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Abstract—We investigate an abstraction method, called mean-
field method, for the performance evaluation of dynamic net-
works with pairwise communication between nodes. It allows
us to evaluate systems with very large numbers of nodes, that
is, systems of a size where traditional performance evaluation
methods fall short.

While the mean-field analysis is well-established in epidemics
and for chemical reaction systems, it is rarely used for commu-
nication networks because a mean-field model tends to abstract
away the underlying topology.

To represent topological information, however, we extend the
mean-field analysis with the concept of classes of states. At the
abstraction level of classes we define the network topology by
means of connectivity between nodes. This enables us to encode
physical node positions and model dynamic networks by allowing
nodes to change their class membership whenever they make
a local state transition. Based on these extensions, we derive
and implement algorithms for automating a mean-field based
performance evaluation.

I. INTRODUCTION

Large-scale networks such as mobile communication net-

works consist of a large number of interacting nodes. These

systems are generally hard to model and analyse due to

the high dynamics, since nodes are joining, and leaving the

system, as well as moving around. Straightforward analytical

models are too large to be handled by model checkers (e.g.

[1], [2], [3], [4]). Abstracting away from details of a system

can be an efficient approach to cope with the infamous state

space explosion.

Recently, mean-field analysis has been proposed and applied

for the effective analysis of very large communication systems.

It is known that such systems exhibit a deterministic behaviour

in the limit (e.g., epidemics [5], [6]). That is, the stochastic

process of the modelled system converges to a deterministic

process if the number of participating nodes tends to infinity.

This allows for an asymptotic analysis of the system. The

mean-field method approximates a distribution of nodes in the

set of possible states over time, for the case that there are

infinitely many interacting nodes.

In this paper we focus on the automation of mean-field

analysis, and demonstrate how a network with pairwise com-

munication between nodes can be modelled and analysed. For

this we explore the mean-field method in two directions.

(1) We introduce a notion of classes (of states) of nodes

that can represent group membership or topological

information. By changing their states, we allow nodes to

change their class membership. This enables us to model

mobile networks, where nodes are moving around.

(2) We introduce multiplicities in the state transitions such

that nodes can be created and removed. This extension

is important for modelling of dynamic networks with

node departures and arrivals.

To this end, we identify a class of stochastic systems of nodes

for which the construction of the mean-field model can be

automated. Using these results, we have automated the mean-

field method, which allows us to model large dynamic net-

works. Given as user input the probabilities of communication

between different classes of nodes, and an initial distribution

of nodes, our new tool calculates the evolution of the system

in discrete time. Apart from that, our tool allows the mean-

field method to be used by a broad community, ranging from

the non-expert outside of academia to the expert in mean-field

theory. Our tool is suitable for the non-expert since it releases

the user from the burden of the details of mean-field theory.

For the expert, the tool is of interest since carrying out mean-

field analysis requires the cumbersome, error-prone compu-

tation of probabilities that describe the complete behaviour

of the nodes. Moreover, our tool can easily be extended to

include other aspects of mean-field analysis (some of which

we mention in the last section of the paper).

In the next section we compare our work with similar

approaches. In Sec. III, we introduce the notion of classes

and the modelling framework. Sec. IV describes how the

transition probability matrix can be computed based on user-

input probabilities. In Sec. V-A and V-B, we illustrate the

application of our tool by using it for two case studies. In

Sec. VI, we formalise the generalisation of our framework to

allow for modelling of dynamic networks, supported by the

case study in Sec. VI-C. Due to the space limitations only

the first case study analyses a real protocol, the other two

case studies are simply intended to illustrate specific features

of our framework. Sec. VII describes implementation details

of our framework, including optimisation algorithms. Finally,

Sec. VIII concludes the paper and discusses future work.

II. RELATED WORK

Mean-field theory originates from statistical mechanics

(e.g., [7]), has been applied to chemical reaction systems



[8], enjoyed the attention of the neural networks community

(e.g., [9]), and has recently been introduced in the area of

communication networks [10], [11], [12], [13], [14], [15]. The

idea of different classes of nodes for mean-field approximation

emerged from [10] and the follow-up paper [11]. In these

papers, a gossip-based clock synchronisation protocol has been

analysed using the mean-field method. The authors specify

classes of nodes with respect to communication behaviour.

Moreover, nodes adapt their communication behaviour de-

pending on their state, and by changing the state, nodes can

change their class membership.

The multiple classes approach has also been used by [12],

[16], [17], [18]. In these works, the authors give a mean-field

approximation in the form of differential equations, whereas

we observe the evolution of the system in discrete time based

on matrix-vector multiplication. We focus on the automation

of the generalised mean-field method for dynamic gossip

networks. The main advantage of our automated framework

over the equation-based solutions is that our framework allows

to change a format of states of nodes (a tuple) without the need

to manually derive a corresponding set of equations.

A mean-field related technique has been developed in [19],

[20], [21], supported by a tool in [22]: an ODE-approximation

for a specific class of continuous-time process algebra models

(PEPA). In contrast to their approach, we employ a discrete-

time model. Whether to choose continuous or discrete time of

course depends on the system to be modelled. Moreover, our

mean-field modelling allows for time-dependent events and

discrete time changes of node states and network topology, cf.

Section V-B. These are crucial ingredients of communication

networks, but fall outside of the capabilities of an ODE-based

analysis.

