectively. We let Σ−S := ΣS \ {‘:’}, and, for
all f ∈ Σ−S , we assume, without loss of generality, that the stream arguments are
in front: ar(f) ∈ S ars(f)×Dard (f) → S , where ars(f) and ard(f) ∈ N are called the
stream arity and the data arity of f, respectively. By Σscon we denote the set
of symbols in Σ−S with stream arity 0, called the stream constant symbols, and
Σsfun := Σ−S \ Σscon the set of symbols in Σ−S with stream arity unequal to 0,
called the stream function symbols. Note that stream constants may have a data
arity > 0 as for example in: natsFrom(n)→ n : natsFrom(s(n)). Finally, by Rscon

we mean the defining rules for the symbols in Σscon .

Definition 2.1. A stream specification T is a stream TRS T = 〈Σ,R〉 such
that the following conditions hold:

(i) There is a designated symbol M0 ∈ Σscon with ard(M0) = 0, the root of T .
(ii) 〈ΣD , RD〉 is a terminating, D-sorted TRS; RD is called the data layer of T .
(iii) T is exhaustive (for all defined symbols in Σ = ΣS]ΣD).

Note that Def. 2.1 indeed imposes a hierarchical setup; in particular, stream
dependent data functions are excluded by item (ii). Exhaustivity for ΣD together
with strong normalization of RD guarantees that closed data terms rewrite to
constructor normal forms, a property known as sufficient completeness [5].

We are interested in productivity of recursive stream specifications that make
use of a library of ‘manageable’ stream functions. By this we mean a class of
stream functions defined by a syntactic format with the property that their d-o
lower bounds are computable and contained in a set of production moduli that
is effectively closed under composition, pointwise infimum and where least fixed
points can be computed. As such a format we define the class of flat stream
specifications (Def. 2.2) for which d-o lower bounds are precisely the set of ‘pe-
riodically increasing’ functions (see Sec. 4). Thus only the stream function rules
are subject to syntactic restrictions. No condition other than well-sortedness is
imposed on the defining rules of stream constant symbols.

In the sequel let T = 〈Σ,R〉 be a stream specification. We define the relation
; on rules in RS : for all ρ1, ρ2 ∈ RS , ρ1 ; ρ2 (ρ1 depends on ρ2) holds if and
only if ρ2 is the defining rule of a stream function symbol on the right-hand
side of ρ1. Furthermore, for a binary relation → ⊆ A × A on a set A we define
(a →) := {b ∈ A | a → b} for all a ∈ A, and we denote by →+ and →∗ the
transitive closure and the reflexive–transitive closure of →, respectively.

Definition 2.2. A rule ρ ∈ RS is called nesting if its right-hand side contains
nested occurrences of stream symbols from Σ−S . We use Rnest to denote the
subset of nesting rules of R and define R¬nest := RS \ Rnest , the set of non-
nesting rules.

A rule ρ ∈ RS is called flat if all rules in (ρ ;∗) are non-nesting. A symbol
f ∈ Σ−S is called flat if all defining rules of f are flat; the set of flat symbols is
denoted Σflat . A stream specification T is called flat if Σ−S ⊆ Σflat ∪Σscon , that
is, all symbols in Σ−S are either flat or stream constant symbols.

See Fig. 2 and Ex. 5.5 for examples of flat stream specifications.

6 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

As the basis of d-o rewriting (see Def. 3.2) we define the data abstraction of
terms as the results of replacing all data-subterms by the symbol •.
Definition 2.3. Let LΣM := {•}] ΣS . For stream terms s ∈ Term(Σ)S , the
data abstraction LsM ∈ Term(LΣM)S is defined by:

LσM = σ Lu : sM = • : LsM Lf(s1, . . . , sn, u1, . . . , um)M = f(Ls1M, . . . , LsnM, •, . . . , •).
Based on this definition of data abstracted terms, we define the class of pure
stream specifications, an extension of the equally named class in [3].

Definition 2.4. A stream specification T is called pure if it is flat and if for
every symbol f ∈ Σ−S the data abstractions L`M→ LrM of the defining rules `→ r
of f coincide (modulo renaming of variables).

See Ex. 5.4 for an example of a pure stream function specification. Def. 2.4
generalizes the specifications called ‘pure’ in [3] in four ways concerning the
defining rules of stream functions: First, the requirement of right-linearity of
stream variables is dropped, allowing for rules like f(σ) → g(σ, σ). Second, ‘ad-
ditional supply’ to the stream arguments is allowed. For instance, in a rule like
diff(x : y : σ)→ xor(x, y) : diff(y : σ), the variable y is ‘supplied’ to the recursive
call of diff. Third, the use of non-productive stream functions is allowed now,
relaxing an earlier requirement of [3] on stream function symbols to be ‘weakly
guarded’, see Def. 5.1. Finally, defining rules for stream function symbols may
use a restricted form of pattern matching as long as, for every stream function f,
the d-o consumption/production behaviour (see Sec. 3) of all defining rules for
f is the same.

