
A Coinductive Framework for Infinitary Rewriting
and Equational Reasoning
Jörg Endrullis1, Helle Hvid Hansen2, Dimitri Hendriks1, Andrew
Polonsky3, and Alexandra Silva4

1 Department of Computer Science, VU University Amsterdam, The
Netherlands, {j.endrullis | r.d.a.hendriks}@vu.nl

2 Department of Engineering Systems and Services, Delft University of
Technology, The Netherlands, h.h.hansen@tudelft.nl

3 Institut Galilée, Université Paris 13, France, andrew.polonsky@gmail.com
4 Department of Computer Science, Radboud University Nijmegen, The

Netherlands, alexandra@cs.ru.nl

Abstract
We present a coinductive framework for defining infinitary analogues of equational reasoning and
rewriting in a uniform way. We define the relation ∞=, a notion of infinitary equational reasoning,
and →∞, the standard notion of infinitary rewriting as follows:

∞= := νR. (=R ∪ R)∗

→∞ := µR. νS. (→R ∪ R)∗ ◦ S

where µ and ν are the least and greatest fixed-point operators, respectively, and where

R := { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | f ∈ Σ, s1 R t1, . . . , sn R tn } ∪ Id .

The setup captures rewrite sequences of arbitrary ordinal length, but it has neither the
need for ordinals nor for metric convergence. This makes the framework especially suitable for
formalizations in theorem provers.

1998 ACM Subject Classification D.1.1 Applicative (Functional) Programming, D.3.1 Formal
Definitions and Theory, F.4.1 Mathematical Logic, F.4.2 Grammars and Other Rewriting Sys-
tems, I.1.1 Expressions and Their Representation, I.1.3 Languages and Systems

Keywords and phrases Infinitary rewriting, coinduction

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.143

1 Introduction

We present a coinductive framework for defining infinitary equational reasoning and infinit-
ary rewriting in a uniform way. The framework is free of ordinals, metric convergence and
partial orders which have been essential in earlier definitions of the concept of infinitary
rewriting [11, 26, 29, 25, 24, 3, 2, 4, 18].

Infinitary rewriting is a generalization of the ordinary finitary rewriting to infinite terms
and infinite reductions (including reductions of ordinal length greater than ω). For the
definition of rewrite sequences of ordinal length, there is a design choice concerning the
exclusion of jumps at limit ordinals, as illustrated in the ill-formed rewrite sequence

a→ a→ a→ · · ·︸ ︷︷ ︸
ω-many steps

b→ b

© Jörg Endrullis, Helle Hvid Hansen, Dimitri Hendriks, Andrew Polonsky, and Alexandra Silva;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 143–159

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.RTA.2015.143
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

144 A Coinductive Framework for Infinitary Rewriting and Equational Reasoning

where the rewrite system is R = { a→ a, b→ b }. The rewrite sequence remains for ω steps
at a and in the limit step ‘jumps’ to b. To ensure connectedness at limit ordinals, the usual
choices are:
(i) weak convergence (also called ‘Cauchy convergence’), where it suffices that the sequence

of terms converges towards the limit term, and
(ii) strong convergence, which additionally requires that the ‘rewriting activity’, i.e., the

depth of the rewrite steps, tends to infinity when approaching the limit.
The notion of strong convergence incorporates the flavor of ‘progress’, or ‘productivity’, in
the sense that there is only a finite number of rewrite steps at every depth. Moreover, it
leads to a more satisfactory metatheory where redex occurrences can be traced over limit
steps.

While infinitary rewriting has been studied extensively, notions of infinitary equational
reasoning have not received much attention. One of the few works in this area is [24] by
Kahrs, see Related Work below. The reason is that the usual definition of infinitary rewriting
is based on ordinals to index the rewrite steps, and hence the rewrite direction is incorporated
from the start. This is different for the framework we propose here, which enables us to
define several natural notions: infinitary equational reasoning, bi-infinite rewriting, and the
standard concept of infinitary rewriting. All of these have strong convergence ‘built-in’.

We define infinitary equational reasoning with respect to a system of equations R, as a
relation ∞= on potentially infinite terms by the following mutually coinductive rules:

s (=R ∪
∞
↽⇁)∗ t

s
∞= t

s1
∞= t1 · · · sn

∞= tn

f(s1, s2, . . . , sn) ∞↽⇁ f(t1, t2, . . . , tn)
(1)

The relation ∞↽⇁ stands for infinitary equational reasoning below the root. The coinductive
nature of the rules means that the proof trees need not be well-founded. Reading the rules
bottom-up, the first rule allows for an arbitrary, but finite, number of rewrite steps at any
finite depth (of the term tree). The second rule enforces that we eventually proceed with
the arguments, and hence the activity tends to infinity.

I Example 1.1. Let R consist of the equation C(a) = a.

Cω ∞= a
Cω ∞↽⇁ C(a) C(a) =R a

Cω ∞= a

Figure 1 Derivation of Cω ∞= a.

We write Cω to denote the infinite term C(C(C(. . .))), the
solution of the equation X = C(X). Using the rules (1),
we can derive Cω ∞= a as shown in Figure 1. This is an
infinite proof tree as indicated by the loop in which
the sequence Cω ∞↽⇁ C(a) =R a is written by juxtaposing
Cω ∞↽⇁ C(a) and C(a) =R a.

