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Abstract. This paper presents a sound and complete proof system for the
logical system whose sentences are of the form All X are Y, Some X are Y
and Most X are Y, where we interpret these sentences on finite models,
with the meaning of “most” being “strictly more than half.” Our proof
system is syllogistic; there are no individual variables.

1 Introduction

The classical syllogistic is the logical system whose sentences are of the form
All X are Y, Some X are Y, and No X are Y. These sentences are evaluated in a
model by assigning a set [[X]] to the variable X and then using the evident truth
definition. This logical system lies at the root of the western logical tradition.
For this reason, modern logicians have occasionally looked back on it with an
eye to its theoretical properties or to extending it in various ways.

This paper presents an extension of the syllogistic which includes sentences
of the form Most X are Y. Variables are interpreted by subsets of a given finite
set, with the understanding that Most X are Y means that strictly more than half
of the X’s are Y’s. We present a proof system which is strongly complete relative
to the semantics: for every finite set Γ of sentences and every sentence ϕ, Γ ⊢ ϕ
in our system if and only if Γ |= ϕ. (This last assertion means that every model
of Γ is a model of ϕ.)

To get a feeling for the logical issues we present a few valid and non-valid
assertions. Note first that

{ Most X are Y, Most X are Z } |= Some Y are Z .

For if [[Y]] ∩ [[Z]] = ∅ in a particular model, then it cannot be the case that
[[X]] ∩ [[Y]] and [[X]] ∩ [[Z]] each have more than half of the elements of [[X]].
For a second example, we might ask whether

{ Most X are Y, Most Y are Z, Most Z are W } |= Some X are W .

The answer here is negative: take [[X]] = {1, 2, 3}, [[Y]] = {2, 3, 4}, [[Z]] = {3, 4, 5},
and [[W]] = {4, 5, 6}.

Another positive assertion:

{ All Y are X, All X are Z, Most Z are Y } |= Most X are Y .



This turns out to be a sound rule of inference in our system. Continuing, we
may ask whether

{ All X are Z, All Y are Z,
Most Z are Y, Most Y are X } |= Most X are Y ?

Again, the conclusion does not follow. One can take [[X]] = {1, 2, 3, 4, 5, 6, 7},
[[Y]] = {5, 6, 7, 8, 9}, and [[Z]] = {1, . . . , 9}. This example is from [4].

For a final point in this direction, here is a challenge for the reader. Let Γ
contain the sentences below

Most U are A∗ All A∗ are W All D are B∗

Most V are B∗ All U are V All A∗ are E
Most W are A∗ All V are W All B∗ are E
Most A∗ are U All D are A∗ Most E are U

(1)

We ask: does Γ |= Some A∗ are B∗, or not?
The main work of the paper presents a sound and complete proof system

for this semantics. The proof system is found in Section 3 and the completeness
itself is in Section 4. The last section discusses a fine point on our logical system:
it has infinitely many rules, and this is unavoidable.

Prior work on this topic. The problem of axiomatizing the syllogistic logic of Most
originates with [4]. That paper obtained some very simple results in the area,
such as a completeness result for syllogistic reasoning using Some and Most
(but not All), and also explicit statements of some of the very simplest of the
infinite rule scheme that we employ in this paper, the scheme of (⊲). The full
formulation of these (⊲) rules in our logic is new, as is the completeness result.

2 Syntax and semantics

For the syntax of our language, we start with a collection of nouns. (These are
also called unary atoms or variables in this area, and we shall use these terms
interchangeably.) We use upper-case Roman letters like A, B, . . ., X, Y, Z for
nouns. We are only interested in sentences of one of the following three forms:

(i) All X are Y,
(ii) Some X are Y, and

(iii) Most X are Y.

We mentioned sentences No X are Y in the Introduction, but we are ignoring
No in what follows; it is open to extend what we do to the larger syllogistic
fragment with No.

For the semantics, we use modelsM consisting of a finite set M together with
interpretations [[X]] ⊆ M of each noun X. We then interpret our sentences in a
model as follows

M |= All X are Y iff [[X]] ⊆ [[Y]]
M |= Some X are Y iff [[X]] ∩ [[Y]] , ∅
M |= Most X are Y iff |[[X]] ∩ [[Y]]| > 1

2 |[[X]]|



Observe that if [[X]] is empty, then automaticallyM 6|= Most X are Y.

We sometimes use ϕ and ψ as variables ranging over all sentences in the
language, and Γ as a variable denoting arbitrary finite sets of sentences.

