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Abstract. The Reduction-under-Substitution Lemma (RuS), due to van
Daalen [Daa80], provides an answer to the following question concerning
the lambda calculus: given a reduction M [x := L]� N , what can we say
about the contribution of the substitution to the result N . It is related
to a not very well-known lemma that was conjectured by Barendregt in
the early 70’s, addressing the similar question as to the contribution of
the argument M in a reduction FM � N . The origin of Barendregt’s
Lemma lies in undefinablity proofs, whereas van Daalen’s interest came
from its application to the so-called Square Brackets Lemma, which is
used in proofs of strong normalization.
In this paper we compare various forms of RuS. We strengthen RuS to
multiple substitution and context filling and show how it can be used to
give short and perspicuous proofs of undefinability results. Most of these
are known as consequences of Berry’s Sequentiality Theorem, but some
fall outside its scope. We show that RuS can also be used to prove the
sequentiality theorem itself. To that purpose we give a further adaptation
of RuS, now also involving “bottom” reduction rules, sending unsolvable
terms to a bottom element and in the limit producing Böhm trees.

Introduction

The Reduction-under-Substitution Lemma (RuS) addresses the following ques-
tion concerning the λ-calculus: given a reduction M [x := L] � N , what is the
contribution of the substitution to the result N? Or, equivalently: how much
of N can be produced already by M , independently of the substitution? The
answer to the second question will turn out to be: a prefix of N . Thus there is
a natural inverse correspondence with the so-called prefix property, cf. [BKV00]
or [Ter03], Ch. 8.

RuS was formulated by Diederik van Daalen [Daa80] as a slightly strength-
ened version of an observation of Barendregt [Bar74], addressing the same ques-
tions as to the contribution of the argument M in a reduction FM � N . We will
study Barendregt’s Lemma (BL) in Section 1. Because of its more general form,
van Daalen’s formulation allowed for an easier and more elegant proof than BL.
RuS found its way into Barendregt’s book on the λ-calculus [Bar84], where it
ended up as Exercise 15.4.8. This literally seemed to be the end of the story, as
subsequently little more attention has been paid in the literature to either BL
or RuS. Unjustly so, as we hope to make clear in this paper.

The origin of Barendregt’s Lemma lies in undefinability. In accordance, Ex-
ercise 15.4.8 in [Bar84] is employed there as one of two methods to obtain the



undefinability of Church’s δ (using a particular encoding of numerals), the other
method using a Böhm-out technique. In [Vri87] Barendregt’s Lemma was used
for a quick proof of the undefinability of surjective pairing in the λ-calculus,
which was one of the early results of Barendregt in [Bar74], there proved using
the technique of underlining.

Van Daalen’s interest in reduction under substitution derived from the fact
that it implied the so-called Square Brackets Lemma (SqBL), a structural lemma
on the contribution of a substitution in a reduction to abstractor form. The
SqBL was the key to van Daalen’s new and original method for proving strong
normalization. Use has been made of this method in [Daa80], [Lév75], [Bar84],
Ch. 14, and [Oos97]. It is also discussed in [Vri07], to which we refer for a detailed
historical account of Barendregt’s Lemma and reduction under substitution.

The aim of this paper is twofold. First, to give a cogent exposition of reduction
under substitution. Thereto the first two sections are explanatory in character.
The second goal is to explore the potential of RuS for producing new insights,
proof methods and results in the λ-calculus, starting by generalizing RuS to
multiple subsitution, and later also extending it to filling holes in contexts. The
essential difference is that hole filling may introduce variables that are captured
by a binder, whereas substitution may not.

We will present new elementary proofs of undefinability results that are
sometimes presented as applications of Berry’s Sequentiality Theorem (BST),
[Ber78,Ber79], [Bar84]. BST is in terms of Böhm trees, and therefore it is intrinsi-
cally infinitary, whereas RuS is just a structural observation on finite reductions.
We also use RuS to prove the Perpendicular Lines Theorem for open terms with
respect to β-conversion, thereby confirming a conjecture from [BS99]. Finitary
proofs of classic undefinability results have also been obtained in [BKOV99]. In
Section 4 we will briefly discuss the relation to our approach.

We will also pay attention to the issue of sequentiality itself. In Section 6
we first prove a new sequentiality result that is purely in terms of β-reduction.
Then we tackle the original BST, adapting RuS to cover also the Böhm-reduction
rules, sending unsolvable terms to a bottom element and in the limit producing
Böhm trees. We note that some of our results fall outside the scope of BST.

Outline

In Section 1 we start out by a discussion of Barendregt’s Lemma. We illustrate
the use of BL by giving short proofs for the undefinability of surjective pairing
in the λ-calculus and for the Genericity Lemma. We generalize the Genericity
Lemma to a form that is not implied by BST.

Then in Section 2 the Reduction-under-Substitution Lemma (RuS) is intro-
duced and its relation to Barendregt’s Lemma indicated. The use of RuS is
illustrated by the Square Brackets Lemma.