To the best of our knowledge, our tool is the first to automate

mean-field based performance evaluation for dynamic gossip

networks, an indispensable step to facilitate the mean-field

analysis in the area of communication systems.

III. MODELLING FRAMEWORK

As setup for the subsequent sections, we describe the class

of models of communication networks for which we automate

the mean-field method. We consider large networks of nodes

interacting in a peer-to-peer or gossip fashion. The nodes are

characterised by discrete-time stochastic processes {On(τ) |
τ ∈ N, n ∈ N}, with N = {1, . . . , N}, where N is the

network size, n is the node identity, and τ is the (global)

discrete time. In other words, the nodes interact in a round-

based fashion. The values of On(τ) are taken from a finite

sample set Ω, called (local) state space.

We classify local states s ∈ Ω of nodes into one or more

different groups, called ‘classes’. A class C is a collection of

states of nodes, C ⊆ Ω. The classes of nodes can represent

group membership, topological information, a combination of

several aspects, etc. We impose no restriction on the formation

of these classes, e.g., states are permitted to be in multiple

classes. We have chosen for ‘classes of local states’ over

‘classes of nodes’ since it enables the modelling of mobile
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Figure 1. An example of a clustered network.

networks with a changing topology; nodes changing their

local states may change their class memberships. An example

topology based on three classes is shown in Figure 1.

Example 1. Figure 1 depicts a network consisting of three

clusters (classes) A, B and C. Each cluster in the network

has a uniform link probability between any member of the

cluster, and there is a specified probability of a communication

between the clusters A, B and C. Namely, nodes of the cluster

A interact with nodes of the cluster B with probability 0.01;
however, nodes of the cluster A interact with each other with

probability 0.9, and nodes of the cluster B with probability

0.2.
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Figure 2. An example of a small mobile network.
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Figure 3. Modelling mobile networks using classes of states.

Example 2. Figure 2 illustrates an example of a small mobile

network. The network consists of three classes of nodes, two

users and one base station. One of the users is mobile, and

moves around. The base station can communicate with both



users at all times, but the communication between the users

depends on the distance between them; in the lower half of

Figure 2 interaction between the users directly is not possible.

We encode this scenario in our framework by means of

states and classes, as shown in Figure 3. For the mobile user,

we distinguish two states s2 and s3, representing its position.

Two other states, s1 and s4 represent the non-mobile user

and the base station, respectively. All states are divided into

different classes, as shown in Figure 3. The station in class C4

communicates with both users C5 = {s1, s2, s3}, irrespective
of the position of the mobile user. The mobile user can undergo

the state transitions s2 → s3 and s3 → s2, that express

the user movement. By moving from s2 to s3, the mobile

user changes its class from C2 to C3, and vice versa. The

stationary user in state s1 ∈ C1 cannot communicate with the

mobile user, when the latter is in the state s3 ∈ C3. However,

this communication is possible if the mobile user is in state

s2 ∈ C2.

We introduce the following terminology. A node is called

active if it initiates a contact at the current time step, and

passive, otherwise. Moreover, a node is idle if it is passive,

and is not currently contacted by any node. On the contrary,

a node is non-idle if it is active, or a node attempts to contact

it.

Definition 1. Let S be a set. We use Distr(S) to denote the

distributions over S, that is, the set of functions µ : S 7→
[0, 1] such that

∑

s∈S µ(s) = 1. Moreover, by Distr≤1(S) we

denote the subdistributions over S, that is, the set of functions
µ : S 7→ [0, 1] such that

∑

s∈S µ(s) ≤ 1.

The behaviour of the network is defined by the following

four functions (specified by the user):

• contacts: the network topology,

• κ: state transition for successful communication,

• φ: state transition for unsuccessful communication, and

• ǫ: state transition for idle nodes.

The function contacts defines the topology of the network.

The nodes periodically interact with each other; at each time

step every node picks a communication partner. The choice of

the partner is governed by a probability distribution:

contacts : Ω → Distr≤1(P6=∅(Ω)) ,

which determines the probability that a certain node contacts

different classes of nodes. More precisely, for any state s ∈ Ω,

contacts(s) is a subdistribution µ : P6=∅(Ω) 7→ [0, 1] meaning

that a node in state s contacts with probability µ(C) a node

from class C 6= ∅. Then the partner is chosen uniformly at

random from all nodes that are in a state in this class C.

The probability of a node in state s ∈ Ω being active is:

Pact(s) =
∑

C⊆Ω, C 6=∅

contacts(s)(C)

Then 1 −Pact(s) is the probability of a node in state s to be

passive.

We explain this distribution on the following example.

Example 3. Assume that Ω = {s1, s2, s3}, and consider a

network with 10 nodes in state s1, 10 in state s2, and 20 in

state s3. Let the contact distribution for s1 be defined as:

contacts(s1) = {{s2, s3} 7→ 0.3, {s1} 7→ 0.5}

and we tacitly assume C 7→ 0 for all other classes C ⊆ Ω.

This means that a node in state s1 contacts with probability

0.3 a node in state s2 or s3 (uniformly at random), with

0.5 another node in state s1, and is idle (not initiating

communication) with the remaining probability 0.2. Hence,
Pact (s1) = 0.8.
Assume that a node in state s1 decides to contact the class

{s2, s3}. The choice of the communication partner inside this

class is uniformly at random, that is, every node among the

30 nodes in state s2 or s3 has an equal probability of being

picked. Since there are 10 nodes in state s2 and 20 nodes in

state s3, with probability 1
3 the choice will fall on a node from

s2, and with 2
3 on s3.