We say thatM |= Γ ifM |= ψ for all ψ ∈ Γ.

The main semantic definition is that Γ |= ϕ if for all (finite) models M, if
M |= Γ, then M |= ϕ. The central point of this paper is to provide a proof
system which defines a relation Γ ⊢ ϕ in terms of proof trees, and to prove the
soundness and completeness of the system: Γ |= ϕ iff Γ ⊢ ϕ.

3 Proof system

The logical system is a syllogistic one. See Figure 1 for the rules of the system.
The rules of All and Some are familiar from basic logic, and the interesting rules
of the system are the ones involving Most.

All X are X
All X are Y All Y are Z

All X are Z

Some X are Y
Some Y are X

Some X are Y
Some X are X

Some X are Y All Y are Z
Some X are Z

Most X are Y
Some X are Y

m1
Some X are X
Most X are X

m2

Most X are Y All Y are Z
Most X are Z

m3

Most X are Z All X are Y All Y are X
Most Y are Z

m4

All Y are X All X are Z Most Z are Y
Most X are Y

m5

X1 ⊲A,B Y1 Y1 ⊲B,A X2 · · · Xn ⊲A,B Yn Yn ⊲B,A X1

Some A are B
⊲

Fig. 1. Rules of the logical system for All, Some, and Most. The last line is an
infinite rule scheme, and the syntax is explained in Section 3.

We write Γ ⊢ ϕ to mean that there is a treeT labeled with sentences from our
language such that (a) all of the leaves of T are labeled with sentences which
belong to Γ (or are axioms of the form All X are X); (b) each node which is not a
leaf matches one of the rules in the system; (c) the root is labeled ϕ.



As an example, Some X are X, All X are Y ⊢ Most X are Y via the tree
below:

Some X are X
Most X are X

m2
All X are Y

Most X are Y
m3

For more on syllogistic logics in general, see [6].
The system is sound: if Γ ⊢ ϕ, then Γ |= ϕ. The proof is a routine induction on

proof trees in the system. We comment on the soundness of the rules concerning
Most.

For (m1), if Most X are Y in a modelM, then in that model, |[[X]] ∩ [[Y]]| > 0,
and so Some X are Y holds. And for (m2), if |[[X]]| > 0, then |[[X]]∩[[X]]| = |[[X]]| >
1
2 |[[X]]|.

For (m3), suppose that |[[X]] ∩ [[Y]]| > 1
2 |[[X]]| and that [[Y]] ⊆ [[Z]]. Then

|[[X]] ∩ [[Z]]| ≥ |[[X]] ∩ [[Y]]| > 1
2 |[[X]]|, and so we have Most X are Z.

Turning to (m4), if |[[X]] ∩ [[Z]]| > 1
2 |[[X]]|, and also [[X]] ⊆ [[Y]] ⊆ [[X]], then

[[X]] = [[Y]], and so |[[Y]] ∩ [[Z]]| > 1
2 |[[Y]]|.

For (m5), assume that [[Y]] ⊆ [[X]] ⊆ [[Z]] and that |[[Z]] ∩ [[Y]]| > 1
2 |[[Z]]|. Then

Z ∩ Y = Y = X ∩ Y, and so |[[X]] ∩ [[Y]]| > 1
2 |[[Z]]| ≥ 1

2 |[[X]]|.
For the infinite scheme of (⊲) rules, we need a preliminary result. In the figures

below, and for later in this paper, we present facts about the interpretations of
various variables inside a given model using special diagrams. For the most part,
the notation is self-explanatory given our statements in Proposition 1 below. We
merely alert the reader to the two types of arrows, one (with an open arrowhead
and an “inclusion” tail) for All sentences, and one (with a solid arrowhead) for
Most sentences.

Proposition 1. LetM be a (finite) model which satisfies all of the sentences

Most Y are A′ All A′ are A

Most X are B′ All B′ are B ,
(2)

and either the sentence All X are Y,

A A′

X

Y

B′ B

or the sentence All B′ are Y

A A′

X

Y

B′ B

Also, assume that in addition, [[A]] ∩ [[B]] = ∅. Let

XA = |[[X]]∩ [[A]]| ,



and similarly for XB, YA, and YB. Then

min(YA,YB) > min(XA,XB) .

Proof. By (2) we have YA > 1
2 |Y|. Since [[A]] ∩ [[B]] = ∅, it follows YA > YB.