Using the greatest fixed-point constructor ν, we can
define ∞= equivalently as follows:
∞= := νR. (=R ∪ R)∗ , (2)

where R, corresponding to the second rule in (1), is defined by

R := { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | f ∈ Σ, s1 R t1, . . . , sn R tn } ∪ Id . (3)

This is a new and interesting notion of infinitary (strongly convergent) equational reasoning.
Now letR be a term rewriting system (TRS). If we use→R instead of =R in the rules (1),

we obtain what we call bi-infinite rewriting ∞→ :

s (→R ∪
∞
⇁)∗ t

s
∞→ t

s1
∞→ t1 · · · sn

∞→ tn

f(s1, s2, . . . , sn) ∞⇁ f(t1, t2, . . . , tn)
(4)

J. Endrullis, H. H. Hansen, D. Hendriks, A. Polonsky, and A. Silva 145

corresponding to the following fixed-point definition:
∞→ := νR. (→R ∪ R)∗ . (5)

We write ∞→ to distinguish bi-infinite rewriting from the standard notion →∞ of (strongly
convergent) infinitary rewriting [32]. The symbol ∞ is centered above → in ∞→ to indicate
that bi-infinite rewriting is ‘balanced’, in the sense that it allows rewrite sequences to be
extended infinitely forwards, but also infinitely backwards. Here backwards does not refer
to reversing the arrow←ε. For example, for R = {C(a)→ a } we have the backward-infinite
rewrite sequence · · · → C(C(a))→ C(a)→ a and hence Cω ∞→ a. The proof tree for Cω ∞→ a
has the same shape as the proof tree displayed in Figure 1; the only difference is that ∞= is
replaced by ∞→ and ∞↽⇁ by ∞⇁. In contrast, the standard notion →∞ of infinitary rewriting
only takes into account forward limits and we do not have Cω →∞ a.

We have the following strict inclusions:

→∞ (∞→ (∞= .

In our framework, these inclusions follow directly from the fact that the proof trees for →∞
(see below) are a restriction of the proof trees for ∞→ which in turn are a restriction of the
proof trees for ∞=. It is also easy to see that each inclusion is strict. For the first, see above.
For the second, just note that ∞→ is not symmetric.

Finally, by a further restriction of the proof trees, we obtain the standard concept of
(strongly convergent) infinitary rewriting →∞. Using least and greatest fixed-point operat-
ors, we define:

→∞ := µR. νS. (→ ∪ R)∗ ◦ S , (6)

where ◦ denotes relational composition. Here R is defined inductively, and S is defined
coinductively. Thus only the last step in the sequence (→ ∪ R)∗ ◦ S is coinductive. This
corresponds to the following fact about reductions σ of ordinal length: every strict prefix of
σ must be shorter than σ itself, while strict suffixes may have the same length as σ.

If we replace µ by ν in (6), we get a definition equivalent to ∞→ defined by (5). To see
that it is at least as strong, note that Id ⊆ S.

Conversely, →∞ can be obtained by a restriction of the proof trees obtained by the
rules (4) for ∞→. Assume that in a proof tree using the rules (4), we mark those occurrences
of ∞⇁ that are followed by another step in the premise of the rule (i.e., those that are not
the last step in the premise). Thus we split ∞⇁ into ⇁∞ and <

⇁∞. Then the restriction to
obtain the relation →∞ is to forbid infinite nesting of marked symbols <

⇁∞. This marking
is made precise in the following rules:

s (→ ∪ <
⇁∞)∗ ◦⇁∞ t

s→∞ t

s1 →∞ t1 · · · sn →∞ tn

f(s1, s2, . . . , sn) (<)
⇁∞ f(t1, t2, . . . , tn) s

(<)
⇁∞ s

(7)

Here ⇁∞ stands for infinitary rewriting below the root, and <
⇁∞ is its marked version.

The symbol (<)
⇁∞ stands for both ⇁∞ and <

⇁∞. Correspondingly, the rule in the middle is
an abbreviation for two rules. The axiom s ⇁∞ s serves to ‘restore’ reflexivity, that is, it
models the identity steps in S in (6). Intuitively, s <

⇁∞ t can be thought of as an infinitary
rewrite sequence below the root, shorter than the sequence we are defining.

We have an infinitary strongly convergent rewrite sequence from s to t if and only if
s →∞ t can be derived by the rules (7) in a (not necessarily well-founded) proof tree
without infinite nesting of <

⇁∞, that is, proof trees in which all paths (ascending through

RTA 2015

146 A Coinductive Framework for Infinitary Rewriting and Equational Reasoning

the proof tree) contain only finitely many occurrences of <
⇁∞. The depth requirement in

the definition of strong convergence arises naturally in the rules (7), in particular the middle
rule pushes the activity to the arguments.

The fact that the rules (7) capture the infinitary rewriting relation→∞ is a consequence
of a result due to [26] which states that every strongly convergent rewrite sequence contains
only a finite number of steps at any depth d ∈ N, in particular only a finite number of root
steps →ε. Hence every strongly convergent reduction is of the form (<⇁∞ ◦ →ε)∗◦ ⇁∞ as
in the premise of the first rule, where the steps <

⇁∞ are reductions of shorter length.
We conclude with an example of a TRS that allows for a rewrite sequence of length

beyond ω.

I Example 1.2. We consider the term rewriting system with the following rules:
f(x, x)→ D a→ C(a) b→ C(b) .

We then have a→∞ Cω, that is, an infinite reduction from a to Cω in the limit:

a→ C(a)→ C(C(a))→ C(C(C(a)))→ · · · →ω Cω .

a→ε C(a)
a→∞ Cω

C(a) ⇁∞ Cω

a→∞ Cω

Figure 2 A reduction a →∞ Cω.

Using the proof rules (7), we can derive a →∞ Cω
as shown in Figure 2.