A proof of RuS will be given in Section 3, at the same time generalizing it
to multiple substitutions.

Then in Section 4 a couple of undefinability results are presented, related to
the sequential nature of the λ-calculus.



In Section 5 we indicate how our analysis can be extended from substitutions
to subterms within an arbitrary context. As an application we prove a form of
the Perpendicular Lines Theorem.

Finally in Section 6 we turn to the theme of sequentiality. First a new se-
quentiality result is established as a corollary to RuS and then we use RuS in
an analysis of Berry’s Sequentiality Theorem.

We conclude by assessing our results in Section 7, giving links to relevant
related work and pointing out possible lines for further research.

Preliminaries

We are concerned with the pure λ-calculus, with which we assume familiarity. We
adopt the notations and conventions of the standard text [Bar84]. In particular,
we use → to denote one-step β-reduction, � for the reflexive, transitive closure
of →, and = for β-convertibility. Moreover, ≡ stands for syntactive equivalence
modulo α-conversion.

For terms t, s and a position p in t we use t|p for the subterm of t at position
p, and t[s]p denotes the result of replacing the subterm at position p in t by s.
The empty context is denoted by [ ]. Note that in particular C[[ ]]p denotes the
result of placing a hole at position p in the context C.

1 Barendregt’s Lemma

At the end of [Bar72], a handwritten note of Henk Barendregt on the undefin-
ability of Church’s δ in combinatory logic (CL), one finds a statement that seems
to be added just as an afterthought. It is not widely known, probably just by a
group of insiders, who refer to it as Barendregt’s Lemma (BL). We quote [Bar72]
verbatim:

Theorem 12. If CL ` FM � N , then there are subterm occurrences
Ai of N such that CL ` Fx� N ′ where N ′ is the result of substituting
xNi for the subterm occurrence Ai and such that CL ` [x/M ]N ′ � N .

Proof. Same method as the proof of 9.

Here “Same method as the proof of 9” refers to the method used earlier in the
manuscript, an intricate syntactic analysis using the technique of underlining.

We will now give a rendering of BL for the λ-calculus that is in several aspects
somewhat more explicit.

First, the prefix that remains invariant in passing from N ′ to N can be
specified as a multi-hole context C (with 0 or more holes!), such that we have
N ≡ C[A1, . . . , An] and N ′ ≡ C[xN1, . . . , xNn], with n ≥ 0.

Secondly, the notation xNi should be elucidated. Define an x-vector as a
term of the form xP1 . . . Pk (k ≥ 0). Then what is meant is that each xNi is an
x-vector, that is, a term xNi ≡ xNi,1 . . . Ni,ki .

Thirdly, we can be more specific about the reduction N ′[x := M ] � N . It
takes place below the prefix C, so it can be divided into reductions (xNi)[x :=
M ]� Ai. Making this explicit rules out syntactic accidents.



Lemma 1 (Barendregt’s Lemma). Let FM � N and let x be a variable not
occurring in F . Then there are a term N ′, an n-hole context C (with n ≥ 0), x-
vectors B1, . . . , Bn and terms A1, . . . , An, such that Fx� N ′ ≡ C[B1, . . . , Bn],
Bi[x := M ]� Ai (1 ≤ i ≤ n) and N ≡ C[A1, . . . , An]. See Fig. 1.

Proof. In the next section we will see that this lemma follows immediately from
Lem. 6, the Reduction-under-Substitution Lemma. ut
The lemma is depicted in Fig. 1, where we use the notations B∗i ≡ Bi[x := M ]
and Bi 7→ B∗i .

Fx � N ′ ≡ C[B1, . . . , Bn]

7→ · · · 7→
C[B∗1 , . . . , B

∗
n]

� · · · �

C[A1, . . . , An] ≡ N

Fig. 1. Barendregt’s Lemma, pictorial

Heuristically, BL describes the contribution of the argument M to the result N
in a reduction FM � N . Namely, the result N can be decomposed in two parts:

(i) A prefix C of N that is independent of M .
(ii) Subterm occurrences Ai, immediately below C, that depend on M in an

essential way, namely as reducts of x-vectors in which M has been substi-
tuted for x.

We now give two typical applications of Barendregt’s Lemma.

1.1 Undefinability of surjective pairing

A surjective pairing would consist of a triple of lambda terms D,D1, D2, such
that for arbitrary M,N we have:

D1(DMN) = M D2(DMN) = N D(D1M)(D2M) = M

The undefinability of surjective pairing in the λ-calculus is the central result of
[Bar74], where it is proved via underlining. Here we present the short proof from
[Vri87] using Barendregt’s Lemma.

We recall the notion of terms of order 0, see [Bar84], 17.3.2-3.