Similarly, XB > XA.
We have two cases, depending on whether All X are Y is true in M, or

All B′ are Y. In the first case, YA > YB ≥ XB > XA. In the second case,

XA = |X ∩ A| ≤ |X \ B′| since All B′ are B and [[A]] ∩ [[B]] = ∅
< |X ∩ B′| since Most X are B′

≤ |B′| = |Y ∩ B′| since All B′ are Y
≤ |Y ∩ B| = YB

Thus XA < YB,YA. ⊓⊔

In order to state the rules of the system in a concise way, we need to introduce
some notation based on what we saw in Proposition 1. We write X ⊲A,B Y for
either

(i) the assertions (2) and All X are Y, or
(ii) the assertions (2) and All B′ are Y.

This notation is found in the last rule in Figure 1; actually, this is a rule scheme
with infinitely many instances. When we write X ⊲A,B Y, we fix the variables X,
Y, A, B, but the additional variables A′ and B′ are arbitrary. When we have more
than one assertion with a ⊲, we permit different additional variables to be used.
To be concrete, the first (⊲) rule would be

X ⊲A,B Y Y ⊲B,A X

Some A are B
(3)

This is shorthand for four rules. One of them is: From

Most Y are A′ All A′ are A
Most X are B′ All B′ are B All X are Y
Most Y are A′′ All A′′ are A
Most X are B′′ All B′′ are B All A′′ are X

(4)

infer Some A are B. Here is a diagrammatic form of this rule:

A A′′ X

B′A′ Y B

B′′

We mentioned that the (⊲) rule shown in (3) is shorthand for four rules. The
other three differ in the assertions in the third column, corresponding to the



differing possibilities in Proposition 1. One of these other rules is:

A A′′ X

B′A′ Y B

B′′

where All A′′ are X is replaced by All Y are X.
As with all rules in logic, we may identify variables. For example, taking Y

to be X, also A′ and A′′ to be A, and finally B′ and B′′ to be B, we get

A A X

BA X B

B

Dropping repeated premises and the premises All X are X, All A are A and
All B are B, we obtain a simpler form of this rule:

Most X are A Most X are B
Some A are B (5)

This was the rule that we began with, back in (1).

Lemma 1. Every (⊲) rule is sound.

Proof. The soundness follows from Proposition 1. We shall only go into details
concerning one instance of the rule scheme, the rule 5 described just before the
statement of this lemma. LetM be a (finite) model satisfying all 10 sentences in
(4). Assume towards a contradiction that [[A]]∩[[B]] = ∅. One use of Proposition 1
shows that min(YA,YB) > min(XA,XB). A second use shows min(XA,XB) >
min(YA,YB). This is a contradiction. ⊓⊔

4 Completeness

The next theorem is the main result in this paper.

Theorem 1. Let Γ be a finite set of sentences in our fragment. If Γ |= ϕ, then Γ ⊢ ϕ.

The rest of this section is devoted to the proof.

Notation 2 If Γ ⊢ All X are Y, we write X ֒→ Y. If Γ ⊢ Most X are Y, we write
X→ Y. If Γ ⊢ Some X are Y, we write X ↓ Y.

Notice that our notation suppresses the underlying set Γ of assumptions.
It should also be noted that these shortened notations are intended to be used
only for the statements having to do with formal proofs in our system. When
discussing a particular modelM of Γ, we generally prefer to write, for example,
M |= Most X are Y instead of X→ Y inM.

The proof of Theorem 1 is by cases as to ϕ. To keep the cases separate, we
treat each in its own subsection. The bulk of the work turns out to be for the
case ϕ is of the form Some A∗ are B∗.



4.1 The proof whenϕ is All A
∗ are B

∗.

This is the easiest case. Let Γall be the set of All sentences in Γ. We claim that in this
case Γall |= ϕ. To see this, letM |= Γall. Add k fresh points to the interpretation [[X]]
of every noun, where k is chosen large enough so that the new interpretations
now overlap in most elements. Then the expanded model M+ satisfies (i) all
most sentences, (ii) all some sentences, and (iii) the same all sentences as M.
ThusM+ |= Γ, andM+ |= ϕ. Then the original modelM also satisfies ϕ since ϕ
is an All-sentence. It follows Γ ⊢ ϕ since the derivation rules for all are complete,
see [4].

4.2 The proof whenϕ is Most A
∗ are B

∗.