The proof tree in Figure 2 can be described as fol-
lows: We have an infinitary rewrite sequence from a
to Cω since we have a root step from a to C(a), and
an infinitary reduction below the root from C(a) to Cω.
The latter reduction C(a) ⇁∞ Cω is in turn witnessed
by the infinitary rewrite sequence a→∞ Cω on the dir-
ect subterms.

We also have the following reduction, now of length ω + 1:

f(a, b)→ f(C(a), b)→ f(C(a),C(b))→ · · · →ω f(Cω,Cω)→ D .

like Figure 2
a→∞ Cω

like Figure 2
b→∞ Cω

f(a, b) <
⇁∞ f(Cω,Cω) f(Cω,Cω)→ε D

f(a, b)→∞ D

Figure 3 A reduction f(a, b) →∞ D.

That is, after an infinite rewrite
sequence of length ω, we reach the
limit term f(Cω,Cω), and we then
continue with a rewrite step from
f(Cω,Cω) to D.

Figure 3 shows how this rewrite
sequence f(a, b)→∞ D can be de-
rived in our setup. We note that
the rewrite sequence f(a, b) →∞ D
cannot be ‘compressed’ to length ω.
So there is no reduction f(a, b)→≤ω D.

1.1 Related Work
While a coinductive treatment of infinitary rewriting is not new [7, 22, 19], the previous
approaches only capture rewrite sequences of length at most ω. The coinductive framework
that we present here captures all strongly convergent rewrite sequences of arbitrary ordinal
length.

From the topological perspective, various notions of infinitary rewriting and infinitary
equational reasoning have been studied in [24]. The closure operator SE from [24] is closely
related to our notion of infinitary equational reasoning ∞=. The operator SE is defined by

J. Endrullis, H. H. Hansen, D. Hendriks, A. Polonsky, and A. Silva 147

SE(R) = (S ◦E)∗(R) where E(R) is the equivalence closure of R, and S(R) is the strongly
convergent rewrite relation obtained from (single steps) R. Thus SE(→) is the repeated
closure under equivalence and strongly convergent reduction of →. Although defined in
very different ways, we conjecture that the relations SE(→) and ∞= typically coincide, and
only in rare cases there is a strict inclusion SE(→) (∞=.

Martijn Vermaat has formalized infinitary rewriting using metric convergence (in place
of strong convergence) in the Coq proof assistant [33], and proved that weakly orthogonal
infinitary rewriting does not have the property UN of unique normal forms, see [17]. While
his formalization could be extended to strong convergence, it remains to be investigated to
what extent it can be used for the further development of the theory of infinitary rewriting.

Ketema and Simonsen [27] introduce the notion of ‘computable infinite reductions’ [27],
where terms as well as reductions are computable, and provide a Haskell implementation of
the Compression Lemma for this notion of reduction.

1.2 Outline
In Section 2 we introduce infinitary rewriting in the usual way based on ordinals, and with
convergence at every limit ordinal. Section 3 is a short explanation of (co)induction and
fixed-point rules. The two new definitions of infinitary rewriting →∞ based on mixing
induction and coinduction, as well as their equivalence, are spelled out in Section 4. Then,
in Section 5, we prove the equivalence of these new definitions of infinitary rewriting with
the standard definition. In Section 6 we present the above introduced relations ∞= and ∞→ of
infinitary equational reasoning and bi-infinite rewriting. In Section 7 we compare the three
relations ∞=, ∞→ and →∞. As an application, we show in Section 8 that our framework is
suitable for formalizations in theorem provers. We conclude in Section 9.

2 Preliminaries on Term Rewriting

We give a brief introduction to infinitary rewriting. For further reading on infinitary rewrit-
ing we refer to [29, 32, 6, 18], for an introduction to finitary rewriting to [28, 32, 1, 5].

A signature Σ is a set of symbols f each having a fixed arity ar(f) ∈ N. Let X be an
infinite set of variables such that X ∩ Σ = ∅. The set Ter∞(Σ,X) of (finite and) infinite
terms over Σ and X is coinductively defined by the following grammar:

T ::=co x | f(T, . . . , T︸ ︷︷ ︸
ar(f) times

) (x ∈ X , f ∈ Σ) .

This means that Ter∞(Σ,X) is defined as the largest set T such that for all t ∈ T , either
t ∈ X or t = f(t1, t2, . . . , tn) for some f ∈ Σ with ar(f) = n and t1, t2, . . . , tn ∈ T . So the
grammar rules may be applied an infinite number of times, and equality on the terms is
bisimilarity. See further Section 3 for a brief introduction to coinduction.

We write Id for the identity relation on terms, Id := {〈s, s〉 | s ∈ Ter∞(Σ,X)}.

I Remark. Alternatively, the set Ter∞(Σ,X) arises from the set of finite terms, Ter(Σ,X),
by metric completion, using the well-known distance function d defined by d(t, s) = 2−n if
the n-th level of the terms t, s ∈ Ter(Σ,X) (viewed as labeled trees) is the first level where
a difference appears, in case t and s are not identical; furthermore, d(t, t) = 0. It is stand-
ard that this construction yields 〈Ter(Σ,X),d〉 as a metric space. Now infinite terms are
obtained by taking the completion of this metric space, and they are represented by infinite

RTA 2015

148 A Coinductive Framework for Infinitary Rewriting and Equational Reasoning

trees. We will refer to the complete metric space arising in this way as 〈Ter∞(Σ,X),d〉,
where Ter∞(Σ,X) is the set of finite and infinite terms over Σ.