Remark. For simplicity, we will refer to “a node in state s”
as “a node in s”.

When a node in s (attempts to) contact a node in t, then
depending on the success of the contact and the state t of the
peer, both nodes stochastically change their states in a manner

that depends on s and t. By moving from one state to another,

the nodes may change their class membership, which can be

used to encode dynamic networks.

Since nodes pick their communication partner randomly, it

can happen that multiple nodes choose the same partner simul-

taneously. Moreover, the chosen target can itself be active.

In this case, the result of the interactions depends on their

sequential order. In this paper, we handle the cases when a

node is involved in multiple interaction attempts as collisions.

That is, a node has a collision either if (a) it is contacted at

least twice, or (b) it is active and contacted at least once. A

communication fails whenever there is a collision either in the

source or in the target. In other words, considering the pairwise

communication between the nodes as a directed graph, then

every isolated edge, i.e., strongly connected component with

one edge, is a communication success, and edges that are

not isolated amount to communication failures. Such collision

models are used, for example, in the setting of wireless

networks [23].

In our framework, we distinguish between the state transi-

tion of idle nodes and nodes with a collision. The function κ
defines the state transition of nodes for the case of successful

communication, κ : Ω×Ω → Distr(Ω × Ω). If a node in s
(successfully) interacts with a node in t, then κ(s, t) defines

the distribution of the next states of both nodes, that is,

κ(s, t)(s′, t′) is the probability of s′ and t′ being the successor

states of s and t, respectively.
The function ǫ describes the state transition for idle nodes,

ǫ : Ω → Distr(Ω), that is, ǫ(s)(t) is the probability of an idle

node in s to progress to the next state t.
The function φ describes the state transition for nodes whose

communication fails due to a collision, φ : Ω → Distr(Ω),



That is, if a node in s is either the source or the target of a

failed communication, then φ(s)(s′) is the probability that the

node moves to the state s′.

IV. MEAN-FIELD MODELLING

In this section, we describe the theory behind our tool,

and illustrate our framework on two case studies. The format

of the states of Ω, be it an integer, a tuple or another data

structure, is irrelevant to the computations presented in this

section. Therefore, we simply identify states by their indices

(with respect to a fixed total order), i.e., {0, . . . , l−1}, where
l is the number of different states.

Normally, the complete system is composed of the N
nodes as a discrete-time stochastic process ZN(τ) =
(O1(τ), . . . , ON (τ)). The size of this state space is |Ω|N =
lN . However, in case of the mean-field approximation, nodes

that are in the same state are indistinguishable. Thus, we can

describe the overall state at time τ with a vector ∆(τ) =
(∆0(τ), . . . , ∆l−1(τ)), where an entry ∆i(τ) is the fraction

of nodes in state i. This discrete-time vector is called the

occupancy measure, and the size of the state space ΩN
∆

of this “occupancy process” is
(

l+N−1
l−1

)

. That is, there are
(

l+N−1
N

)

=
(

l+N−1
l−1

)

ways to combine N (not necessarily

distinct) nodes in l states. The evolution of the system is then

described by the local transition probabilities of each node:

MN
∆ (t, s) = Pr{ON

n (τ + 1) = t | ON
n (τ) = s, ∆(τ) = ∆}

That is, the next state t ∈ Ω of a node depends on its current

state s ∈ Ω and on the current occupancy measure ∆. These

transition probabilities form the transition probability matrix

MN
∆(τ).

A. Transition probabilities and matrix calculation

We now describe how the state transition probability matrix

MN
∆(τ) can be computed based on the user-input probabilities,

presented above. In order to compute the matrix, we assume

∆(τ) to be the current state distribution, and simply write∆.

We first compute the probability that a given node in s
contacts any node in t. Recall that a node in s ∈ Ω picks

a communication partner from class C ⊆ Ω with probability

contacts(s)(C). It does so uniformly from the nodes that are

currently in one of the states of C. For every pair of states

s, t ∈ Ω and current distribution ∆, the probability that a node

in s contacts a node in t is:

contact(s, t) =
∑

C⊆Ω, t∈C

contacts(s)(C) ·
∆t

∆C

where ∆C =
∑

u∈C ∆u for any set of states C ⊆ Ω. Given

the current distribution ∆, the expected fraction of nodes that

contact the state s ∈ Ω:

ξ(s) =
∑

t∈Ω

∆t · contact(t, s)

Example 4. Consider the occupancy measure ∆ =
(∆s, ∆t) = (0.4, 0.6). Let contact(t, s) = 0.5 and

contact(s, s) = 1. Then the number of nodes to contact s

is ξ(s) = 0.6 · 0.5 + 0.4 · 1 = 0.7, that is 70% of all nodes in

the network will contact nodes in s.