We assume in that Γ 6⊢ Most A∗ are B∗. We build a finite modelM |= Γ where
|[[A∗]] ∩ [[B∗]]| ≤ 1

2 |[[A
∗]]|. We have three subcases.

The first subcase is when A∗ ֒→ B∗. In this subcase we have ¬(A∗ ↓ A∗), for
otherwise by (m2) and (m3), Γ ⊢ Most A∗ are B∗. We define a model M by
M = { ∗ }, and [[X]] = { ∗ } if X ↓ X and [[X]] = ∅, otherwise. We check thatM |= Γ.
Consider a sentence X→ Y in Γ. The rule (m1) tells us that X ↓ X and Y ↓ Y, and
indeed Most X are Y holds in the model. The same holds for sentences X ↓ Y.
For the sentences X ֒→ Y, note that if [[X]] , ∅, then X ↓ X. So by the logic,
Y ↓ Y, and [[X]] = { ∗ } = [[Y]]. This concludes the verification thatM |= Γ. Clearly
[[A∗]] = ∅, and soM 6|= Most A∗ are B∗.

The second subcase is when ¬(A∗ ֒→ B∗) and B∗ ֒→ A∗. We divide our variables in
three classes:

A = {X : A∗ ֒→ X} B = {X : X ֒→ B∗} C = all others

Define a modelM using M = {1, 2, 3, 4} and

[[X]] =



















{1, 2, 3, 4} if X ∈ A
{1, 2} if X ∈ B
{1, 2, 3} if X ∈ C

(6)

Every sentence of the form All X are Y is true inM, except for the ones with
X ∈ C and Y ∈ B, and those with X ∈ A and Y ∈ B ∪ C. But if Y ∈ B, and if Γ
contains All X are Y, then X ∈ B as well. If X ∈ A, and if Γ contains All X are Y,
then Y ∈ A also. So the All sentences in Γ all hold inM.

Every sentence of the form Some X are Y is true inM.
Every sentence of the form Most X are Y is true inM, except for the ones

with X ∈ A and Y ∈ B. But if X ∈ A and Y ∈ B, we cannot have X → Y: if
we did have this, then using (m5) we would have A∗ → B∗, contradicting our
assumption in this section that ¬(A∗ → B∗).

We conclude thatM |= Γ. Finally, Most A∗ are B∗ is false in Γ.



The final subcase is when ¬(A∗ ֒→ B∗) and ¬(B∗ ֒→ A∗). We divide the set of
variables into six classes and assign interpretations as follows:

class variables X such that interpretation

A A∗ ֒→ X,¬(X ֒→ A∗) {0, 1, 2, 3, 4, 5, 6}
B A∗ ֒→ X and X ֒→ A∗ {1, 2, 3, 4, 5, 6}
C X ֒→ A∗,¬(A∗ ֒→ X), {1, 2, 3, 4}

¬(X ֒→ B∗)
D X ֒→ B∗,¬(X ֒→ A∗) {0, 1, 2, 3}
E X ֒→ A∗,X ֒→ B∗ {1, 2, 3}
F all others {0, 1, 2, 3, 4}

This defines a model which we callM.M satisfies all Some sentences. We omit
the proof thatM |= Γ butM 6|= Most A∗ are B∗.

4.3 Starting the proof whenϕ is Some A
∗ are B

∗

We are still proving Theorem 1. We are left with the case that Γ 6⊢ Some A∗ are B∗.
We build a finite modelM |= Γ where [[A∗]] ∩ [[B∗]] = ∅.

We divide the unary atoms (nouns) in Γ ∪ {ϕ} into five classes:

A = {X : X ֒→ A∗ but ¬(X ֒→ B∗)}
B = {X : X ֒→ B∗ but ¬(X ֒→ A∗)}
D = {X < A∪B : X ֒→ A∗ and X ֒→ B∗}
C = {X < A∪B∪D : for some Y,

X ֒→ Y→ A∗ or X ֒→ Y→ B∗}
E = all other nouns

Notation 3 Henceforth, we use A as a variable for the elements of A, and similarly
for B, C, D, and E. Also, we continue to use X as an arbitrary noun, one which might
belong to any of the collectionsA, . . ., E.

Proposition 2. The following hold:

1. A, B, C,D, and E are pairwise disjoint.
2. If D ∈ D, then for all X, ¬(D ↓ X).
3. If E ∈ E, then ¬(E ֒→ X) for all X ∈ A ∪ B ∪ C ∪D.
4. For A ∈ A,B ∈ B, and C ∈ C, ¬(C ֒→ A) and ¬(C ֒→ B).
5. If E ∈ E, then E 6→ X for all X ∈ A ∪ B ∪D.