Let t ∈ Ter∞(Σ,X) be a finite or infinite term. The set of positions Pos(t) ⊆ N∗ of t
is defined by: ε ∈ Pos(t), and ip ∈ Pos(t) whenever t = f(t1, . . . , tn) with 1 ≤ i ≤ n and
p ∈ Pos(ti). For p ∈ Pos(t), the subterm t|p of t at position p is defined by t|ε = t and
f(t1, . . . , tn)|ip = ti|p. The set of variables Var(t) ⊆ X of t is Var(t) = {x ∈ X | ∃ p ∈
Pos(t). t|p = x}.

A substitution σ is a map σ : X → Ter∞(Σ,X); its domain is extended to Ter∞(Σ,X)
by corecursion: σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)). For a term t and a substitution σ,
we write tσ for σ(t). We write x 7→ s for the substitution defined by σ(x) = s and σ(y) = y

for all y 6= x. Let � be a fresh variable. A context C is a term Ter∞(Σ,X ∪ {�}) containing
precisely one occurrence of �. For contexts C and terms s we write C[s] for C(� 7→ s).

A rewrite rule `→ r over Σ and X is a pair (`, r) of terms `, r ∈ Ter∞(Σ,X) such that
the left-hand side ` is not a variable (` 6∈ X), and all variables in the right-hand side r occur
in `, Var(r) ⊆ Var(`). Note that we require neither the left-hand side nor the right-hand
side of a rule to be finite.

A term rewriting system (TRS) R over Σ and X is a set of rewrite rules over Σ and
X . A TRS induces a rewrite relation on the set of terms as follows. For p ∈ N∗ we define
→R,p ⊆ Ter∞(Σ,X)× Ter∞(Σ,X), a rewrite step at position p, by C[`σ]→R,p C[rσ] if C
is a context with C|p = �, ` → r ∈ R, and σ : X → Ter∞(Σ,X). We write →ε for root
steps, →ε = { (`σ, rσ) | ` → r ∈ R, σ a substitution }. We write s →R t if s →R,p t for
some p ∈ N∗. A normal form is a term without a redex occurrence, that is, a term that is
not of the form C[`σ] for some context C, rule `→ r ∈ R and substitution σ.

A natural consequence of this construction is the notion of weak convergence: we say
that t0 → t1 → t2 → · · · is an infinite reduction sequence with limit t, if t is the limit of the
sequence t0, t1, t2, . . . in the usual sense of metric convergence. We use strong convergence,
which in addition to weak convergence, requires that the depth of the redexes contracted in
the successive steps tends to infinity when approaching a limit ordinal from below. So this
rules out the possibility that the action of redex contraction stays confined at the top, or
stagnates at some finite level of depth.

I Definition 2.1. A transfinite rewrite sequence (of ordinal length α) is a sequence of
rewrite steps (tβ →R,pβ tβ+1)β<α such that for every limit ordinal λ < α we have that if β
approaches λ from below, then
(i) the distance d(tβ , tλ) tends to 0 and, moreover,
(ii) the depth of the rewrite action, i.e., the length of the position pβ , tends to infinity.
The sequence is called strongly convergent if α is a successor ordinal, or there exists a term
tα such that the conditions 1 and 2 are fulfilled for every limit ordinal λ ≤ α; we then write
t0 →∞ord tα. The subscript ord is used in order to distinguish →∞ord from the equivalent
relation →∞ as defined in Definition 4.4. We sometimes write t0 →α

ord tα to explicitly
indicate the length α of the sequence. The sequence is called divergent if it is not strongly
convergent.

There are several reasons why strong convergence is beneficial; the foremost being that in
this way we can define the notion of descendant (also residual) over limit ordinals. Also the
well-known Parallel Moves Lemma and the Compression Lemma fail for weak convergence,
see [31] and [11] respectively.

J. Endrullis, H. H. Hansen, D. Hendriks, A. Polonsky, and A. Silva 149

3 (Co)induction and Fixed Points

We briefly introduce the relevant concepts from (co)algebra and (co)induction that will be
used later throughout this paper. For a more thorough introduction, we refer to [21]. There
will be two main points where coinduction will play a role, in the definition of terms and in
the definition of term rewriting.

Terms are usually defined with respect to a type constructor F . For instance, consider
the type of lists with elements in a given set A, given in a functional programming style:

type List a = Nil | Cons a (List a)

The above grammar corresponds to the type constructor F (X) = 1 +A×X where the 1 is
used as a placeholder for the empty list Nil and the second component represents the Cons
constructor. Such a grammar can be interpreted in two ways: The inductive interpretation
yields as terms the set of finite lists, and corresponds to the least fixed point of F . The
coinductive interpretation yields as terms the set of all finite or infinite lists, and corres-
ponds to the greatest fixed point of F . More generally, the inductive interpretation of a type
constructor yields finite terms (with well-founded syntax trees), and dually, the coinductive
interpretation yields possibly infinite terms. For readers familiar with the categorical defin-
itions of algebras and coalgebras, these two interpretations amount to defining finite terms
as the initial F -algebra, and possibly infinite terms as the final F -coalgebra.

Formally, term rewriting is a relation on a set T of terms, and hence an element of the
complete lattice L := P(T × T), the powerset of T × T . Relations on terms can thus be
defined using least and greatest fixed points of monotone operators on L. In this setting,
an inductively defined relation is a least fixed point µX.F (X) of a monotone F : L → L.
Dually, a coinductively defined relation is a greatest fixed point νX. F (X) of a monotone
F : L→ L. Coinduction, and similarly induction, can be formulated as proof rules:

X ≤ F (X)
X ≤ νY. F (Y) (ν-rule) F (X) ≤ X

µY. F (Y) ≤ X (µ-rule) (8)

These rules express the fact that νY. F (Y) is the greatest post-fixed point of F , and µY. F (Y)
is the least pre-fixed point of F .