Definition 2.5. A rule ρ ∈ RS is called friendly if for all rules γ ∈ (ρ ;∗)
we have: (1) γ consumes in each argument at most one stream element, and
(2) it produces at least one. The set of friendly nesting rules Rfnest is the largest
extension of the set of friendly rules by non-nesting rules from RS that is closed
under ;. A symbol f ∈ Σ−S is friendly nesting if all defining rules of f are friendly
nesting. A stream specification T is called friendly nesting ifΣ−S ⊆ Σfnest∪Σscon ,
that is, all symbols in Σ−S are either friendly nesting or stream constant symbols.

Note that, in particular, every flat stream specification is friendly nesting.

Example 2.6. The rules X → 0 : f(X) and f(x : σ) → x : f(f(σ)) form a friendly
nesting stream specification with an empty data layer.

Definition 2.7. LetA = 〈Term(Σ)S ,→〉 be an abstract reduction system (ARS)
on the set of terms over a stream TRS signature Σ. The production function
ΠA : Term(Σ)S → N of A is defined for all s ∈ Term(Σ)S by:

ΠA(s) := sup {n ∈ N | s→∗A u1 : . . . : un : t } .

We call A productive for a stream term s if ΠA(s) =∞. A stream specification
T is called productive if T is productive for its root M0.

Note that in a stream specification T it holds (since T is an orthogonal rewriting
system) that if T is productive for a term s, then s rewrites in T to an infinite
constructor term u1 : u2 : u3 : . . . as its unique infinite normal form.

Data-Oblivious Stream Productivity 7

3 Data-Oblivious Analysis

We formalize the notion of d-o rewriting and introduce the concept of d-o pro-
ductivity. The idea is a quantitative reasoning where all knowledge about the
concrete values of data elements during an evaluation sequence is ignored. For
example, consider the following stream specification:

M→ f(0 : 1 : M) (1) f(0 : x : σ)→ 0 : 1 : f(σ) (2) f(1 : x : σ)→ x : f(σ)

The specification of M is productive: M→2 0:1:f(M)→3 0:1:0:1:f(f(M))→∗
During the rewrite sequence (2) is never applied. Disregarding the identity of
data, however, (2) becomes applicable and allows for the rewrite sequence:

M→ f(• : • : M)→(2) • : f(M)→∗ • : f(• : f(• : f(. . .))) ,

producing only one element. Hence from the perspective of a data-oblivious
analysis there exists a rewrite sequence starting at M that converges to an infinite
normal form which has only a stream prefix of length one. In terminology to be
introduced in Def. 3.2 we will say that M is not ‘d-o productive’.

D-o term rewriting can be thought of as a two-player game between a rewrite
player R which performs the usual term rewriting, and an opponent G which
before every rewrite step is allowed to arbitrarily exchange data elements for
(sort-respecting) data terms in constructor normal form. The opponent can ei-
ther handicap or support the rewrite player. Respectively, the d-o lower bound
on the production of a stream term s is the infimum of the production of s with
respect to all possible strategies for the opponent G.

M M

f(0 : 1 :M) f(1 : 0 :M)

0 : f(M) 0 : f(M)

0 : f(f(0 : 1 :M)) 0 : f(f(1 : 0 :M))

0 : f(0 : f(M)) . . .

G
R G

R G
R G

R G

Fig. 3: Data-oblivious rewriting

Fig. 3 depicts d-o rewriting of the above
stream specification M; by exchanging data
elements, the opponent G enforces the ap-
plication of (2). The opponent can be mod-
elled by an operation on stream terms,
a function from stream terms to stream
terms: Term(Σ)S → Term(Σ)S . For our
purposes it will be sufficient to consider

strategies for G with the property that G(s) is invariant under exchange of data
elements in s for all terms s (see Prop. 3.4 below for a formal statement).

Definition 3.1. Let T = 〈Σ,R〉 be a stream specification. A data-exchange
function on T is a function G : Term(Σ)S → Term(Σ)S such that LG(r)M = LrM
for all r ∈ Term(Σ)S , and G(r) is in closed data-constructor normal form.

Definition 3.2. We define the ARS AT,G ⊆ Term(Σ)S × Term(Σ)S for every
data-exchange function G, as follows:

AT,G := {〈s, t〉 | s, t ∈ Term(Σ), G(s)→T t} .

Thus the steps s→AT,G t in AT,G are those of the form s 7→ G(s)→T t.
The d-o lower bound doT (s) on the production of a stream term s ∈ Term(Σ)S

that is closed is defined as follows:

8 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

doT (s) := inf{ΠAT,G (s) | G a data-exchange function on T } (∗)
A stream specification T is d-o productive if doT (M0) =∞ holds.

Proposition 3.3. Let T = 〈Σ,R〉 be a stream specification. Then:

doT (s) ≤ ΠT (s) .

holds for all closed s ∈ Term(Σ)S . Hence d-o productivity implies productivity.

Proposition 3.4. The definition of the d-o lower bound doT (s) of a stream
term s in a stream specification T in Def. 3.2 does not change if the quantification
in (∗) is restricted to data-exchange functions G that factor as follows:

G : Term(Σ)
L·M−→ Term(LΣM) G•−→ Term(Σ) (for some function G•) (†)

(data-exchange functions that are invariant under exchange of data elements).