Proof. Part (1) is an easy consequence of the definitions.
In part (2), from if D ↓ X, and X ∈ D, then using our logic, we get A∗ ↓ B∗.

This contradicts our overall assumption that Γ 6⊢ Some A∗ are B∗.
Part (3) comes down to two similar facts: if X ֒→ A∗ or X ֒→ B∗, then

X ∈ A ∪ B ∪D, and if C ∈ C and X ֒→ C, then X ∈ A ∪ B ∪ C ∪D. This fact is
also behind part (4).

For the last part, assume that E ∈ E, E→ X and X ∈ A ∪D. Then E→ X ֒→
A∗, and so E ֒→ A∗ by our logic. Thus E ∈ A∪D, contradicting the definition of
E.

This completes the proof. ⊓⊔



Dispensing with a trivial case. Since A∗ ֒→ A∗, we have A∗ ∈ A∪D. In case A∗ ∈ D,
the model construction is very easy indeed. We let

[[X]] =

{

∅ if X ֒→ A∗

{∗} otherwise
(7)

It is easy to check that this gives a model of Γ, and clearly [[A∗]] ∩ [[B∗]] = ∅. We
omit these details.

All the points in our last paragraph apply as well to the case B∗ ∈ D. So from
this time forward we avoid these trivial cases and instead make the following
assumption.

A∗ ∈ A and B∗ ∈ B (8)

This assumption will only be used once, at the very end of our proof.
We now return to the model construction. In the model that we eventually

build, we’ll have [[D]] = ∅ for D ∈ D. And for E,E′ ∈ E, [[E]] = [[E′]]. We’ll also
make sure that Most X are E holds for X ∈ C.

The idea, part I. The high-level description of our semantics is that each inter-
pretation [[X]] will be a disjoint union of four sets:

(i) A variable set that represents [[X]] ∩ [[A∗]].
(ii) A constant set that represents additional material added to [[A]] for all A ∈ A,

and also to [[Y]] for Y ∈ C ∪ E.
(iii) A variable set that represents [[X]] ∩ [[B∗]].
(iv) A constant set that represents additional material added to [[B]] for all B ∈ B,

and also to [[Y]] for Y ∈ C ∪ E.

Each of these sets will be of the form {1, . . . , n} for some n depending on which
collection X belongs to, and also some other factors that will be explained in
due course. To be a bit more concrete, let us write (i) – (iv) as

{1, . . . , n1
X} + {1, . . . , nA∗} + {1, . . . , n

2
X} + {1, . . . , nB∗},

where + denotes disjoint union. (See Section 4.6.) Note that in order that a
sentence of the form All U are V be true in the model, we need only arrange
that n1

U
≤ n1

V
and n2

U
≤ n2

V
. To arrange that a sentence of the form Most U are V

is true, we shall employ two different ideas. First, in many cases we can simply
arrange that the constant sets, the ones in (ii) and (iv) above, are large. This will
indeed insure that many Most sentences hold in our model. But more delicately,
if C ∈ C and A ∈ A and we wish to insure that Most C are A holds, then we
need to arrange that [[A]] ⊆ [[A∗]], [[B]] ⊆ [[B∗]], [[A∗]] ∩ [[B∗]] = ∅, and

|[[A]]| > 1
2

(

|[[C]] ∩ [[A∗]]| + |[[C]] ∩ [[B∗]]|
)

. (9)

For this purpose, the variables C ∈ C lead us to two numerical parameters, Ca

and Cb. These are intended to be |[[C]] ∩ [[A∗]]| and |[[C]] ∩ [[B∗]]|. And to get our
hands on the values of these parameters, we introduce a set and a well-founded
relation of it, and then take the heights of various elements in this relation.



Definition 1. As a step towards the semantics, we consider a set G and two relations
◭ and ≤.

G = A ∪ B ∪ {Ca : C ∈ C} ∪ {Cb : C ∈ C}. When we need to refer to arbitrary
elements of G, we use the letter g.
If C→ A, then Cb ◭ Ca,A.
If C→ B, then Ca ◭ Cb,B.
If C ֒→ C′, then Ca ≤ C′a and Cb ≤ C′

b
.

If A ֒→ A′, then A ≤ A′.
If B ֒→ B′, then B ≤ B′.
If A ֒→ C, then A ≤ Ca.
If B ֒→ C, then B ≤ Cb.