4 New Definitions of Infinitary Term Rewriting

We present two new definitions of infinitary rewriting s→∞ t, based on mixing induction
and coinduction, and prove their equivalence. In Section 5 we show they are equivalent to
the standard definition based on ordinals. We summarize the definitions:
(a) Derivation Rules. First, we define s→∞ t via a syntactic restriction on the proof trees

that arise from the coinductive rules (7). The restriction excludes all proof trees that
contain ascending paths with an infinite number of marked symbols.

(b) Mixed Induction and Coinduction. Second, we define s→∞ t based on mutually mixing
induction and coinduction, that is, least fixed points µ and greatest fixed points ν.
In contrast to previous coinductive definitions [7, 22, 19], the setup proposed here cap-

tures all strongly convergent rewrite sequences (of arbitrary ordinal length).
Throughout this section, we fix a signature Σ and a term rewriting system R over Σ.

We also abbreviate T := Ter∞(Σ,X).

RTA 2015

150 A Coinductive Framework for Infinitary Rewriting and Equational Reasoning

I Notation 4.1. Instead of introducing separate derivation rules for transitivity, we write
a reduction of the form s0 s1 · · · sn as a sequence of single steps:

s0 s1 s1 s2 · · · sn−1 sn
conclusion

This allows us to write the subproof immediately above a single step.

I Definition 4.2. For a relation R ⊆ T × T we define its lifting R by

R := { 〈f(s1, . . . , sn), f(t1, . . . , tn)〉 | f ∈ Σ, ar(f) = n , s1 R t1, . . . , sn R tn } ∪ Id .

4.1 Derivation Rules
I Definition 4.3. We define the relation →∞ ⊂ T × T as follows. We have s→∞ t if there
exists a (finite or infinite) proof tree δ deriving s→∞ t using the following five rules:

s (→ε ∪
<
⇁∞)∗ ◦⇁∞ t

s→∞ t
split

s1 →∞ t1 · · · sn →∞ tn

f(s1, s2, . . . , sn) (<)
⇁∞ f(t1, t2, . . . , tn) lift

s
(<)
⇁∞ s

id

such that δ does not contain an infinite nesting of <
⇁∞, that is, such that there exists no

path ascending through the proof tree that meets an infinite number of symbols <
⇁∞. The

symbol (<)
⇁∞ stands for ⇁∞ or <

⇁∞; so the second rule is an abbreviation for two rules;
similarly for the third rule.

We give some intuition for the rules in Definition 4.3. The relations <
⇁∞ and ⇁∞

are infinitary reductions below the root. We use <
⇁∞ for constructing parts of the prefix

(between root steps), and⇁∞ for constructing a suffix of the reduction that we are defining.
When thinking of ordinal indexed rewrite sequences σ, a suffix of σ can have length equal
to σ, while the length of every prefix of σ must be strictly smaller than the length of σ. The
five rules (split, and the two versions of lift and id) can be interpreted as follows:
(i) The split-rule: the term s rewrites infinitarily to t, s →∞ t, if s rewrites to t using a

finite sequence of (a) root steps, and (b) infinitary reductions⇁∞ below the root (where
infinitary reductions preceding root steps must be shorter than the derived reduction).

(ii) The lift-rules: the term s rewrites infinitarily to t below the root, s (<)
⇁∞ t, if the terms

are of the shape s = f(s1, s2, . . . , sn) and t = f(t1, t2, . . . , tn) and there exist reductions
on the arguments: s1 →∞ t1, . . . , sn →∞ tn.

(iii) The id-rules allow for the rewrite relations (<)
⇁∞ to be reflexive, and this in turn yields

reflexivity of →∞. For variable-free terms, reflexivity can already be derived using the
other rules. For terms with variables, this rule is needed (unless we treat variables as
constant symbols).

For an example of a proof tree, we refer to Example 1.2 in the introduction.

4.2 Mixed Induction and Coinduction
The next definition is based on mixing induction and coinduction. The inductive part is
used to model the restriction to finite nesting of <

⇁∞ in the proofs in Definition 4.3. The
induction corresponds to a least fixed point µ, while a coinductive rule to a greatest fixed
point ν.

I Definition 4.4. We define the relation →∞ ⊆ T × T by

→∞ := µR. νS. (→ε ∪ R)∗ ◦ S .

J. Endrullis, H. H. Hansen, D. Hendriks, A. Polonsky, and A. Silva 151

We argue why →∞ is well-defined. Let L := P(T × T) be the set of all relations on
terms. Define functions G : L× L→ L and F : L→ L by

G(R,S) := (→ε ∪ R)∗ ◦ S and F (R) := νS.G(R,S) = νS. (→ε ∪ R)∗ ◦ S . (9)

Then we have →∞ = µR.F (R) = µR. νS.G(R,S) = µR. νS. (→ε ∪ R)∗ ◦ S. It
can easily be verified that F and G are monotone (in all their arguments). Recall that a
function H over sets is monotone if X ⊆ Y implies H(. . . , X, . . .) ⊆ H(. . . , Y, . . .). Hence F
and G have unique least and greatest fixed points.