Definition 2. A term Z has order 0 if it does not reduce to a term in abstraction
form, that is if ¬∃P : Z � λx.P

For a term Z of order 0 we have the following implication:

ZM1 . . .Mp � N ⇒ N ≡ Z ′M ′1 . . .M ′p, Z � Z ′, Mi �M ′i (1)

The paradigmatic example of a term of order 0 is Ω ≡ (λx.xx)λx.xx, and in this
case we even have the stronger implication:

ΩM1 . . .Mp � N ⇒ N ≡ ΩM ′1 . . .M ′p, Mi �M ′i (2)

The same holds for the case that Z is a variable or an x-vector.



Theorem 3. In the λ-calculus a surjective pairing does not exist.

Proof. Assume there were D,D1, D2 satisfying the equations for surjective pair-
ing. Define F ≡ λx.D(D1Ω)(D2x). Then FΩ = D(D1Ω)(D2Ω) = Ω and hence
by the Church–Rosser Theorem the terms FΩ and Ω have a common reduct,
which can only be Ω itself. So FΩ � Ω and BL can be applied to yield an N ′

with the ascribed properties (taking M ≡ N ≡ Ω). Since for Ω we have (2), one
easily verifies that there are only two possibilities for N ′, namely either N ′ ≡ Ω
or N ′ ≡ x. We investigate both cases.

Case 1 N ′ ≡ Ω. Then Fx � Ω and so Fx = Ω and by substitutivity of
conversion FM = Ω for an arbitrary term M . So for any M we have D2M =
D2(D(D1Ω)(D2M)) = D2(FM) = D2Ω and hence for arbitrary N we have N =
D2(DNN) = D2Ω. It follows that all terms are equal, contradicting consistency
of the λ-calculus.

Case 2 N ′ ≡ x. Then Fx � x and so Fx = x and we have FM = M for an
arbitrary term M . Hence D1M = D1(FM) = D1(D(D1Ω)(D2M)) = D1Ω for
any M . From this a contradiction is derived in the same way as in Case 1. ut

1.2 Genericity

The following theorem is due to Barendregt [Bar84]. As far as we know the
observation that it follows from Barendregt’s Lemma is new.

Theorem 4 (Genericity). If FΩ = I, then Fx = I.

Proof. Apply BL to a reduction FΩ � I, which exists according to the Church–
Rosser Theorem. We get the following situation.

Fx � N ′ ≡ C[. . . , xM1 . . .Mp, . . .]7→

C[. . . , ΩM∗1 . . .M
∗
p , . . .]�

C[. . . , ΩM ′1 . . .M
′
p, . . . ] ≡ I

Since the term I contains no occurrence of Ω, the context C must have zero
holes, hence N ′ ≡ C ≡ I. It follows that Fx = I. ut

By inspecting the proof one sees that the Genericity Lemma can be generalized
to arbitrary order-zero terms, if they do not occur in the result of the reduction.

Theorem 5 (Generalized Genericity). If FZ � N for a term Z of order
zero and Z 6� S for all subterms S of N , then Fx = N .

Proof. Applying BL to a reduction FZ � N , we get the following situation.
Since the term Z is of order zero and does not rewrite to any subterm of N , the
context C must have zero holes, hence C ≡ N . It follows that Fx = N . ut



It is interesting to note that, in contrast with the original Thm. 4, this gener-
alized Genericity Theorem does not follow from Berry’s Sequentiality Theorem.
An example of an application of Thm. 5 that is not in the scope of Berry’s Se-
quentiality Theorem can be obtained by taking Z and N to be both unsolvable
terms, e.g. Z ≡ ΩΩ and N ≡ Ω. If F (ΩΩ) = Ω, then Fx = Ω by Thm. 5, but
the Böhm trees of Z as well as N are just ⊥.

2 Reduction under substitution

Barendregt’s Lemma can be cast in a different way, in terms of substitution
instead of function application. This is the form that originates with Diederik van
Daalen [Daa80] and that found its way into the book [Bar84], as Exercise 15.4.8.
It is slightly stronger than BL and easier to prove.

M � N ′ ≡ C[B1, . . . , Bn]
7→ · · · 7→

C[B∗1 , . . . , B
∗
n]

� · · · �

C[A1, . . . , An] ≡ N

Fig. 2. Reduction under substitution, pictorial

Lemma 6 (Reduction under Substitution). Let M [x := L] � N . Then
there are a term N ′, an n-hole context C (with n ≥ 0), x-vectors B1, . . . , Bn and
terms A1, . . . , An, such that M � N ′ ≡ C[B1, . . . , Bn], Bi[x := L]� Ai for all
1 ≤ i ≤ n and N ≡ C[A1, . . . , An]. See Fig. 2.

Proof. In Sec. 3 we will prove the Reduction-under-Substitution Lemma for mul-
tiple substitution, Thm. 13, of which the present form is just a special case. ut

So the proof will be postponed, but we already point out that Lem. 1 immediately
follows from Lem. 6 by taking Fx for M and M for L.