Notice that ≤ is a preorder on G.

The idea, part II. The most interesting parts of Definition 1 are the parts having to
do with the ◭ relation. There is still a ways to go to see how (9) will be arranged,
but before we get to this we need to see how ≤ and ◭ give us a well-founded
relation. This is the content of Lemma 3 below, and as a preliminary to this we
have Lemma 2.

We write < for the strict part of this preorder, so g < g′ means g ≤ g′ but
¬(g′ ≤ g).

Here is the only use of the (⊲) rules of the logic:

Lemma 2. There are no cycles in ◭ ∪ ≤ which involve a ◭ relation. That is, if S is the
relation ◭ ∪ ≤, then there is no sequence of length ≥ 2 of the form

g1 S g2 · · · gi ◭ gi+1 S gk = g1.

Proof. Assume towards a contradiction that we had a sequence as above. By
rotating the sequence around, we might as well assume that i = 1. Moreover,
since ≤ is transitive, we may assume that no two successive instances of S are ≤.
Without loss of generality, g1 is of the form C1

a . Thus g2 is either C1
b

(for the same
C) or else g2 is some B.

We first claim that there must be another instance of ◭ on our sequence. For
if not, then g2 = g1. However, we have just seen that g2 cannot equal g1. The
next instance of ◭must be of one of the two forms C2

b
◭ C2

a , or else C2
b
◭ A. Our

cycle thus begins

C1
a ◭ g2 ≤ C2

b ◭ g4 · · ·

The points before the ◭’s alternate between those of the form Ca and those of
the form Cb. And so the chain overall may be written

C1
a ◭ g2 ≤ C2

b ◭ g4 ≤ C3
a ◭ · · · · · · ≤ Cr

b ◭ g2r ≤ Cr+1
a = C1

a .

Now in the first section of the cycle we have C1
a ◭ g2 ≤ C2

b
◭ g4. If g2 is C1

b
, then

we have some B ∈ B and A ∈ A so that all of the following are provable from Γ:

Most C1 are B,All C1 are C2,Most C2 are A,



and also All B are B∗ and All A are A∗. (These last two are from the definitions
ofA and B.) In short, we get C1 ⊲A∗,B∗ C2. If g2 is of the form B, then we again get
C1 ⊲A∗,B∗ C2.

In a similar way, the section of the cycle C2
b
◭ g4 ≤ C4

b
◭ g6, tells us that

C2 ⊲B,∗,A∗ C3. Continuing, we get C3 ⊲A∗,B∗ C4, . . ., Cr ⊲B,∗,A∗ Cr+1 = C1.
Then by one of the (⊲)-rules, we see that Γ ⊢ Some A∗ are B∗. But this

contradicts the overall assumption made at the very beginning of this section
that Γ 6⊢ Some A∗ are B∗. ⊓⊔

We write R for the union ◭ ∪ <. (Note that S used the relation ≤ while R
uses its strict form <.)

Lemma 3. The relation R is well-founded on G.

Proof. Suppose g0, . . . , gn, . . . is an infinite sequence with the property that
gn+1 R gn for all n. Since G is a finite set, there are j < k such that gk = g j.
Thus

g j = gk R gk−1 R · · ·R g j+1 R g j .

In this cycle, the instances of R cannot all be from <; otherwise, we would have
g j < gk and g j = gk, a contradiction. So at least one pair must be related by ◭.
But then we have a cycle which contradicts Lemma 2. ⊓⊔

The well-foundedness of R implies that there is a unique rank function | · | :
G → N such that for all g ∈ G, |g| = max{1 + |h| : h R g}.

Lemma 4. Concerning the well-founded relation R:

1. If A ֒→ A′ and A′ ֒→ A, then |A| = |A′|. (Similar results hold for B1,B2 ∈ B.)
2. If A ֒→ A′, then |A| ≤ |A′|.
3. If C ֒→ C′ and C′ ֒→ C, then |Ca| = |C

′
a| and |Cb| = |C

′
b
|.

4. If C ֒→ C′, then |Ca| ≤ |C
′
a| and |Cb| ≤ |C

′
b
|.

5. If A ֒→ C, then |A| < |Ca|.
6. If B ֒→ C, then |B| < |Cb|.

Proof. In part (1), we show that A and A′ have the same immediate predecessors
under R, hence the same rank. This is an easy consequence of the following rules
of the system: the transitivity of All, (Barbara); and also the monotonicity rule for
Most, (m3).