4.3 Equivalence
We show equivalence of Definitions 4.3 and 4.4. Intuitively, the µR in the fixed point
definition corresponds to the nesting restriction in the definition using derivation rules. If
one thinks of Definition 4.4 as µR.F (R) with F (R) = νS.G(R,S) (see equation (9)), then
Fn+1(∅) are all infinite rewrite sequences that can be derived using proof trees where the
nesting depth of the marked symbol <

⇁∞ is at most n.
To avoid confusion we write →∞der for the relation →∞ defined in Definition 4.3, and

→∞fp for the relation →∞ defined in Definition 4.4. We show →∞der = →∞fp . Definition 4.3
requires that the nesting structure of <

⇁∞der in proof trees is well-founded. As a consequence,
we can associate to every proof tree a (countable) ordinal that allows to embed the nesting
structure in an order-preserving way. We use ω1 to denote the first uncountable ordinal, and
we view ordinals as the set of all smaller ordinals (then the elements of ω1 are all countable
ordinals).

I Definition 4.5. Let δ be a proof tree as in Definition 4.3, and let α be an ordinal. An
α-labeling of δ is a labeling of all symbols <

⇁∞der in δ with elements from α such that each
label is strictly greater than all labels occurring in the subtrees (all labels above).

I Lemma 4.6. Every proof tree as in Definition 4.3 has an α-labeling for some α ∈ ω1.

Proof. Let δ be a proof tree and let L(δ) be the set positions of symbols <
⇁∞der in t. For

positions p, q ∈ L(δ) we write p < q if p is a strict prefix of q. Then we have that > is
well-founded, that is, there is no infinite sequence p0 < p1 < p2 < · · · with pi ∈ L(δ) (i ≥ 0)
as a consequence of the nesting restriction on <

⇁∞der. The the extension of this well-founded
order on L(t) to a total, well-founded order is isomorphic to an ordinal α, and α < ω1 since
L(t) is countable. J

I Definition 4.7. Let δ be a proof tree as in Definition 4.3. We define the nesting depth of
δ as the least ordinal α ∈ ω1 such that δ admits an α-labeling. For every α ≤ ω1, we define
a relation →∞α,der ⊆ →∞der as follows: s →∞α,der t whenever s →∞der t can be derived using a
proof with nesting depth < α. Likewise we define relations ⇁∞α,der and <

⇁∞α,der .

As a direct consequence of Lemma 4.6 we have:

I Corollary 4.8. We have →∞ω1,der =→∞der.

I Theorem 4.9. Definitions 4.3 and 4.4 define the same relation, →∞der =→∞fp .

Proof. We begin with →∞fp ⊆ →∞der. Recall that F (→∞der) is the greatest fixed point of
G(→∞der,_), see (9). Also, we have ⇁∞der = <

⇁∞der =→∞der , and hence

F (→∞der) = (→ε ∪ →∞der)∗ ◦ F (→∞der) = (→ε ∪
<
⇁∞der)∗ ◦ F (→∞der) (10)

F (→∞der) = Id ∪ { 〈f(~s), f(~t)〉 | ~s F (→∞der) ~t } (11)

RTA 2015

152 A Coinductive Framework for Infinitary Rewriting and Equational Reasoning

where ~s, ~t abbreviate s1, . . . , sn and t1, . . . , tn, respectively, and we write ~s R ~t if we have
s1 R t1, . . . , sn R tn. Employing the µ-rule from (8), it suffices to show that F (→∞der) ⊆
→∞der. Assume 〈s, t〉 ∈ F (→∞der). Then 〈s, t〉 ∈ (→ε ∪

<
⇁∞der)∗◦F (→∞der). Then there exists s′

such that s (→ε ∪
<
⇁∞der)∗ s′ and s′ F (→∞der) t. Now we distinguish cases according to (11):

s (→ε ∪
<
⇁∞der)∗ t t ⇁∞ t

id

s→∞ t
split

s (→ε ∪
<
⇁∞der)∗ s′

T1 · · · Tn

s′ ⇁∞ t
lift

s→∞ t
split

Here, for i ∈ {1, . . . , n}, Ti is the proof tree for si →∞ ti obtained from si F (→∞der) ti by
corecursively applying the same procedure.

Next we show that→∞der ⊆ →∞fp . By Corollary 4.8 it suffices to show→∞ω1,der ⊆ →∞fp . We
prove by well-founded induction on α ≤ ω1 that →∞α,der ⊆ →∞fp . Since →∞fp is a fixed point
of F , we obtain →∞fp = F (→∞fp), and since F (→∞fp) is a greatest fixed point, using the ν-rule
from (8), it suffices to show that (∗)→∞α,der ⊆ G(→∞fp ,→∞α,der). Thus assume that s→∞α,der t,
and let δ be a proof tree of nesting depth ≤ α deriving s →∞α,der t. The only possibility to
derive s→∞der t is an application of the split-rule with the premise s (→ε ∪

<
⇁∞der)∗ ◦⇁∞der t.

Since s →∞α,der t, we have s (→ε ∪
<
⇁∞α,der)∗ ◦ ⇁∞α,der t. Let τ be one of the steps <

⇁∞α,der
displayed in the premise. Let u be the source of τ and v the target, so τ : u <

⇁∞α,der v.
The step τ is derived either via the id-rule or the lift-rule. The case of the id-rule is not
interesting since we then can drop τ from the premise. Thus let the step τ be derived using
the lift-rule. Then the terms u, v are of form u = f(u1, . . . , un) and v = f(v1, . . . , vn) and
for every 1 ≤ i ≤ n we have ui →∞β,der vi for some β < α. Thus by induction hypothesis
we obtain ui →∞fp vi for every 1 ≤ i ≤ n, and consequently u →∞fp v. We then have
s (→ε ∪ →∞fp)∗ ◦⇁∞α,der t, and hence s G(→∞fp ,→∞α,der) t. This concludes the proof. J

5 Equivalence with the Standard Definition

In this section we prove the equivalence of the coinductively defined infinitary rewrite rela-
tions→∞ from Definitions 4.3 (and 4.4) with the standard definition based on ordinal length
rewrite sequences with metric and strong convergence at every limit ordinal (Definition 2.1).
The crucial observation is the following theorem from [29]:

I Theorem 5.1 (Theorem 2 of [29]). A transfinite reduction is divergent if and only if for
some n ∈ N there are infinitely many steps at depth n.