It should be remarked that the context C and the x-vectors Bi are in general
not unique. Consider for example M ≡ xzx with the substitution [x := λy.y]
together with the reduction M [x := λy.y]� z(λy.y). Then we have

(i) M � C1[B1] with C1 ≡ [ ], B1 ≡ xzx, B∗1 � z(λy.y)
(ii) M � C2[B2, B3] with C2 ≡ [ ][ ], B2 ≡ xz, B3 ≡ x, B∗2 � z, B∗3 � λy.y

In the second factorization the context C2 shows more of the stucture of the
result z(λy.y) than C1 does, namely that it is an application term. We call C2

finer than C1, and C1 coarser, C1 C C2.



Van Daalen’s interest in the substitution variant of BL was because of the
Square Brackets Lemma, which he used in his proof of strong normalization.1

Lemma 7 (Square Brackets Lemma). Let M [x := L] � λy.P . Then we
have one of the following two cases.

1. M � λy.P ′ for a P ′ such that P ′[x := L]� P
2. M � xQ and (xQ)[x := L]� λy.P

Proof. The prefix C found by Lem. 6 can either be of the form λy.C ′ or it must
be the empty context. If C ≡ λy.C ′ then N ′ ≡ λy.P ′ for some P ′ and we are in
Case 1. If C ≡ [ ] then N ′ is an x-vector and we are in Case 2. ut
It is noted in [Daa80] that the lemma can be generalized to situations where the
outer shape of the reduct is not an abstraction. In [Oos97] a similar lemma is
stated for arbitrary patterns, the generalization is called there “Invert”.

3 Reduction under multiple substitution

We now prove the Reduction-under-Substitution Lemma for multiple substitu-
tions. Throughout this section, and in some of the following ones, we will work
with a fixed substitution [x := L] with x = x1, . . . , xm and L = L1, . . . , Lm
(m ≥ 0). We tacitly assume that no lambdas binding the variables xi are used
(this can always be achieved by α-renaming), so that occurrences of x1, . . . , xm
will always be free.

The following definition sums up some technical notions and convenient no-
tations (some of which we already used in the previous sections).

Definition 8.
1. An x-vector is a term of the form xiP1 . . . Pk with 1 ≤ i ≤ m and k ≥ 0.
2. M∗ denotes M [x := L].
3. M 7→ N when N ≡M∗.
4. C CM if context C is a prefix of term (or context) M .
5. C J M if C C M , x1, . . . , xm 6∈ FV (C) and M ≡ C[B1, . . . , Bn] for some

x-vectors Bi.
6. M  C C[A1, . . . , An] if C JM as in 5 and moreover B∗i � Ai for i = 1, ..., n
7. M  N if there exists a context C such that M  C N

Lemma 9. We have M  N if and only if one of the following four cases
applies:

(i) M is an x-vector with M∗ � N
(ii) M ≡ N ≡ y for some variable y with y 6≡ x1,. . . ,y 6≡ xm

(iii) M ≡M1M2 and N = N1N2 with M1  N1 and M2  N2

(iv) M ≡ λy.M ′ and N ≡ λy.N ′ with M ′  N ′

As a consequence, if M  C N then M |p  C|p N |p for every position p in C.

Proof. Follows directly from the definition. ut
1 Why “square brackets”? The lemma analyses the contribution of the substitution

in a reduction to an abstraction term. In the notation of Automath square brackets
were used to denote lambda abstraction.



Lemma 10. Let C JM and C ′ JM with C ′ C C, then  C ⊆ C′ .

Proof. Let Bi, B
′
j be x-vectors such that M ≡ C[B1, . . . , Bn] ≡ C ′[B′1, . . . , B′n′ ].

Then C[B∗1 , . . . , B
∗
n] ≡ C ′[B′∗1 , . . . , B′∗n′ ] since x1, . . . , xm 6∈ FV (C)∪FV (C ′) and

all occurrences of x1, . . . , xm are free. Now  C ⊆ C′ follows since the B∗i are
disjoint, and each of them is a subterm of some B′∗j . ut
Lemma 11. If y 6≡ x1,. . . ,y 6≡ xm, then

M  M ′, N  N ′ ⇒M [y := N ] M ′[y := N ′] .

Proof. Let σ be shorthand for [y := N ], σ′ for [y := N ′] and σ∗ for [y := N∗].
We use induction over the structure of M according to Lem. 9:

(i) If M is an x-vector, then Mσ is and (Mσ)∗ ≡M∗σ∗ since y 6≡ x1, . . . , xm.
From M∗ �M ′ and N∗ � N ′ follows M∗σ∗ �M ′σ′ and Mσ  M ′σ′.

(ii) If M ≡M ′ ≡ z for a variable z with z 6≡ x1, . . . , xm, then either z ≡ y and
Mσ ≡ N  N ′ ≡M ′σ′, or z 6≡ y and Mσ ≡ z  z ≡M ′σ′.