Proof (Sketch). It suffices to prove that, for every term s ∈ Term(Σ)S , and for
every data-exchange function G on T , there exists a data-exchange function G′
on T of the form (†) such that ΠAT,G′ (s) ≤ ΠAT,G (s). This can be shown by
adapting G in an infinite breadth-first traversal over R(s), the reduction graph
of s in AT,G , thereby defining G′ as follows: if for a currently traversed term s
there exists a previously traversed term s0 with Ls0M = LsM and G′(s0) 6= G(s),
then let G′(s) := G′(s0), otherwise let G′(s) := G(s). Then the set of terms of
the reduction graph R′(s) of s in AT,G′ is a subset of the terms in R′(s). ut

Let T be a stream definition. As an immediate consequence of this proposition
we obtain that, for all stream terms s1, s2 ∈ Term(Σ) in T , doT (s1) = doT (s2)
holds whenever Ls1M = Ls2M. This fact allows to define d-o lower bounds di-
rectly on the data-abstractions of terms: For every term s ∈ Term(LΣM), we let
doT (LsM) := doT (s) for an arbitrarily chosen s ∈ Term(Σ)S . In order to reason
about d-o productivity of stream constants (see Sec. 6), we now also introduce
lower bounds on the d-o consumption/production behaviour of stream functions.

Definition 3.5. Let T = 〈Σ,R〉 be a stream specification, g ∈ Σ−S , k = ars(g),
and ` = ard(g). The d-o lower bound doT (g) : Nk → N of g is:

doT (g)(n1, . . . , nk) := doT (g((•n1 : σ1), . . . , (•nk : σk), •, . . . , •︸ ︷︷ ︸
` times

)) ,

where •m : σ :=

m times︷ ︸︸ ︷• : . . . : • : σ.

Let T be a stream specification, and f ∈ Σsfun a unary stream function symbol.
By a d-o trace of f in T we mean, for a given data-exchange function G, and a
closed infinite stream term r of the form u0 :u1 :u2 : . . ., the production function
πρ : N → N of a rewrite sequence ρ : s0 = f(r) →AT,G s1 →AT,G s2 →AT,G . . .,
where πρ is defined as follows: for all n ∈ N, πρ(n) is the supremum of the lengths
of stream prefixes in those terms si until which during the steps of ρ less or equal
to n stream elements of r within s have been consumed; more precisely, πρ(n) is
the supremum of the number of leading ‘:’ symbols in terms si where i is such
that no descendent [8, p. 390] of the position of the (n+ 1)-th symbol ‘:’ in s0 is
in the pattern of a redex contracted during the first i steps of ρ.

Data-Oblivious Stream Productivity 9

As a consequence of the use of pattern matching on data in defining rules,
even simple stream function specifications can exhibit a complex d-o behaviour,
that is, possess large sets of d-o traces. Consider the specification h(0 : s)→ h(s)
and h(1 : s)→ 1 : h(s). Here n 7→ 0, and n 7→ n are d-o traces of h, as well as all
functions h : N→ N with the property ∀n ∈ N. 0 ≤ h(n+ 1)− h(n) ≤ 1. As an
example of a more complicated situation, consider the flat function specification:

input5 10 15

output

5

10

15

Fig. 4: Traces

f(σ)→ g(σ, σ)

g(0 : y : σ, x : τ)→ 0 : 0 : g(σ, τ)

g(1 : σ, x1 : x2 : x3 : x4 : τ)→ 0 : 0 : 0 : 0 : 0 : g(σ, τ)

Fig. 4 shows a (small) selection of the set of d-o traces
for f, in particular the d-o traces that contribute to
the d-o lower bound doT (f). In this example the lower
bound doT (f) is a superposition of multiple d-o traces
of f. In general doT (f) can even be a superposition of
infinitely many d-o traces.

4 The Production Calculus

As a means to compute the d-o production behaviour of stream specifications,
we introduce a ‘production calculus’ with periodically increasing functions as its
central ingredient.

We use N := N] {∞}, the extended natural numbers, with the usual ≤, +,
and we define ∞− n :=∞ for all n ∈ N, and ∞−∞ := 0.

An infinite sequence σ ∈ Xω is eventually periodic if σ = αβββ . . . for some
α ∈ X∗ and β ∈ X+. A function f : N→ N is eventually periodic if the sequence
〈f(0), f(1), f(2), . . .〉 is eventually periodic.

Definition 4.1. A function g : N → N is called periodically increasing if it
is non-decreasing and the derivative of g, n 7→ g(n + 1) − g(n), is eventually
periodic. A function h : N → N is called periodically increasing if its restric-
tion to N is periodically increasing and if h(∞) = limn→∞ h(n). Finally, a
k-ary function i : (N)k → N is called periodically increasing if i(n1, ..., nk) =
min(i1(n1), . . . , ik(nk)) for some unary periodically increasing functions i1, . . . , ik.