For a node in s ∈ Ω, the probability of not being contacted

equals

Pc0 (s) =

(

1 −
1

N · ∆s

)ξ(s)·N

, (1)

if ∆s 6= 0, and Pc0 (s) = 0, otherwise1. That is, ξ(s) · N is

the expected number of nodes that contact s, N · ∆s is the

total amount of nodes in s, and 1 − 1
N ·∆s

is the probability

that nodes that contact s do not choose a given node in s.
Similarly, the probability of a node in s to be contacted

once equals

Pc1 (s) =

(

ξ(s) · N

1

)

·
1

N · ∆s
·

(

1 −
1

N · ∆s

)ξ(s)·N−1

=
ξ(s)

∆s
·

(

1 −
1

N · ∆s

)ξ(s)·N−1

, (2)

if ∆s 6= 0, and Pc1 (s) = 0, otherwise1. Here, 1
N ·∆s

is the

probability that a given node in s is contacted by nodes that

contact s. Thus, Pc1 (s) expresses that only one of ξ(s) · N
nodes contacts a given node in s and the remaining ξ(s)·N−1
nodes that contacted the class s did not choose the node.

The probability that a node in s ∈ Ω is idle, i.e., neither

initiating contact nor being contacted, is:

Pidle(s) = (1 − Pact(s)) · Pc0 (s)

There are two probabilities of communication failure.

Firstly, we have to take into account the active nodes that

are contacted themselves and the non-active nodes that are

contacted more than once. The sum of both renormalised to

the non-idle nodes yields the probability that a non-idle node

in s has a collision:

PcolNonIdle(s) =
(

Pact(s) · (1 − Pc0 (s))

+ (1 − Pact(s)) · (1 − Pc0 (s) − Pc1 (s))
)

/(1 − Pidle(s)),

if Pidle(s) 6= 1, and PcolNonIdle(s) = 0, otherwise.
Secondly, the probability that a communication with a target

in s ∈ Ω failed due to a collision at the target is:

PcolInc(s) = 1 −
Pc1 (s) · (1 − Pact(s)) · ∆s · N

ξ(s) · N

= 1 − Pc1 (s) · (1 − Pact(s)) · ∆s/ξ(s),

if ξ(s) 6= 0, and PcolInc(s) = 1, otherwise. We briefly explain

the derivation of this formula. The probability of a node in s to

be contacted without collision in s is Pc1 (s)·(1−Pact (s)), that
is, the probability of being contacted once multiplied with the

probability of being passive. Then Pc1 (s)·(1−Pact (s))·∆s ·N
is the expected number of nodes in s that are contacted without

collision in s. As the communication is pairwise, this number

coincides with the number of nodes that contact a node in s

1This guarantees that the probability PcolInc(s), defined later, is equal to
1 for ∆s = 0, that is, contact attempts amount to collisions.



s′

c

s

ab

node has a collision

peer has a collision

Figure 4. The three causes of communication failure.

without collision in the target. Dividing this number by the

expected number of nodes contacting s, ξ(s) · N , we obtain

the probability that a contact with target s does not have a

collision in the target.

Using these probabilities of communication failure, we can

derive the probabilities of successful communication. The

probability of a node in s ∈ Ω to talk to a node in t ∈ Ω,

without a collision at t, is

PtalkOkTgt(s, t) = contact(s, t) · (1 − PcolInc(t))

Then, the probability of a successful contact, i.e., there is no

collision at the target nor at the source, equals

PtalkOk (s, t) = PtalkOkTgt(s, t) · Pc0 (s).

The three causes for communication failures are displayed in

Figure 4: (a) a non-idle node in s has a collision, (b) a node

in s′ is contacted and the source of the contact has a collision,

and (c) the target in s′ of an active node has a collision.

Finally, we describe the calculation of the transition proba-

bility matrix MN
∆ . Let MN

∆ (t, s) be the entry in the matrix at

the crossing of the row t and the column s. For all nodes in
states s, t ∈ Ω,

MN
∆ (t, s) = Pidle(s) · ǫ(s)(t)

+
∑

s′ ∈Ω, t′ ∈Ω

PtalkOk (s, s′) · κ(s, s′)(t, t′)

+
∑

s′ ∈Ω, t′ ∈Ω

PtalkOk (s′, s) · κ(s′, s)(t′, t) ·
∆s′

∆s
(3)

+ (1 − Pidle(s)) · PcolNonIdle(s) · φ(s)(t)

+
∑

s′ ∈Ω

(PtalkOkTgt(s
′, s) − PtalkOk (s′, s)) · φ(s)(t) ·

∆s′

∆s

+
∑

s′ ∈Ω

(contact(s, s′) − PtalkOkTgt(s, s
′)) · Pc0 (s) · φ(s)(t)

Note that we take ∆s′/∆s = 0, if ∆s = 0. The matrix

consists of the six summands that express the corresponding

probabilities of: (i) the state transition from s to t, if a node

in s is idle; (ii)–(iii) the state transitions after the successful

contact; (iv)–(vi) cover the cases (a)–(c) of interaction failure

depicted in Figure 4, that is, (iv) the state transition from s to

t, if node in s is non-idle and a collision occurs; (v) the state

transition of nodes in s contacted by nodes in s′, if a collision
occurs at the source nodes in s′; and (vi) the state transition

of active nodes in s whenever a collision occurs at the target

nodes in s′.

B. Mean-field convergence

The mean-field approximation captures the asymptotic be-

haviour of the complete system if the network size N tends to

infinity. Namely, the occupancy measure ∆ for large networks

converges to a deterministic limit, if the following is satisfied:

for all local states s, t ∈ Ω, all ∆ ∈ ΩN
∆ and assuming the

initial distribution ∆(0),

if N → ∞, MN
∆ (t, s) converges uniformly2 in ∆ to

M∆(t, s), which is a continuous function of ∆.