The same point works for part (3), except that we need to show that if
C ֒→ C′ ֒→ C, and Ca ◭ Cb, then also C′a ◭ C′

b
. This uses the rule (m4).

Part (2) follows from part (1). Assuming that A ֒→ A′, then either A′ ֒→ A
(and then |A| = |A′|), or else ¬(A′ ֒→ A) (and then the definition of R and the
rank function tell us that |A| < |A′|).

Here is the argument for (5); part (6) is similar. If A ֒→ C, then A ≤ Ca by the
definition of ≤. We cannot have Ca ֒→ A, by the definition of C. We also do not
have Ca ◭ A (see Definition 1). So A < Ca, and thus |A| < |Ca|. ⊓⊔



4.4 A lemma on falling sums

Let K be any number. We define a function fK with domain {0, . . . ,K} by

fK(i) =

i
∑

l=0

2K−l . (10)

Note that 1 ≤ fK(i) ≤ 2K+1 − 1.
We use these functions fK in order to insure that the Most sentences in Γ are

true in the model which we build. The key point in the verification hinges on
the following result.

Lemma 5. For all 0 ≤ i < j, k ≤ K, fK(k) > 1
2 ( fK(i) + fK( j)).

Proof. It is easy to check that f is strictly increasing. Fix 0 ≤ i < j, k ≤ K. Note
that i < K so that K − i ≥ 1. We drop the subscript K on f , and then:

f (i) + f ( j) ≤ f (i) + f (K) = (
∑i

l=0 2K−l) +
∑K

l=0 2l

< (
∑i

l=0 2K−l) + 2K+1

= 2((
∑i

l=0 2K−l−1) + 2K)

= 2
∑i+1

l=0 2K−l = 2 f (i + 1) ≤ 2 f (k)

⊓⊔
4.5 Notation for sets in our model construction

We need some notation for sets. Given numbers a, b, c, d, we let

a + b + c + d = ({1, . . . , a} × {1})∪ ({1, . . . , b} × {2})

∪ ({1, . . . , c} × {3}) ∪ ({1, . . . , d} × {4})

For example, 1+3+0+2 is a shorthand for the set { (1, 1), (1, 2), (2, 2), (3, 2), (1, 4), (2, 4) }.
Observe that if a ≤ a′, b ≤ b′, c ≤ c′, and d ≤ d′, then a+b+c+d ⊆ a′+b′+c′+d′.

4.6 The model and the verification

At this point we return to the proof of Theorem 1. We have a set Γ and we want
to build a model of it where Some A∗ are B∗ is false. Definition 1 gives a set G
and Lemma 3 a well-founded relation R on it. For g ∈ G, let |g| be the rank of
g in R. We also remind the reader of the functions fK defined in (10) above. In
what follows, we take

K = max
g∈G
|g| and define ng = fK(|g|) . (11)

So ng =
∑|g|

l=0
2K−l. We also let N = 1 +

∑K
l=0 2K−l = 2K+1. Then for all g,

ng < 1 +
∑|g|

l=0
2K−l = N .



We now present our model, using all of the notation above. The universe M
is N+N+N+N; this is a set with 4N elements. The rest of the structure is given
as follows:

For A ∈ A, [[A]] = nA + 0 + N + 0
For B ∈ B, [[B]] = 0 + nB + 0 + N
For C ∈ C, [[C]] = nCa

+ nCb
+ N + N

For D ∈ D, [[D]] = 0 + 0 + 0 + 0
For E ∈ E, [[E]] = N + N + N + N

Note that [[D]] = ∅, while [[E]] =M. This defines our modelM.
We turn to the verification that it has the properties needed for our theorem:

M |= Γ, butM 6|= Some A∗ are B∗.

Lemma 6. If X ֒→ Y then [[X]] ⊆ [[Y]].

Proof. For X,Y ∈ A∪B∪C, this result comes from Lemma 4 and the definitions
of the model. We also use the fact that no C ∈ C is related by ֒→ to any A ∈ A or
to any B ∈ B.

If X ∈ D, then [[X]] = ∅. If Y ∈ D, then X ∈ D also, by the definition ofD.
If X ∈ E, then Y cannot belong toA∪B ∪ C ∪D by Proposition 2, part (3).

For Y ∈ E, our result comes from the fact that for all X, [[X]] ⊆ [[E]]. ⊓⊔

Lemma 7. If X→ Y, then |[[X ∩ Y]]| > 1
2 |[[X]]|.