Periodically increasing (p-i) functions can be denoted by their value at 0
followed by a representation of their derivative. For example, 0312 denotes the
p-i function f : N → N with values 0, 3, 4, 6, 7, 9, We use a finer and more
flexible notation over the alphabet {−,+} that will be useful in Sec. 5. For
instance, we denote f as above by the ‘io-term’ 〈+0−+3,−+1−+2〉.
Definition 4.2. An io-term is a pair 〈α, β〉 with α ∈ {−,+}∗ and β ∈ {−,+}+.
The set of io-terms is denoted by I, and we use ι, κ to range over io-terms. For
ι ∈ I, we define JιK : N→ N, the interpretation of ι ∈ I, by:

J〈−α, β〉K(0) = 0 J〈+α, β〉K(n) = 1 + J〈α, β〉K(n)

J〈−α, β〉K(n+ 1) = J〈α, β〉K(n) J〈ε, β〉K(n) = J〈β, β〉K(n)

10 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

for all n ∈ N, and extend it to N → N by adding JιK(∞) = limn→∞ JιK(n). We
say that ι represents JιK. We use αβ as a shorthand for 〈α, β〉. Here ε denotes
the empty word and we stipulate J〈ε,+p〉K(n) = 1 + 1 + . . . =∞.

It is easy to verify that, for every ι ∈ I, the function JιK is periodically increasing.
Furthermore, every p-i function is represented by an io-term. Subsequently, we
write f for the shortest io-term representing a p-i function f : N→ N. Of course
we then have JfK = f for all p-i functions f .

Proposition 4.3. Unary periodically increasing functions are closed under com-
position and minimum.

In addition, these operations can be computed via io-term representations. In [2]
we define computable operations comp : I × I → I, and fix : I → N such that
for all ι, κ ∈ I: Jcomp(ι, κ)K = JιK ◦ JκK and fix(ι) is the least fixed point of JιK.

We introduce a term syntax for the production calculus and rewrite rules for
evaluating closed terms; these can be visualized by ‘pebbleflow nets’, see [3, 2].

Definition 4.4. Let X be a set. The set of production terms P is generated by:

p ::= k | x | f(p) | µx.p | min(p, p)

where x ∈ X , for k ∈ N, the symbol k is a numeral (a term representation) for
k, and, for a unary p-i function f : N → N, f ∈ I, the io-term representing f .
For every finite set P = {p1, . . . , pn} ⊆ P, we use min(p1, . . . , pn) and min P as
shorthands for the production term min(p1,min(p2, . . . ,min(pn−1, pn))).

The production JpK ∈ N of a closed production term p ∈ P is defined by
induction on the term structure, interpreting µ as the least fixed point operator,
f as f , k as k, and min as min.

For faithfully modelling the d-o lower bounds of stream functions with stream
arity r, we employ r-ary p-i functions, which we represent by r-ary gates. An
r-ary gate, abbreviated by gate(ι1, . . . , ιr), is a production term context of the
form min(ι1(21), . . . , ιr(2r)), where ι1, . . . , ιr ∈ I. We use γ as a syntactic vari-
able for gates. The interpretation of a gate γ = gate(ι1, . . . , ιr) is defined as
JγK(n1, . . . , nr) := min(Jι1K(n1), . . . , JιrK(nr)). It is possible to choose unique
gate representations f of p-i functions f that are efficiently computable from
other gate representations, see [2].

Owing to the restriction to (term representations of) periodically increasing
functions in Def. 4.4 it is possible to calculate the production JpK of terms p ∈ P.
For that purpose, we define a rewrite system which reduces any closed term to
a numeral k. This system makes use of the computable operations comp and fix
on io-terms mentioned above.

Definition 4.5. The rewrite relation →R on production terms is defined as the
compatible closure of the following rules:

ι1(ι2(p))→ comp(ι1, ι2)(p) ι(k)→ JιK(k)

ι(min(p1, p2))→ min(ι(p1), ι(p2)) µx.x→ 0

µx.min(p1, p2)→ min(µx.p1, µx.p2) µx.p→ p if x 6∈ FV(p)

Data-Oblivious Stream Productivity 11

µx.ι(x)→ fix(ι) min(k1, k2)→ min(k1, k2)

The following theorem establishes the usefulness of →R : the production JpK
of a production term p can always be computed by reducing p according to →R,
thereby obtaining a normal form that is a numeral after finitely many steps.

Theorem 4.6. The rewrite relation →R is confluent, terminating and produc-
tion preserving, that is, p →R p′ implies JpK = Jp′K. Every closed p ∈ P has a
numeral k as its unique →R-normal form, and it holds that JpK = k.

Proof. Termination of →R is straightforward to show. Confluence of →R follows
by Newman’s lemma since all critical pairs are convergent. For preservation of
production of →R it suffices to show this property for each of the rules. This is
not difficult, except for the third rule (that distributes µx over min) for which
preservation of production is an immediate consequence of Lem. 4.7 below, in
view of the fact that 〈N,≤〉 is a complete chain. ut

A complete lattice is a partially ordered set in which every subset has a least
upper bound and a greatest lower bound. A complete chain is a complete lattice
on which the order is linear. As a consequence of the Knaster–Tarski theorem
every order-preserving (non-decreasing) function f on a complete lattice has a
least fixed point lfp(f). We use ∧ for the infix infimum operation.