We are now ready to prove the equivalence of both notions:

I Theorem 5.2. We have →∞ =→∞ord.

Proof. We write ⇁∞ord to denote a reduction →∞ord without root steps, and we write →α
ord

and ⇁α
ord to indicate the ordinal length α.

We begin with the direction→∞ord ⊆ →∞. We define a function T (and T′(<)) by guarded
corecursion [8], mapping rewrite sequences s →α

ord t (and s ⇁α
ord t) to infinite proof trees

derived using the rules from Definition 4.3. This means that every recursive call produces a
constructor, contributing to the construction of the infinite tree. Note that the arguments
of T (and T′(<)) are not required to be structurally decreasing.

We do case distinction on the ordinal α. If α = 0, then t = s and we define

T(s→0
ord s) =

T′(s ⇁0
ord s)

s→∞ s
split

T′(<)(s ⇁0
ord s) = s

(<)
⇁∞ s

id

J. Endrullis, H. H. Hansen, D. Hendriks, A. Polonsky, and A. Silva 153

If α > 0, then, by Theorem 5.1 the rewrite sequence s →α
ord t contains only a finite

number of root steps. As a consequence, it is of the form:

s = s0 s1 · · · sn−1 sn = t

where for every i ∈ {0, . . . , n− 1}, si si+1 is either a root step si →ε si+1, or an infinite
reduction below the root si ⇁≤αord si+1 where si ⇁<α

ord si+1 if i < n − 1. In the latter case,
the length of si ⇁ord si+1 is smaller than α because every strict prefix must be shorter than
the sequence itself. We define

T(s→α
ord t) =

T0 T1 · · · Tn−1

s→∞ t
split

where, for 0 ≤ i < n,

Ti =

si →ε si+1 if si si+1 is a root step,
T′<(si ⇁β

ord si+1) if i < n− 1 and si ⇁β
ord si+1 for some β < α,

T′(si ⇁β
ord si+1) if i = n− 1 and si ⇁β

ord si+1 for some β ≤ α.

For rewrite sequences s ⇁α
ord t with α > 0 we have that s = f(s1, . . . , sn) and t =

f(t1, . . . , tn) for some f ∈ Σ of arity n and terms s1, . . . , sn, t1, . . . , tn ∈ Ter∞(Σ,X), and
there is a rewrite sequence si →≤αord ti for every i with 1 ≤ i ≤ n. We define the two rules:

T′(<)(s ⇁α
ord t) =

T(s1 →≤αord t1) · · · T(sn →≤αord tn)
s

(<)
⇁∞ t

lift

The obtained proof tree T(s →α
ord t) derives s →∞ t. To see that the requirement that

there is no ascending path through this tree containing an infinite number of symbols <
⇁∞

is fulfilled, we note the following. The symbol <
⇁∞ is produced by T′<(s ⇁β

ord t) which is
invoked in T(s→α

ord t) for a β that is strictly smaller than α. By well-foundedness of < on
ordinals, no such path exists.

We now show →∞ ⊆ →∞ord. We prove by well-founded induction on α ≤ ω1 that
→∞α ⊆ →∞ord. This suffices since→∞ =→∞ω1

. Let α ≤ ω1 and assume that s→∞α t. Let δ be
a proof tree of nesting depth < α witnessing s→∞α t. The only possibility to derive s→∞ t

is an application of the split-rule with the premise s (→ε ∪
<
⇁∞)∗ ◦ ⇁∞ t. Since s →∞α t,

we have s (→ε ∪
<
⇁∞α)∗ ◦⇁∞α t. By induction hypothesis we have s (→ε ∪ →∞ord)∗ ◦⇁∞α t,

and thus s →∞ord ◦ ⇁∞α t. We have ⇁∞α = →∞α , and consequently s →∞ord s1 →∞α t for
some term s1. Repeating this argument on s1 →∞α t, we get s →∞ord s1 →∞ord s2 →∞α t.
After n iterations, we obtain

s→∞ord s1 →∞ord s2 →∞ord s3 →∞ord s4 · · · (→∞α)−(n−1) sn (→∞α)−n t

where (→∞α)−n denotes the nth iteration of x 7→ x on →∞α .
Clearly, the limit of {sn} is t. Furthermore, each of the reductions sn →∞ord sn+1 are

strongly convergent and take place at depth greater than or equal to n. Thus, the infinite
concatenation of these reductions yields a strongly convergent reduction from s to t (there
is only a finite number of rewrite steps at every depth n). J

RTA 2015

154 A Coinductive Framework for Infinitary Rewriting and Equational Reasoning

a→ε f(a)

a→ε f(a) f(a) ∞↽⇁ fω

a ∞= fω

f(a) ∞↽⇁ fω

fω ∞↽⇁ f(b) f(b)←ε b

fω ∞= b
fω ∞↽⇁ f(b) f(b)←ε b

a ∞= b

(as above)

a ∞= b
C(a) ∞↽⇁ C(b) C(b)→ε C(C(a))

C(a) ∞= Cω

C(C(a)) ∞↽⇁ Cω

C(a) ∞= Cω

Figure 4 An example of infinitary equational reasoning, deriving C(a) ∞= Cω in the TRS R of
Example 6.2. Recall Notation 4.1.