That is, if N tends to infinity, for each local state i the fraction
∆i(τ) of nodes in state i at time τ converges to a deterministic

limit.

This requirement is clearly satisfied for our matrix MN
∆ ,

since the dependence on the network size N vanishes in the

limit for all transition probabilities. Notably, when N → ∞,

(1) and (2) take their limit in forms

Pc0 (s) → e−ξ(s)/∆s , Pc1 (s) → ξ(s)/∆s · e
−ξ(s)/∆s

if ∆s 6= 0, and 0 otherwise.

Theorem 1 (cf. [13]). Fix the initial occupancy measure:

∆(0) = δ(0); define the limit of the local probability matrix:

M∆ = lim
N→∞

MN
∆ , ∆ ∈ ΩN

∆ .

Define the deterministic discrete time process δ(τ + 1) =
Mδ(τ) · δ(τ). Then for ∀τ ∈ N,

lim
N→∞

∆(τ) = δ(τ), with probability 1,

that is, δ(τ) is the deterministic limit occupancy measure at

time τ for N → ∞.

In Sect. VI, we show that the convergence theorem holds even

for the more general setting of dynamic networks.

V. CASES

A. Case study on clock synchronisation

The first case study illustrates that our tool can cope with

large dense matrices. Moreover, it shows a non-trivial encoding

of the states of nodes for the mean-field analysis. Using the

model of the clock synchronisation protocol GTP from [11],

we compare the results obtained by our tool with the results

of the protocol emulation from [24].

According to the protocol, the nodes are equipped with local

clocks. At least one node (time source) has the accurate time.

Nodes periodically interact with randomly chosen peers, gos-

siping their clock samples, and update the clocks depending on

the quality of the sample, measured according to the distance

to the time source on a synchronisation path. In [11], the state

of a node is defined as a triple (g, l, h) of local parameters.

The delay g defines a period of interaction of the node. The

counter l defines a period of the enforced synchronisation.

The hop count h shows the distance to the time source on the

2A sequence fN of real-valued functions converges uniformly with limit
f if for every ε > 0 there exists n ∈ N such that for all x and all N ≥ n
we have |fN (x) − f(x)| < ε.
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Figure 5. Distribution of the hop count (mean-field results) and fraction of
the synchronised nodes for the network size 1500 (emulation results) in GTP

synchronisation path, and is a metric of the sample quality.

A node with h = ∞ is unsynchronised. The state space of a

node is Ω = {0, . . . , Gmax}× {0, . . . , L}× {0, . . . , H,∞} of

the size |Ω| = (Gmax + 1)(L + 1)(H + 2). The occupancy

measure is the fraction of nodes in state (g, l, h).
For the mean-field analysis, we consider the following

values of Gmax = 25, L = 25, H = 15. The initial distribution
of the time sources ∆(12,L,0) is 1

1500 in Figure 5 and 1
1500 ,

10
1500 ,

100
1500 in Figure 6. All other nodes are unsynchronised and

have remaining gossip delays uniformly distributed between

0 and Gmax. We compare our mean-field results with the

experimental results from [24]. The latter results were obtained

by emulating a network of 1500 nodes that execute GTP, on

a single workstation. We assume one step in the GTP model

to be one second in the emulations.

Figures 5 and 6 show the results of two experiments: the

evolution of the hop count distribution over the first 600

seconds, and the evolution of the average hop count for the

different number of time sources, respectively.

In Figure 5, each mean-field curve shows the fraction of

nodes that have at most a certain hop count. All but one node

are initially unsynchronised. By communicating to the time

source, first some of the nodes obtain small hop counts. The

hop count distribution then gradually increases, and finally

converges towards the stable state. The local maxima in the

hop count distribution before the final stable state is due to the

forced update, governed by the parameter l. Nodes that have
not synchronised for 25 seconds are forced to update their hop

counts, if they interact with a synchronised node. Thus, as

more nodes become synchronised, the forced updates become

more frequent. For the small hop counts such as 1, this update
leads to the increase of the hop count. For more details on the

effect of the forced updates, we refer to [11].

The highest curve corresponds to the fraction of nodes

with the hop count at most H = 15, that is, the fraction

of synchronised nodes. The curve of the emulation results

shows the fraction of nodes that are synchronised, and thus,

corresponds to the mean-field curve of at most hop count 15.

Figure 6 shows the average hop count for 1, 10 and 100 time

sources. The respective curves for the mean-field (gray) and
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Figure 6. Average hop count for different number of time sources in GTP

emulation (black) results settle to similar values. As one can

observe, the average hop count decreases with larger number

of time sources.

B. Case study on mobile networks

The purpose of this case study is to show how our frame-

work can be used to encode mobility of nodes. We consider

the spread of a (fictive) virus between three villages A, B and

C.

Every person (node) can be either healthy or infected.

Additionally, every person has a parameter resistance with a

value in {0, . . . , 20} (initially, 0). For infected population, the

resistance to the virus is increased by 1 at every step. When

it reaches the maximum value, infected people recover and

remain healthy afterwards. Note that immunity is a require-

ment of mean-field convergence result for epidemics (cf. [6]);

however, this condition is not necessary for our framework.