Lemma 4.7. Let 〈D,≤〉 be a complete chain. Then it holds that:

∀f, g : D → D non-decreasing. lfp(f ∧ g) = lfp(f) ∧ lfp(g) (◦)
Proof. Let 〈D,≤〉 be a complete chain, and let f, g : D → D be non-decreasing.
The inequality lfp(f ∧ g) ≤ lfp(f) ∧ lfp(g) follows easily by using that, for every
non-decreasing function h on D, lfp(h) is the infimum of all pre-fixed points of h,
that is, of all x ∈ D with h(x) ≤ x. For the converse inequality, let x := lfp(f∧g).
Since x = (f∧g)(x) = f(x)∧g(x), and D is linear, it follows that either f(x) = x
or g(x) = x, and hence that x is either a fixed point of f or of g. Hence x ≥ lfp(f)
or x ≥ lfp(g), and therefore lfp(f ∧ g) = x ≥ lfp(f) ∧ lfp(g). ut
We additionally mention that (◦) holds in a complete lattice only if it is linear.

5 Translation into Production Terms

In this section we define a translation from stream constants in flat or friendly
nesting specifications to production terms. In particular, the root M0 of a spec-
ification T is mapped by the translation to a production term [M0] with the
property that if T is flat (friendly nesting), then the d-o lower bound on the
production of M0 in T equals (is bounded from below by) the production of [M0].

5.1 Translation of Flat and Friendly Nesting Symbols

As a first step of the translation, we describe how for a flat (or friendly nesting)
stream function symbol f in a stream specification T a periodically increasing
function [f] can be calculated that is (that bounds from below) the d-o lower
bound on the production of f in T .

12 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

Let us again consider the rules (i) f(s(x) : y : σ) → a(s(x), y) : f(y : σ), and
(ii) f(0 : σ) → 0 : s(0) : f(σ) from Fig. 2. We model the d-o lower bound on the
production of f by a function from N to N defined as the unique solution for
Xf of the following system of equations. We disregard what the concrete stream
elements are, and therefore we take the infimum over all possible traces:

Xf(n) = inf
{
Xf,(i)(n), Xf,(ii)(n)

}
where the solutions for Xf,(i) and Xf,(ii) are the d-o lower bounds of f assuming
that the first rule applied in the rewrite sequence is (i) or (ii), respectively. The
rule (i) consumes two elements, produces one element and feeds one element
back to the recursive call. For rule (ii) these numbers are 1, 2, 0 respectively.
Therefore we get:

Xf,(i)(n) = let n′ := n− 2, if n′ < 0 then 0 else 1 +Xf(n
′ + 1) ,

Xf,(ii)(n) = let n′ := n− 1, if n′ < 0 then 0 else 2 +Xf(n
′ + 0) .

The unique solution for Xf is n 7→ n .− 1, represented by the io-term −−+.
In general, functions may have multiple arguments, which during rewriting

may get permuted, duplicated or deleted. The idea is to track single arguments,
and take the infimum over all branches in case an argument is duplicated.

For example, the rule zip(x : σ, τ) → x : zip(τ, σ) with a permutation of the
stream arguments, gives rise to the following specification:

Xzip,1(n) = let n′ := n− 1, if n′ < 0 then 0 else 1 +Xzip,2(n′)

Xzip,2(n) = let n′ := n− 0, if n′ < 0 then 0 else 1 +Xzip,1(n′) ,

and duplication of arguments like in the rule f(x : σ)→ g(σ, x : σ) yields:

Xf,1(n) = let n′ := n− 1, if n′ < 0 then 0 else inf
{
Xg,1(n′), Xg,2(1 + n′)

}
.

For a recursion variable X let 〈X〉 be the unique solution for X. The intuition
behind the recursion variables is as follows. Let f be a flat stream function symbol
with stream arity k. Then the solution 〈Xf〉 for Xf models the d-o lower bound
on the production of f, that is, 〈Xf〉 = doT (f). Furthermore, the variables Xf,i for
1 ≤ i ≤ k describe how the consumption from the i-th argument of f ‘retards’ the
production of f, more precisely, 〈Xf,i〉 = λn.doT (f(•∞, . . . , •∞, •n, •∞, . . . , •∞)).

Finally, consider h(x:σ)→ Y, Y → 0:Z and Z→ Z, a specification illustrating
the case of deletion of stream arguments. To translate stream functions like h we
extend the translation of flat stream functions to include flat stream constants.
To cater for the case that there are no stream arguments or all stream arguments
get deleted during reduction, we introduce fresh recursion variables Xf,? for every
stream symbol f. The variableXf,? expresses the production of f assuming infinite
supply in each argument, that is, 〈Xf,?〉 = doT (f(•∞, . . . , •∞)).

Therefore in the definition of the translation of stream functions, we need to
distinguish the cases according to whether a symbol is weakly guarded or not.