(iii) If M ≡M1M2 and M ′ ≡M ′1M ′2 with Mi  M ′i , then Miσ  M ′iσ
′ by IH

and since Mσ ≡M1σ(M2σ) and M ′σ′ ≡M ′1σ′(M2σ
′) we get Mσ  M ′σ′.

(iv) If M ≡ λz.M1 and M ′ ≡ λz.M ′1 with M1  M ′1, then either z ≡ y and
Mσ ≡M  M ′ ≡M ′σ′, or z 6≡ y, Mσ ≡ λz.M1σ  IH λz.M ′1σ

′ ≡M ′σ′.
ut

Lemma 12.  ·� ⊆� · 
Proof. By induction it suffices to show · → ⊆ → · . Let M  N → O, then
there are a context C, x-vectors Bi and terms Ai such that: M ≡ C[B1, . . . , Bn],
Bi 7→ B∗i � Ai for all 1 ≤ i ≤ n, N ≡ C[A1, . . . , An], and a step ρ : N → O at
position p. Note that M∗ �C N where �C means that all steps are below C.

Assume ρ is entirely in C. Then we have M |p ≡ (λy.M1)M2 →M1[y := M2]
and N |p ≡ (λy.N1)N2 → N1[y := N2] ≡ O|p with M1  C|p11 N1, M2  C|p2 N2

by Lem. 9. Hence M1[y := M2] C′ N1[y := N2] for some context C ′ by Lem. 11.
Let M ′ ≡M [M1[y := M2]]p then M →M ′  C[C′]p O.

If ρ is below C, then it is contained in one of the x-vectors Bi and ‘absorbed’
by , that is,M  C O. Finally if ρ is neither in C nor below C, then C|p ≡ [ ]C ′.
Then M |p is an x-vector since C JM and therefore M |p1 is an x-vector. Hence
C[[ ]]p J M and  C ⊆  C[[ ]]p by Lem. 10. Observe that ρ is below C[[ ]]p, a
case that we have already considered, M  C[[ ]]p O. ut
Theorem 13 (RuS). If M∗ � N , then M � C[B1, . . . , Bn]  C N for some
context C and x-vectors B1, . . . , Bn. See Fig. 2.

Proof. Follows from M  M∗ � N and an application of Lem. 12. ut

4 Undefinability proofs

In this section we use reduction under substitution to give new proofs of some
well-known consequences of Berry’s Sequentiality Theorem.

Given x = x1, . . . , xm, we define the following notions relative to this choice
of variables, that are assumed to be free.



Definition 14. An occurrence of xi in M is leading if M contains no xj-vector
of the form xjP such that the occurrence of xi is in P . A variable xi is leading
if it has a leading occurence. LV (M) denotes the set of leading variables in M .

Lemma 15. For terms M , N we have

(i) If at least one of the variables x1, . . . , xm occurs in M , then LV (M) 6= ∅.
(ii) If C JM and M ≡ C[y1P1, . . . , ynPn], then LV (M) ⊆ {y1, . . . , yn}.

(iii) If M � N , then LV (N) ⊆ LV (M).

Proof. (i) Take an outermost occurrence of xiP , then xi ∈ LV (M).
(ii) Directly from the definition together with the fact that x1, . . . , xn 6∈ FV (C).

(iii) Note that if a variable xi is leading in a term M [y := N ] then it must
have been leading in M or N and hence in (λy.M)N . The claim follows by
closure under contexts and induction on the reduction length. ut

We start by showing the undefinability of Gustave’s function.

Theorem 16. There is no lambda term G such that:

G 01x = x G 1x0 = x Gx01 = x

Proof. We employ RuS with M ≡ Gxyz and x = x, y, z. We have G 01Ω = Ω
and G 01Ω � Ω by confluence. By RuS there exists Nz with M � Nz  Ω. If
z is leading variable in Nz, then Nz ≡ z, otherwise every  -reduct of Nz would
contain Ω at a non-root position. But if Nz ≡ z then we would have G 1x0� 0.
Hence z 6∈ LV (Nz) and likewise there exist Nx and Ny with M � Nx, M � Ny
and x 6∈ LV (Nx), y 6∈ LV (Ny). By confluence Nx, Ny and Nz have a common
reduct N with LV (N) = ∅ and then by Lem. 15 none of the variables x, y, z
occur in N . Therefore we obtain ∀L : M [x := L]� N [x := L] ≡ N , and hence
x = G 01x = N = G 01y = y, contradicting consistency of the λ-calculus.

ut

Remark 1. For a variant of Gustave’s function where x is replaced by Z ranging
over all closed terms the proof stays valid. For a variant where the right-hand
sides are closed terms A, B, C we refer to the Perpendicular Lines Theorem
(Thm. 22).

It is interesting to note that Thm. 16 is obtained in [BKOV99] by a differ-
ent argument, involving an analysis of residuals along head reductions. Their
Lemma 5.2, on the undefinability of a general form of the G of Thm. 16, can be
proved by our method in the same way as Thm. 16. The undefinability of the
other two variants of G mentioned in this remark are not covered by Lemma 5.2
in [BKOV99].