Whenever an infected person successfully communicates with

a healthy person with resistance lower than 20, the healthy

person becomes infected. The connectivity among the villages

is defined as follows:










contacts(A) = {{A} 7→ 0.1, {B} 7→ 0.005}

contacts(B) = {{B} 7→ 0.1, {A, C} 7→ 0.005}

contacts(C) = {{C} 7→ 0.1, {B} 7→ 0.005}

The mobility is introduced by a “ship” S that commutes in-

between the villages A and C. The ship “moves” according

Figure 7. Commuting ship
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Figure 8. Infection spread, mean-field results.

to the parameter position, with a value in {S0, . . . , S5} (see

Figure 7). If the ship is in position S0 or S3, it indicates that

the ship is docking at village A or C, respectively. The ship

positions S1 and S5 represent the same location, but indicate

the movement in opposite directions; likewise, for the positions

S2 and S4.

Thus, the connectivity of the ship depends on its position.

Let Sp denote a ship in position p, and define:

contacts(Sp) =











{{A} 7→ 1}, if p = 0,

{{C} 7→ 1}, if p = 3,

{ }, otherwise.

People that get on and off the ship are represented as follows.

If a person from the ship interacts with a person from a vil-

lage, then they exchange their health/infection and resistance

properties. Thus we simulate that one person leaves the ship,

while the communication peer enters the ship.

Figure 8 shows the evolution of the infected people over

time at the different classes of people. All villages have an

equal number of inhabitants, and the ship can carry up to half

of the size of any village. Initially, 50% of the population of

village C is infected; the remaining population is healthy. For

the village C, the corresponding curve starts with the highest

value. Over time, the infection spreads to the next village

A, since it is connected to C via the ship S. The infection

spreads fast on the ship, due to its small capacity, increasing

the probability of infecting people in the village A. At the

same time, occasional travellers between the villages make it

possible for the virus to spread onto the villages B and C.

At some point, infected people with a value of resistance 20

recover from the virus. Hence, the fraction of infected people

decreases and approaches zero after 90 steps.
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Figure 9. Monte-Carlo simulations with 100 people on the ship and 200
people per village

Comparison with Monte-Carlo Simulations: We compare

the mean-field results with Monte-Carlo simulations; Figure 9

show simulation results of the infection spread with 100
people travelling by the ship, and 200 people in each of

three villages. Every line in the figure is the average of 1000

simulation runs (each 100 time steps). Note the accuracy (i.e.,

resemblence between Figure 8 and Figure 9) of the mean-field

approximation (Figure 8) even for the system of moderate size.

VI. FRAMEWORK FOR DYNAMIC NETWORKS

So far, the number of nodes in the network has been

invariant over time. The section extends this to the dynamic

creation and removal of nodes.

A. Introduction and notations

For this purpose, we generalise the semantics of the occu-

pancy measure ∆. Up to now, ∆s has been the fraction of

nodes in state s, and consequently
∑

s∈Ω ∆s = 1. We relax

this requirement, and henceforth interpret ∆s as the number

of nodes in state s relative to the initial distribution ∆(0).
We use N

S to denote the multisets over S, that is, the set

functions S 7→ N. Accordingly, we generalise the functions κ,
ǫ and φ to include, along with probabilities, ”multiplicity”:

κ : Ω × Ω → Distr(NΩ), (4)

such that for all states s, t ∈ Ω, the domain of κ(s, t) is finite.
For every pair of communicating nodes there is only a finite

number of possible outcomes. Here, the finiteness ensures the

Lipschitz condition in Lemma 1 (below).

If two nodes in state s and state t communicate successfully,

then κ(s, t)(µ) is the probability that the communicating nodes

in s and t will transform into a multiset of nodes in the states

defined by µ, that is, for every state u ∈ Ω we obtain µ(u)
nodes in u.

Example 5. κ(s, t)({s 7→ 3, u 7→ 1}) = 0.5 means that with

50% probability a successful communication of nodes in s and

t will result in 3 nodes in s, and 1 in u. Note that, for the

multisets, we suppress entries with multiplicity 0, e.g., t 7→ 0.

Similar to κ, we also generalise the following distributions:

ǫ : Ω → Distr(NΩ) (5)

φ : Ω → Distr(NΩ) (6)

Again, we require that for every s ∈ Ω, the distributions ǫ(s)
and φ(s) have a finite domain.

Example 6. ǫ(s)(s 7→ 1, t 7→ 2) = 0.3 means that with 30%

probability an idle node in s will transform into one node in

s, and two nodes in t.

Since the evolution of a very large system can be expressed

by the equation of δ(τ) (as described in Sec. IV-B), the

expected number of states after a state transition can be

obtained using the corresponding multiplicity.

We generalise the calculation of the transition matrix MN
∆ .

The computation of contact , Pidle , PtalkOk , PcolNonIdle and

PtalkOkTgt remain as described in Section IV. For all nodes in



MN
∆ (t, s) = Pidle(s) ·

∑

µ ∈NΩ

ǫ(s)(µ) · µ(t)

+
∑

s′ ∈Ω

PtalkOk(s, s′) ·
∑

µ ∈NΩ

κ(s, s′)(µ) · µ(t)

+ (1 − Pidle(s)) · PcolNonIdle(s) ·
∑

µ ∈NΩ

φ(s)(µ) · µ(t)

+
∑

s′ ∈Ω

(PtalkOkTgt(s
′, s) − PtalkOk (s′, s)) ·





∑

µ ∈NΩ

φ(s)(µ) · µ(t)



 ·
∆s′

∆s

+
∑

s′ ∈Ω

(contact(s, s′) − PtalkOkTgt(s, s
′)) · Pc0 (s) ·

∑

µ ∈NΩ

φ(s)(µ) · µ(t)

Figure 10. Matrix computation for dynamic networks

states s, t ∈ Ω we compute MN
∆ (t, s) as shown in Figure 10.