Definition 5.1. We define the dependency relation (between symbols in Σ−S
by(:= {〈f, g〉 ∈ Σ−S ×Σ−S | f(s,u)→ g(t,v) ∈ RS} (remember that ‘:’ 6∈ Σ−S).
We say that a symbol f ∈ Σ−S is weakly guarded if f is strongly normalising with

Data-Oblivious Stream Productivity 13

respect to (and unguarded, otherwise.

The translation of a stream function symbol is defined as the unique solution
of a (potentially infinite) system of defining equations where the unknowns are
functions. More precisely, for each symbol f ∈ Σfnest ⊇ Σsfun of a flat or friendly
nesting stream specification, this system has a p-i function [f] as a solution for Xf ,
which is unique among the continuous functions. In [2] we present an algorithm
that effectively calculates these solutions in the form of gates.

Definition 5.2. Let 〈Σ,R〉 be a stream specification. For each flat or friendly
nesting symbol f ∈ Σfnest ⊇ Σflat with arities k = ars(f) and ` = ard(f) we

define [f] : N k → N, the translation of f, as [f] := 〈Xf〉 where 〈Xf〉 is the unique
solution for Xf of the following system of equations:
For all n1, . . . , nk ∈ N, i ∈ {1, . . . , k}, and n ∈ N:

Xf(n1, . . . , nk) = inf
{
Xf,?, Xf,1(n1), . . . , Xf,k(nk)

}
,

Xf,? =

{
inf
{
Xf,?,ρ | ρ a defining rule of f

}
if f is weakly guarded,

0 if f is unguarded,

Xf,i(n) =

{
inf
{
Xf,i,ρ(n) | ρ a defining rule of f

}
if f is weakly guarded,

0 if f is unguarded.

We write ui : σi for ui,1 : . . . : ui,p : σi, and |ui| for p. For Xf,?,ρ and Xf,i,ρ we
distinguish the possible forms the rule ρ can have. If ρ is nesting, thenXf,?,ρ =∞,
and Xf,i,ρ(n) = n for all n ∈ N. Otherwise, ρ is non-nesting and of the form:

f((u1 : σ1), . . . , (uk : σk), v1, . . . , v`)→ w1 : . . . : wm : s ,

where either (a) s ≡ σj , or (b) s ≡ g((u′
1 : σφ(1)), . . . , (u

′
k′ : σφ(k′)), v

′
1, . . . , v

′
`′)

with k′ = ars(g), `′ = ard(g), and φ : {1, . . . , k′} → {1, . . . , k}. Then we add:

Xf,?,ρ =

{
∞ case (a)

m+Xg,? case (b)

Xf,i,ρ(n) = let n′ := n− |ui|, if n′ < 0 then 0 else

m+

n′ case (a), i = j

∞ case (a), i 6= j

inf
{
Xg,?, Xg,j(n

′ + |u′
j |) | j ∈ φ−1(i)

}
case (b) .

Proposition 5.3. Let T be a stream specification, and f ∈ Σfnest ⊇ Σflat a
stream function symbol with k = ars(f). The system of recursive equations de-
scribed in Def. 5.2 has a k-ary p-i function as its unique solution for Xf , which
we denote by [f]. Furthermore, the gate representation [f] of [f] can be computed.

Concerning non-nesting rules on which defining rules for friendly nesting
symbols depend via ;, this translation uses the fact that their production is
bounded below by ‘min’. These bounds are not necessarily optimal, but can be
used to show productivity of examples like Ex. 2.6.

14 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

Example 5.4. Consider a pure stream specification with the function layer:

f(x : σ)→ x : g(σ, σ, σ) ,

g(x : y : σ, τ, υ)→ x : g(y : τ, y : υ, y : σ) .

The translation of f is [f], the unique solution for Xf of the system:

Xf(n) = inf
{
Xf,?, Xf,1(n)

}
Xf,1(n) = let n′ := n− 1

if n′ < 0 then 0 else 1 + inf
{
Xg,?, Xg,1(n′), Xg,2(n′), Xg,3(n′)

}
Xf,? = 1 +Xg,?

Xg,1(n) = let n′ := n− 2, if n′ < 0 then 0 else 1 + inf
{
Xg,?, Xg,3(1 + n′)

}
Xg,2(n) = 1 + inf

{
Xg,?, Xg,1(1 + n)

}
Xg,3(n) = 1 + inf

{
Xg,?, Xg,2(1 + n)

}
Xg,? = 1 +Xf,?

An algorithm for solving such systems of equations is described in [2]; here we
solve the system directly. Note that Xf,? = Xg,? = ∞, and therefore Xg,3(n) =
1 + Xg,2(n + 1) = 2 + Xg,1(n + 2) = 3 + Xg,3(n), hence ∀n ∈ N. Xg,3(n) = ∞.
Likewise we obtain Xg,2(n) = ∞ if n ≥ 1 and 1 for n = 0, and Xg,1(n) = ∞ if
n ≥ 2 and 0 for n ≤ 1. Then if follows that [f](0) = 0, [f](1) = [f](2) = 1, and
[f](n) =∞ for all n ≥ 2, represented by the gate [f] = gate(−+−−+). The gate

corresponding to g is [g] = gate(−−+,+−+,+).