Before continuing we state a few lemmas that capture the common essence of
the following undefinability results. Fig. 3 illustrates Lem. 17 and 18 applied to
“parallel or” (Por). If xi is substituted by Ω in M and M rewrites to a normal
form, then xi cannot have been leading in M . If such a reduction exists for every
xi then all M [x := L] (and hence all reducts) are convertible for arbitrary L.



Por xy

⊤ C1[x ~P1, . . . , x ~Pn] C2[y ~Q1, . . . , y ~Ql] ⊤

N

⊤

x := ⊤
y := Ω

x := Ω
y := ⊤

Fig. 3. Lem. 17 and Lem. 18 at the example of “parallel or”

Lemma 17. If for i = 1, . . . ,m there exist Ni with M = Ni and xi 6∈ LV (Ni),
then there exists an N such that LV (N) = ∅ and ∀L: M [x := L]� N .

Proof. By confluence the terms M , N1, . . . , Nm have a common reduct N and by
Lem. 15(iii) we have LV (N) ⊆ LV (N1) ∩ . . . ∩ LV (Nm) = ∅. So by Lem. 15(i)
the variables x1, . . . , xm do not occur in N . Hence for arbitrary L we have
M [x := L]� N [x := L] ≡ N . ut
Lemma 18. If for i = 1, . . . ,m there are normal forms Ni and Li with Lii ≡ Ω
such that M [x := Li]� Ni, then N1 ≡ . . . ≡ Nm and ∀L: M [x := L]� N1.

Proof. Let i ∈ {1, . . . ,m} arbitrary. An application of RuS to M [x := Li]� Ni
yields that there exist a term N ′i , a context C and x-vectors B1, . . . , Bn such
that M � N ′i ≡ C[B1, . . . , Bn]  C Ni. None of the Bj ’s can be an xi-vector.
For suppose it were, then every reduct of B∗j and hence also Ni would contain
Ω, contradicting Ni being a normal form. We conclude by Lem. 15(ii) that
xi 6∈ LV (N ′i). Since i was arbitrary, by Lem. 17 there exists an N such that
∀L : M [x := L] � N . Hence N1 = . . . = Nm. By confluence and the fact that
all Ni are normal forms we get M � N1 ≡ . . . ≡ Nm. ut

Undefinability of “parallel or”

We can now show the undefinability of “parallel or”.

Theorem 19. There are no lambda terms Por and normal forms > 6≡ ⊥ s.t.:

Por >x = > Por x> = > Por ⊥⊥ = ⊥
Proof. Assume that Por exists, we consider M ≡ Por xy with x = x, y. Since
Por Ω> � > and Por >Ω � >, we get ∀L : Por xy[x := L] � > by Lem. 18.
Then in particular F⊥⊥� > 6≡ ⊥ contradicting the assumption. ut
The following is a variant of “parallel or” from [Bar84], that is also undefinable.

Theorem 20. There is no lambda term F s.t. for arbitrary closed M,N :

FMN = I if M or N is solvable
FMN = Ω otherwise

Proof. Assuming there is such an F , we consider M ≡ Fxy with x = x, y. Since
FΩI � I and FIΩ � I, we get ∀L : Fxy[x := L] � I by Lem. 18. Then in
particular FΩΩ � I 6≡ Ω contradicting the assumption. ut



5 Extension to context filling

We extend reduction under multiple substitution to context filling; the difference
being that variables of the arguments might get bound.

Corollary 1. Let C[L1, . . . , Lm] � N . Let x = x1, . . . , xm be fresh variables.
For i = 1, . . . ,m let yi be a vector consisting of all variables that are bound at
the i-th hole of C. Then there are a context D, x-vectors B1, . . . , Bn and terms
A1, . . . , An, such that:

C[x1y1, . . . , xmym] � D[B1, . . . , Bn]

7→ · · · 7→

[x1 := λy1.L1, . . . , xm := λym.Lm]

D[B∗1 , . . . , B
∗
n]

� · · · �
D[A1, . . . , An] ≡ N

Proof. Let σ be shorthand for [x1 := λy1.L1, . . . , xm := λym.Lm] and we define
M ≡ C[x1y1, . . . , xmym]. Then clearly Mσ � C[L1, . . . , Lm] � N . As a con-
sequence of Reduction under Multiple Substitution there exist a context D and
x-vectors B1,. . . ,Bn such that: M � D[B1, . . . , Bn] C N . ut
Lemma 21. If for i = 1, . . . ,m there are a term Ni with z 6∈ Ni and terms Li

with Lii ≡ z such that C[Li] = Ni, then ∀L: C[L] = N1 = . . . = Nm.