We assume ∆s′/∆s = 0, if ∆s = 0.
The crucial difference with the matrix (3) from Section IV

is that along with the probabilities, we take into account the

corresponding multiplicities to calculate the expected number

of nodes in state t after the state transition. For example,
∑

µ ∈NΩ

ǫ(s)(µ) · µ(t)

expresses the expected number of nodes in t after an idle

transition of a node in s.
The second difference with the matrix (3) in Section IV is

the following. For successful communication of two nodes, the

function κ, defined in (4), expresses the resulting distribution

without distinguishing which of the two nodes progresses

to which state. This simplifies the matrix in so far that,

in comparison with (3), the third summand is dropped. In

Figure 10, the second summand ‘takes care’ of the whole state

transition.

B. Mean-field convergence revisited

To ensure that Theorem 1 holds for the generalised setting,

here, we show that all required conditions are valid.

Lemma 1. The following conditions hold for MN
∆ :

C1. For all time steps τ , MN
∆(τ) is independent of the

network size N in the limit.

C2. The number of possible state transitions per time step is

bounded.

C3. For all time steps τ , MN
∆(τ) satisfies the Lipschitz

condition.

Proof: Condition C1 is satisfied for MN
∆ , since all local

state transition functions are independent of the network size

N , and for the contact probabilities Pc0 (s) and Pc1 (s) the

dependence vanishes in the limit, as shown in Sec. IV-B.

Conditions C2 and C3 hold, since there are only finitely

many pairs of states, each of which has finitely many possible

transitions per time step; see (4), (5), (6) where the domain of

the distribution functions is required to be finite. For condition

C3 note that the maximum multiplicity is bounded for all local

transitions and this yields a global bound since there are only

finitely many possible transitions.

Hence, Theorem 1 holds for the generalised setting. That is,

for the initial distribution ∆(0) = δ(0) and the limit M∆ =
lim

N→∞
MN

∆ and δ(τ+1) = Mδ(τ)·δ(τ), the occupancy measure

converges towards the mean-field limit:

lim
N→∞

∆(τ) = δ(τ), with probability 1.

C. Case study on dynamic networks

The current example illustrates the dynamic creation and

removal of nodes. We consider the scenario inspired by

the well-known Lotka-Volterra equations [25], that model a

biological system. Two species, predatorA and prey B, inhabit
environment E . They periodically interact with each other,

which results in the following population dynamics.

Prey feeds from the environment, that is, contacts(B) =
{{E} 7→ β}, and their population grows whenever they eat:

κ(B, E) = {(α, (2,B), (1, E)), (1 − α, (1,B), (1, E))}. Preda-
tors hunt prey: contacts(A) = {{B, E} 7→ 1}; they may find

prey B or nothing E . In case of a successful hunt, the popula-

tion of the predators grows while the prey is eaten: κ(A,B) =
{(λ, (2,A), (0,B), (1−λ, (1,A), (0,B)}. For a non-successful
hunt κ(A, E) = {(1 − ν, (1,A), (1, E)), (ν, (0,A), (1, E))},
that is, the predators die naturally. Likewise, idle predators

may starve to death, or a predator dies as the result of a fight

(collision) between the two: ǫ(A)(A) = φ(A)(A) = (1−ν, 1).
The environment stays invariant ǫ(E)(E) = φ(E)(E) = (1, 1).
Likewise we define for prey: ǫ(B)(B) = φ(B)(B) = (1, 1).
All other transition or contact probabilities are 0.
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Figure 11. Predator and Prey; mean-field results



Figure 11 shows the results of mean-field analysis using

the following parameters: α = 0.04, β = 0.5, λ = 0.5, and
ν = 0.05, and initial distribution ∆E = 0.8, ∆B = 0.14, and
∆A = 0.06. We can clearly see that the predator-prey system

undergoes a simple harmonic motion, with the population sizes

of predator and prey fluctuating.

Comparison with Monte-Carlo simulations: We compare

our mean-field results with Monte-Carlo simulations. Fig-

ures 12 and 13 show simulation results of the predator-prey

system with 100 predators and 300 prey, and 500 predators

and 1500 prey, respectively. Although the mean-field approx-

imation is precise only for large populations, we have a

surprisingly close match already for the simulation with only

100 predators. For the system with 500 predators, the match

is nearly perfect and the standard deviation stays small over

the whole period of 1000 steps.
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Figure 12. Monte-Carlo simulations with 100 predators and 300 prey
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Figure 13. Monte-Carlo simulations with 500 predators and 1500 prey

When dealing with simulations, there is of course always a

small probability that one of the species will become extinct.