Example 5.5. Consider a flat stream function specification with the following
rules which use pattern matching on the data constructors 0 and 1:

f(0 : σ)→ g(σ) f(1 : x : σ)→ x : g(σ) g(x : y : σ)→ x : y : g(σ)

denoted ρf0 , ρf1 , and ρg, respectively. Then, [f] is the solution for Xf,1 of:

Xf(n) = inf
{
Xf,?, Xf,1(n)

}
Xf,1(n) = inf

{
Xf,1,ρ f0

(n), Xf,1,ρ f1
(n)
}

Xf,1,ρ f0
(n) = let n′ := n− 1, if n′ < 0 then 0 else

{
Xg,?, Xg,1(n′)

}
Xf,1,ρ f1

(n) = let n′ := n− 2, if n′ < 0 then 0 else 1 +
{
Xg,?, Xg,1(n′)

}
Xf,? = inf

{
Xg,?, 1 +Xg,?

}
Xg,1(n) = let n′ := n− 2, if n′ < 0 then 0 else 2 +

{
Xg,?, Xg,1(n′)

}
Xg,? = 2 +Xg,? .

As solution we obtain an overlapping of both traces [f]1,ρ f0
and [f]1,ρ f1

, that is,
[f]1(n) = n .− 2 represented by the gate [f] = gate(−−−+).

The following lemma states that the translation [f] of a flat stream function
symbol f (as defined in Def. 5.2) is the d-o lower bound on the production
function of f. For friendly nesting stream symbols f it states that [f] pointwisely
bounds from below the d-o lower bound on the production function of f.

Data-Oblivious Stream Productivity 15

Lemma 5.6. Let T be a stream specification, and let f ∈ Σfnest ⊇ Σflat .

(i) If f is flat, then: [f] = doT (f). Hence, doT (f) is periodically increasing.
(ii) If f is friendly nesting, then it holds: [f] ≤ doT (f) (pointwise inequality).

5.2 Translation of Stream Constants

In the second step, we now define a translation of stream constants in a flat or
friendly nesting stream specification into production terms under the assump-
tion that gate translations for the stream functions are given. Here the idea is
that the recursive definition of a stream constant M is unfolded step by step; the
terms thus arising are translated according to their structure using gate trans-
lations of the stream function symbols from a given family of gates; whenever
a stream constant is met that has been unfolded before, the translation stops
after establishing a binding to a µ-binder created earlier.

Definition 5.7. Let T be a stream specification, M ∈ Σscon , and F = {γf}f∈Σsfun

a family of gates. The translation [M]F ∈ P of M with respect to F is defined by
[M]F := [M]F∅, where, for every M ∈ Σscon and every α ⊆ Σscon we define:

[M(u)]Fα := [M]Fα :=

{
µM.min {[r]Fα∪{M} | M(v)→ r ∈ R} if M 6∈ α
M if M ∈ α

[u : s]Fα := +−+([s]Fα)

[f(s1, . . . , sars(f), u1, . . . , uard (f))]
F
α := γf([s1]Fα , . . . , [sars(f)]

F
α)

Example 5.8. As an example we translate Pascal’s triangle, see Fig. 2. The trans-
lation of the stream function symbols is F = {[f] = gate(−−+)}, cf. page 12.

Hence we obtain [P]F = µP.+−+(+−+(−−+(P))) as the translation of P.

The following lemma is the basis of our main results in Sec. 6. It entails
that if we use gates that represent d-o optimal lower bounds on the production
of the stream functions, then the translation of a stream constant M yields a
production term that rewrites to the d-o lower bound of the production of M.

Lemma 5.9. Let T = 〈Σ,R〉 be a stream specification, and F = {γf}f∈Σsfun

a family of gates. If JγfK = doT (f) for all f ∈ Σsfun , then for all M ∈ Σscon :
J[M]FK = doT (M). Hence, T is d-o productive if and only if J[M0]FK =∞.

If JγfK ≤ doT (f) for all f ∈ Σsfun , then for all M ∈ Σscon : J[M]FK ≤ doT (M).
Consequently, T is d-o productive if J[M0]FK =∞.

6 Deciding Data-Oblivious Productivity

In this section we assemble our results concerning decision of d-o productivity,
and automatable recognition of productivity. We define methods:

(DOP) for deciding d-o productivity of flat stream specifications,
(DP) for deciding productivity of pure stream specifications, and
(RP) for recognising productivity of friendly nesting stream specifications,

that proceed in the following steps:

16 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

(i) Take as input a (DOP) flat, (DP) pure, or (RP) friendly nesting stream speci-
fication T = 〈Σ,R〉.

(ii) Translate the stream function symbols into gates F := {[f]}f∈Σsfun
(Def. 5.2).

(iii) Construct the production term [M0]F with respect to F (Def. 5.7).
(iv) Compute the production k of [M0]F using →R (Def. 4.5).
(v) Give the following output:

(DOP) “T is d-o productive” if k =∞, else “T is not d-o productive”.
(DP) “T is productive” if k =∞, else “T is not productive”.
(RP) “T is productive” if k =∞, else “don’t know”.