Proof. After an application of Thm. 1 the proof continues analogously to the
proof of Lem. 18, from z 6∈ Ni follows that no Bj is an xi-vector. ut

Perpendicular lines theorem

The Perpendicular Lines Theorem is a result from [Bar84], Ch. 14, stated there in
terms of Böhm equivalence, together with a suggestion to extend it to β-equality.
In [BS99] a counterexample is given to PPL with respect to β-equality, which,
however, concerns the variant where the equations are only required to hold for
substitutions of a closed term for the variable z. They added a suggestion to try
to use [Bar84], Exercise 15.4.8, for the open variant. Indeed, it turns out that
we can use RuS to prove the following theorem.

Theorem 22 (PPL). Assume that for lambda terms Mij , Ni with z 6∈ Ni:
C[M11,M12, . . . ,M2n−1, z] = N1

C[M21,M22, . . . , z,M2n] = N2

...

...
...

C[z,Mn2,Mn3, . . . ,Mnn] = Nn

Then

– N1 = N2 = . . . = Nn = N
– For all Z1, . . . , Zn we have C[Z] = N

Proof. Follows from an application of Lem. 21 to the above equations. ut



6 Sequentiality

Berry’s Sequentiality Theorem (BST) is about Böhm trees and these can be
obtained as infinite normal forms with respect to β-reduction extended with
the Böhm reduction rules. To be able to deal with this we will have to adapt
the Reduction-under-Substitution Lemma to this extended notion of reduction.
But before doing so, we formulate a strictly finitary sequentiality result for β-
reduction alone. We give the version for multiple substitution, but a functional
and a context-filling version can be straightforwardly derived.

Theorem 23. Let M [x := L]� N with x = x1, . . . xm. Then N can be written
as N ≡ C[A1, . . . , An] in such a way that:

1. The prefix C is independent of the substitution, that is, for any P = P1, . . . Pm
we have M [x := P ]� C[. . .].

2. Each Ai depends on exactly one of the substituted terms Lj in the sense that
at the position of Ai any term B can be realized by an appropiate replacement
Q of Lj, regardless of the choice of the other substituted terms. That is,

(∀i)(∃j)(∀B)(∃Q)(∀P ) : Pj ≡ Q ⇒ M [x := P ]� C[. . . , B, . . .]

where 1 ≤ i ≤ n, 1 ≤ j ≤ m and with B at position i of C.

Proof. This is an immediate consequence of RuS, Thm. 6. If Bi is an x-vector
xjK1 . . .Kk then Q can be chosen as λy1 . . . yk.B. ut

Undefinability results like the ones mentioned earlier can also be obtained by
applying this new sequentiality theorem.

Now we turn to BST. We consider Λ(⊥), the λ-calculus enriched with the
constant ⊥ (bottom). The Böhm rewrite relation →β⊥ = →β ∪ →⊥ on Λ(⊥)
consists of β-reduction →β together with →⊥ defined by:

⊥M → ⊥ λy.⊥ → ⊥ u→ ⊥ if u is an unsolvable

For �β⊥ we have to adapt the definition of x-vector. Let x = x1, . . . , xm.
The set of x-clusters is inductively defined as follows:

– x1, . . . , xm are x-clusters

– if B is an x-cluster and M ∈ Λ(⊥) a term, then BM is an x-cluster

– if B is an x-cluster and y 6≡ x1,. . . ,y 6≡ xm, then λy.B is an x-cluster

Note that for every x-cluster B we have B[x := ⊥] �β⊥ ⊥. We tacitly assume
that all occurrences of the variables x1, . . . , xm are free.

We adapt the notation from Def. 8 to Böhm reduction by exchanging �β⊥,
 β⊥, Jβ⊥ and x-clusters for �,  , J and x-vectors, respectively. Likewise we
obtain lemmas 9⊥-11⊥ for �β⊥ identical to Lem. 9-11 for �. In order to lift
Lem. 12 to Böhm reduction, the proof has to be adopted and extended.



Lemma 24.  ·�β⊥ ⊆�β⊥ · 

Proof. By induction  β⊥ · →β⊥ ⊆ �β⊥ · β⊥ suffices. Let M  β⊥ N →β⊥
O, then there are a context C, x-clusters Bi and terms Ai such that: M ≡
C[B1, . . . , Bn], Bi 7→ B∗i �β⊥ Ai for all 1 ≤ i ≤ n, N ≡ C[A1, . . . , An], and a
step ρ : N →β⊥ O at position p. The case of β-steps ρ is analogous to the proof
of Lem. 12.

Hence let ρ be a⊥-step according to one of the three⊥-rules: (i) ρ : ⊥M → ⊥,
(ii) ρ : λy.⊥ → ⊥, or (iii) ρ : u→ ⊥ if u is an unsolvable.

If ρ is below C, then it is contained in one of the x-clusters Bi and ‘absorbed’
by  β⊥, that is, M  β⊥,C O. Therefore assume ρ is not below C.