Proof. Every model satisfies the sentences Most X are X, provided [[X]] , ∅.
Our model has [[X]] , ∅ for X < D. For all A ∈ A, B ∈ B, C ∈ C, and E ∈ E,
our M satisfies all sentences of all of the forms Most A are C, Most A are E,
Most B are C, Most A are E, and Most E are C. The reason for all of these has to
do with the choice of N in the interpretations of the variables, and the fact that
ng ≥ 1. In other words, we have |[[X∩ Y]]| > 1

2 |[[X]]| in many cases, even without
the assumption that X→ Y.

From Proposition 2, we have ¬(D → X) for all X and also ¬(E → X) for
X ∈ A∪B∪D. We also easily have ¬(A→ D) and ¬(B→ D). Finally, we cannot
have A→ B, since this would easily entail A∗ ↓ B∗.

Much of the work in our construction was devoted to insuring that C → A
and C → B. The details on these are similar, so we only discuss C → A. In this
case Cb ◮ Ca,A. By Lemma 5, nA >

1
2 (nCa

+ nCb
). Our construction has arranged

that [[C]] ∩ [[X]] = min(nA, nCa
) + 0 + N + 0. Recall that nA is strictly larger than

the average of n(Ca) and n(Cb). Since n(Ca) > n(Cb), n(Ca) is also strictly larger
than that average. Thus

|[[C ∩ A]]| = min(nA, nCa
) +N

> 1
2 (nCa

+ nCb
) +N =

1
2 |[[C]]|

This completes the proof. ⊓⊔

Lemma 8. If X ↓ Y then [[X]] ∩ [[Y]] , ∅.

Lemma 9. [[A∗]] ∩ [[B∗]] = ∅.



Proof. Our construction has arranged that [[A]]∩[[B]] = ∅ for all A ∈ A and B ∈ B.
Recall that we are assuming that A∗ ∈ A and B∗ ∈ B; see (8) and the discussion
preceding it. Our result follows. ⊓⊔

This concludes the proof of Theorem 1.

5 No finite axiomatization

Our set of rules in Figure 1 is infinite: what we write as (⊲) is an infinite set of
axioms. It is natural to ask whether we can obtain a finite axiomatization.

Theorem 4. There is no finite axiomatization of our fragment of syllogistic logic.

Proof. We sketch the argument; see [5,6] for proofs of analogous results for other
logics; these have some similarity with what we do, and some differences. Let
n > 0 be arbitrary, and let Γ be given diagrammatically by:

C1 C2 C3 C4 · · · C2n−1 C2n

A1 A2 · · · An

B1 B2 · · · Bn

A

B

Here we leave a few arrows implicit; every arrow is also a bidirectional some

arrow, the graph is reflexive for all and some arrows, and we have all some
arrows Ai ↔ C j and Bi ↔ C j.

The diagram is an instance of (⊲), and so Γ ⊢ Some A are B. However,
if we drop any of the arrows Ai ֒→ C2i−1, then Γ is closed under the rules in
Figure 1, and hence under non-trivial consequences in the logic by Theorem 1
(completeness). Thus to conclude Some A are B we need a rule that includes
all n assumptions Ai ֒→ C2i−1. As n was arbitrary, it follows that every complete
axiomatization has to be infinite. ⊓⊔

6 Conclusion and Future Work

This paper has presented a sound and complete axiomatization of the logical
system whose sentences are of the form All X are Y, Some X are Y, and



Most X are Y. The semantics is the natural one, restricting attention to finite
models and using strict majority in the semantics of Most X are Y. We provided
a sound and complete proof system.

We have shown that the complexity of the logic is low, and we also have a
proof search algorithm. The details on this are suppressed in this publication for
lack of space. But the algorithm follows the completeness proof fairly closely.

The next steps would be to add more features to the logic. One would like
to add No X are Y, and also sentences like There are at least as many X as
Y. In addition, one could hope to add boolean connectives over sentences. A
related result appears in Lai et al. [2]; the logic there is propositional logic on
top of the sentences Most X are Y (but not containing Some or All sentences).
The completeness argument there is rather different, and it is open to merge the
approach there with what is done here.

Overall, we would like to explore stronger logics, focusing on the borderline
between decidable and undecidable logics, on complexity results and algo-
rithms. This area should be of interest in finite model theory and in branches of
logic close to combinatorics.
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