Note that all of these steps are automatable (cf. our productivity tool, Sec. 7).
Our main result states that d-o productivity is decidable for flat stream

specifications. Since d-o productivity implies productivity (Prop. 3.3), we obtain
a computable, d-o optimal, sufficient condition for productivity of flat stream
specifications, which cannot be improved by any other d-o analysis. Second, since
for pure stream specifications d-o productivity and productivity are the same,
we get that productivity is decidable for them.

Theorem 6.1. (i) DOP decides d-o productivity of flat stream specifications,
(ii) DP decides productivity of pure stream specifications.

Proof. Let k be the production of the term [M0]F ∈ P in step (iv) of DOP/DP.

(i) By Lem. 5.6 (i), Lem. 5.9, and Thm. 4.6 we find: k = doT (M0).
(ii) For pure specifications we additionally note: ΠT (M0) = doT (M0). ut

Third, we obtain a computable, sufficient condition for productivity of friendly
nesting stream specifications.

Theorem 6.2. A friendly nesting (flat) stream specification T is productive if
the algorithm RP(DOP) recognizes T as productive.

Proof. By Lem. 5.6 (ii), Lem. 5.9, and Thm. 4.6: k ≤ doT (M0) ≤ ΠT (M0). ut
Example 6.3. We illustrate the decision of d-o productivity by means of Pascal’s
triangle, Fig. 2. We reduce [P]F , the translation of P, to →R-normal form:

[P]F = µP.+−+(+−+(−−+(P)))→∗R µP.++−−+(P)→R ∞

Hence doT (P) =∞, and P is d-o productive and therefore productive.

7 Conclusion and Further Work

In order to formalize quantitative approaches for recognizing productivity of
stream specifications, we defined the notion of d-o rewriting and investigated d-o
productivity. For the syntactic class of flat stream specifications (that employ
pattern matching on data), we devised a decision algorithm for d-o productiv-
ity. In this way we settled the productivity recognition problem for flat stream
specifications from a d-o perspective. For the even larger class including friendly
nesting stream function rules, we obtained a computable sufficient condition for
productivity. For the subclass of pure stream specifications (a substantial exten-

Data-Oblivious Stream Productivity 17

sion of the class given in [3]) we showed that productivity and d-o productivity
coincide, and thereby obtained a decision algorithm for productivity of pure
specifications.

We have implemented in Haskell the decision algorithm for d-o productivity.
This tool, together with more information including a manual, examples, our
related papers, and a comparison of our criteria with those of [4, 7, 1] can be
found at our web page http://infinity.few.vu.nl/productivity. The reader is
invited to experiment with our tool.

It is not possible to obtain a d-o optimal criterion for non-productivity of
flat specifications in an analogous way to how we established such a criterion for
productivity. This is because the d-o upper bound doT (f) on the production of
a stream function f in flat stream specifications is not in general a periodically
increasing function. For example, for the following stream function specification:

f(x : σ, τ)→ x : f(σ, τ) , f(σ, y : τ)→ y : f(σ, τ) ,

it holds that do(f)(n1, n2) = n1 +n2, which is not p-i. While this example is not
orthogonal, do(f) is also not p-i for the following similar orthogonal example:

f(0 : x : σ, y : τ)→ x : f(σ, τ) , f(1 : σ, x : y : τ)→ y : f(σ, τ) .

Currently we are developing a method that goes beyond a d-o analysis, one
that would, e.g., prove productivity of the example B given in the introduction.
Moreover, we study a refined production calculus that accounts for the delay
of evaluation of stream elements, in order to obtain a faithful modelling of lazy
evaluation, needed for example for S on page 3, where the first element depends
on a ‘future’ expansion of S.

Acknowledgement. We thank Jan Willem Klop, Carlos Lombardi, Vincent van
Oostrom, and Roel de Vrijer for useful discussions, and the anonymous referees
for their comments and suggestions.

References

1. W. Buchholz. A Term Calculus for (Co-)Recursive Definitions on Streamlike Data
Structures. Annals of Pure and Applied Logic, 136(1-2):75–90, 2005.

2. J. Endrullis, C. Grabmayer, and D. Hendriks. Data-Oblivious Stream Productivity.
Technical report, 2008. http://arxiv.org/pdf/0806.2680.

3. J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productivity
of Stream Definitions. In Proc. of FCT 2007, LNCS, pages 274–287. Springer, 2007.

4. J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Systems
Using Sized Types. In POPL ’96, pages 410–423, 1996.

5. D. Kapur, P. Narendran, D.J. Rosenkrantz, and H. Zhang. Sufficient-Completeness,
Ground-Reducibility and their Complexity. Acta Informatica, 28(4):311–350, 1991.

6. B.A. Sijtsma. On the Productivity of Recursive List Definitions. ACM Transactions
on Programming Languages and Systems, 11(4):633–649, 1989.

7. A. Telford and D. Turner. Ensuring Streams Flow. In AMAST, pages 509–523, 1997.
8. Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 2003.