First we consider the ⊥-rules (i) and (ii). If the redex pattern of ρ is entirely
in C, then we have M →β⊥ M [⊥]p  β⊥,C[⊥]p O. Otherwise ρ is neither in C
nor below C, that is, ρ is overlapping in-between. Then in case of (i) C|p ≡ [ ]C ′

and (ii) C|p ≡ λy.[ ]. In both cases it follows that M |p is an x-cluster since M |p1
is an x-cluster. Then we are done since C[[ ]]p Jβ⊥ M ,  β⊥,C ⊆ β⊥,C[[ ]]p by

Lem. 10⊥ and ρ is now below C[[ ]]p.
The remaining case is ⊥-rule (iii) with redex position in C. Note that if U �

U ′ and U ′ is unsolvable then U is unsolvable. Thus M∗|p is unsolvable; either
M |p is unsolvable, then M →β⊥ M [⊥]p  β⊥,C[⊥]p O, or the head reduction
sequence M |p � M ′ yields a term M ′ having an xi as head. Then M ′ is an
x-cluster with M ′  β⊥,[ ] ⊥, hence M �M [M ′]p  β⊥,C[[ ]]p O. ut

Theorem 25. Let M [x := L] �β⊥ N . Then there exist an n-hole context C,
x-clusters B1, . . . , Bn and terms A1, . . . , An, such that M �β⊥ C[B1, . . . , Bn],
Bi[x := L]�β⊥ Ai for all 1 ≤ i ≤ n, and N ≡ C[A1, . . . , An].

Proof. The statement of the theorem is equivalent to M∗ �β⊥ N ⇒ M �β⊥
· β⊥ N , which follows fromM  β⊥ M∗ �β⊥ N and an application of Lem. 24.

Theorem 26. Let M [x := ⊥, . . . ,⊥]�β⊥ N with x = x1, . . . xm. Then N can
be written as N ≡ C[A1, . . . , An] in such a way that:

1. The prefix C is independent of the substitution, that is, for any P = P1, . . . Pm
we have M [x := P ]� C[. . .].

2. Each Ai depends on exactly one of the substituted terms ⊥ in the sense that:

– A refinement of the corresponding ⊥ to a free variable will give rise to a
reduction to C[. . . , A′i, . . .] where A′i 6�β⊥ ⊥, regardless of the choice of
the other substituted terms. That is,

(∀i)(∃j)(∀P ) : Pj ≡ x ⇒ M [x := P ]�β⊥ C[. . . , A′i, . . .], A′i 6�β⊥ ⊥
– At the position of Ai a ⊥ can be realized regardless of the choice of the

other substituted terms. That is,

(∀i)(∃j)(∀P ) : Pj ≡ ⊥ ⇒ M [x := P ]�β⊥ C[. . . ,⊥, . . .]

Proof. This is an immediate consequence of Thm. 25, noting that an xi-cluster
with ⊥ substituted for xi rewrites to ⊥. ut



Berry’s Sequentiality Theorem can be derived as a corollary of Thm. 26 in
the following way.

Let M ≡ C[⊥, . . . ,⊥] and let B be the Böhm tree of M . For arbitrary depths
d ∈ N there exists a reduction M �β⊥ N such that N is in�β⊥-normal form up
to depth d; then N coincides with B up to depth d. An application of Thm. 26 to
M ≡ (C[x1, . . . , xm])[x := ⊥, . . . ,⊥] �β⊥ N yields N ≡ D[A1, . . . , An]. For all
Ai above depth d we have Ai ≡ ⊥, since they are x-clusters with ⊥ substituted
for the leading variable in normal form. Now a ⊥ in the Böhm tree B above
depth d is either (a) one of the Ai or (b) it is in the context D. In case (b) the ⊥
is independent from all substituted ⊥’s, and will be at this position in the Böhm
tree of every C[L] for arbitrary L. In case (a) the Ai depends on exactly one of
the substituted ⊥’s from the input. If this ⊥ is refined to a free variable, then the
Böhm tree will no longer have a ⊥ at this position. On the other hand, refining
all other ⊥’s from M will not affect the ⊥ in the Böhm tree at this position.

7 Concluding remarks

On intuitive grounds it seems plausible that there is an “inverse” correspondence
of Barendregt’s Lemma and the reported properties of reduction under substi-
tution with the notions of tracing and origin tracking, and especially with the
prefix property, see [BKV00]. This relation was already indicated in [BKV00]
and, with the SqBL in the place of BL, also in [Oos97] and [Ter03], Sec. 8.6.
It would be interesting to investigate this correspondence in more detail and to
compare the techniques of dynamic labelling used in tracing and origin track-
ing with the special underlining techniques that were employed in [Bar72] and
[Bar74].

It seems likely that reduction under substitution can contribute to a better
understanding of sequentiality, a direction that merits further investigation. The
same holds for the connection with work on stability, semi-standardization and
factorization, see e.g. [GK94], [Mel97,Mel98] and [Ter03], Ch. 8.

Although we didn’t need it in order to obtain a sequentiality result concerning
the, potententially infinite, Böhm tree of the output, it might be possible to prove
also an infinitary version of RuS. This is an objective of further investigation.
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