The graph in Figure 14 depicts the probability that one of

the species will become extinct within a period of 1000 steps

in dependence of the number of predators (the number of

prey is 3-times this number). To give an impression: for 100
predators the probability of extinction is 0.12, for 200, 300,
and 400 predators it decreases to 0.006, 0.00028, and 0.00004,
respectively. For 500 predators we did not experience a single

extinction in over 25000 runs (that is, 25 · 106 time steps in

total). Consequently, for 100 predators or more, the probability

of extinction is fairly small.
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Figure 14. Probability of extinction within a period of 1000 time steps

The graphs of both Figures 12 and 13 are the average of

1000 simulation runs (each 1000 time steps). For the graph

object SimpleNetDef extends NetDef {
val MAX_HOP = 5

case class Clock(hop: Int) extends Node {
talk = { case b: Clock => {

Array( 1 -> Clock(hop min (b.hop+1)),

1 -> b ) } }
idle = () => Array(1 -> Clock(hop))

collision = idle

contacts = () => Array( 0.1/MAX_HOP*hop -> all )

}
val all = ContactClass( {

for (h <- (0 to MAX_HOP)) yield Clock(h)}: _*)

initial ( 0.1 -> Clock(0), 0.9 -> Clock(MAX_HOP) )

}

Figure 15. A specification of a simple gossipping protocol

with 100 predators we have filtered out the runs where one of

the species became extinct (approximately 12% of the runs,

see Figure 14). For the graph with 500 predators no filtering

was needed (we did not encounter any extinctions).

VII. TOOL SUPPORT

We implemented a tool allowing the user to specify a

system specification with a network topology, defined by

the distribution contacts and the initial distribution ∆(0),
and communication behaviour in the form of the transition

functions κ, ǫ, and φ. The tool then performs an automatic

mean-field analysis using the algorithm, which proceeds in

two steps: (i) calculation of matrix MN
∆ , according to Eq. (3)

or Figure 10, and finding the limit Mδ ; (ii) matrix-vector

multiplications Mδ · δ, according to Theorem 1.

In order to avoid inhibitions towards a new tool-dependent

specification language we decided to use existing program-

ming languages for the system specification. Users can either

use Scala [26] to specify the system in a functional program-

ming style, or, alternatively, Java. Beside the fact that users

might already be familiar with these languages, there are some

important advantages over tool-dependent languages. First, we

have the full power of the platform-independent Scala/Java

library at our disposal for writing our specification. Second, the

writing process can be immensely accelerated by specialised

development environments (such as Eclipse, IntelliJ).

Figure 15 shows a complete specification of a simple

gossipping protocol. The case class Clock defines a node

type that is parametrised by a hop count ranging from 0 to 5.
The hop count is updated when a node talks to another one

with smaller hop count, as defined in talk. It corresponds to

the transition function κ of our theoretical framework.

In our specification, the hop count remains unchanged for

idle nodes and in case of collisions. That is, if a node

in state s is idle or has a collision, then a node will stay in s,
ǫ(s)(s) = 1 and φ(s)(s) = 1.

Using contacts that corresponds to the distribution

contacts in our modelling, we define that a node contacts

a random partner from all with probability 0.1/5 · hop . The
initial distribution ∆(0) of the occupancy measure is expressed

by the statement initial of the specification.



To handle specifications with a very large number of node

states within a reasonable time period, we implemented differ-

ent performance optimisations. For the mean-field analysis, we

need a fast mapping from nodes to indices in the vector, which

represents the occupancy measure. Thus, the tool determines

a local state space of nodes in a first phase. From the local

state space the tool extracts the range for each node parameter

(e.g., hop), and derives a function, mapping states to unique

IDs from the set N. For a better performance, the tool extends

the original specification with this function, and recompiles

the source code. As an additional optimisation, by replacing

object creation with look-up tables, the tool instantiates each

state only once to reduce memory consumption.

Mean-field analysis is perfect for a parallel computation.

Its central ingredient, matrix multiplication, can be easily

distributed over multiple CPUs. Our tool supports computa-

tion on multi-core computers. We leave, however, distributed

execution on a cluster of computers as future work.

For the GTP case study (see Sec. V-A), the matrix is dense

(contains no zeros) and has a size of 11492× 11492. For this
example, our tool needs 4.3 seconds per discrete time step (on

a Core 2 Duo with 2.66GHz PC). Surprisingly, the throughput

of the memory (RAM) channel turns out to be the bottleneck

for parallel execution on more than two cores. However, on an

8 core machine we reached 200% speedup of the performance

of 3 cores, while more cores did not yield further acceleration.

In this paper so far, we presented three case stud-

ies, all supported by our tool. The source code of

the tool and all experimental data are available at

http://www.few.vu.nl/˜rbakhshi/alg/mean.tar.gz

VIII. CONCLUSIONS

We presented an automated mean-field method for large-

scale systems with pairwise communication between nodes. To

model dynamic systems, we introduced the notion of classes

of states in our framework, and allow nodes to move between

the classes by changing their states. We reported the results

of three case studies, performed by our tool; each of the case

studies illustrates one aspect of our framework.

Regarding the future of our tool, we will experiment with

different representations of the matrix, to distribute the com-

putations over the cluster of multiple PCs, and to extend the

user-interface for more convenient input of distributions and

probabilities.

The mean-field framework presented in this paper can be

extended as follows. First, the communication between the

classes can be governed by a certain distribution, e.g., the

Poisson distribution (instead of uniform distribution). In the

current framework, arbitrary distributions can be approximated

by assigning nodes to different classes. Second, we plan to

extend the method to allow multiple communications per node.

Since the result depends on the order of communications, we

need to introduce a notion of schedulers or oracles.

Finally, the mean-field method for discrete-time models

without a notion of classes in [13], [15] allows for the

incorporation of a global memory (history of the occupancy

measure). Our tool currently only supports models without

memory, and the extension could be integrated in the future.
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