6 Infinitary Equational Reasoning and Bi-Infinite Rewriting

6.1 Infinitary Equational Reasoning
I Definition 6.1. Let R be a TRS over Σ, and let T = Ter∞(Σ,X). We define infinitary
equational reasoning as the relation =∞ ⊆ T × T by the mutually coinductive rules:

s (←ε ∪ →ε ∪
∞
↽⇁)∗ t

s
∞= t

s1
∞= t1 · · · sn

∞= tn

f(s1, s2, . . . , sn) ∞↽⇁ f(t1, t2, . . . , tn)

where ∞↽⇁ ⊆ T × T stands for infinitary equational reasoning below the root.

Note that, in comparison with the rules (1) for ∞= from the introduction, we now have
used ←ε ∪ →ε instead of =R. It is not difficult to see that this gives rise to the same
relation. The reason is that we can ‘push’ non-root rewriting steps =R into the arguments
of ∞↽⇁.

I Example 6.2. Let R be a TRS consisting of the following rules:

a→ f(a) b→ f(b) C(b)→ C(C(a)) .

Then we have a ∞= b as derived in Figure 4 (top), and C(a) ∞= Cω as in Figure 4 (bottom).

Definition 6.1 of ∞= can also be defined using a greatest fixed point as follows:

∞= := νR. (←ε ∪ →ε ∪ R)∗ ,

where R was defined in Definition 4.2. The equivalence of these definitions can be established
in a similar way as in Theorem 4.9. It is easy to verify that the function R 7→ (←ε ∪ →ε

∪ R)∗ is monotone, and consequently the greatest fixed point exists.
We note that, in the presence of collapsing rules (i.e., rules ` → r where r ∈ X),

everything becomes equivalent: s ∞= t for all terms s, t. For example, having a rule f(x)→ x

we obtain that s ∞= f(s) ∞= f2(s) ∞= · · · ∞= fω for every term s. This can be overcome by
forbidding certain infinite terms and certain infinite limits.

J. Endrullis, H. H. Hansen, D. Hendriks, A. Polonsky, and A. Silva 155

6.2 Bi-Infinite Rewriting
Another notion that arises naturally in our setup is that of bi-infinite rewriting, allowing
rewrite sequences to extend infinitely forwards and backwards. We emphasize that each of
the steps →ε in such sequences is a forward step.

I Definition 6.3. Let R be a term rewriting system over Σ, and let T = Ter∞(Σ,X). We
define the bi-infinite rewrite relation ∞→ ⊆ T × T by the following coinductive rules

s (→ε ∪
∞
⇁)∗ t

s
∞→ t

s1
∞→ t1 · · · sn

∞→ tn

f(s1, s2, . . . , sn) ∞⇁ f(t1, t2, . . . , tn)

where ∞⇁ ⊆ T × T stands for bi-infinite rewriting below the root.

If we replace ∞= and →∞ by ∞→, and ∞↽⇁ and ⇁∞ by ∞⇁, then Examples 1.1 and 1.2 are
illustrations of this rewrite relation.

Again, like ∞=, the relation ∞→ can also be defined using a greatest fixed point:
∞→ := νR. (→ε ∪ R)∗ .

Monotonicity of R 7→ (→ε ∪ R)∗ is easily verified, so that the greatest fixed point exists.
Also, the equivalence of Definition 6.3 with this ν-definition can be established similarly.

7 Relating the Notions

I Lemma 7.1. Each of the relations →∞, ∞→ and ∞= is reflexive and transitive. The relation
∞= is also symmetric.

Proof. Follows immediately from the fact that the relations are defined using the reflexive-
transitive closure in each of their first rules. J

I Theorem 7.2. For every TRS R we have the following inclusions:
→∞ ∞→

(→∞ ∪→∞)∗
(∞→∪ ∞→)∗ ∞=⊆ ⊆

⊆ ⊆
⊆

Moreover, for each of these inclusions there exists a TRS for which the inclusion is strict.

Proof. The inclusions →∞ (∞→ (∞= have already been established in the introduction.
The inclusion →∞ ((→∞ ∪→∞)∗ is well-known (and obvious). Also ∞→ ((∞→∪ ∞→)∗ is
immediate since ∞→ is not symmetric.

The inclusion (→∞ ∪→∞)∗ ⊆ (∞→∪ ∞→)∗ is immediate since →∞ ⊆ ∞→. Example 1.1
witnesses strictness of this inclusion. The reason is that, for this example, →∞ =→∗ as the
system does not admit any forward limits. Hence (→∞ ∪→∞)∗ is just finite conversion on
potentially infinite terms. Thus Cω ∞→ a, but not Cω (→∞ ∪→∞)∗ a.

The inclusion (∞→∪ ∞→)∗ ⊆ ∞= follows from the fact that ∞= includes ∞→ and is symmetric
and transitive. Example 6.2 witnesses strictness: C(a) = Cω can only be derived by a rewrite
sequence of the form:

C(a) ∞→ C(fω) ∞← C(b)→ C(C(a)) ∞→ C(C(fω)) ∞← C(C(b))→ C(C(C(a))) ∞→ · · ·

and hence we need to change rewriting directions infinitely often whereas (∞→∪ ∞→)∗ allows
to change the direction only a finite number of times. J

Concerning, the rewrite relations introduced in [23] it is not difficult to see that ∞→ (→→t

where →→t is the topological graph closure of →.

RTA 2015

156 A Coinductive Framework for Infinitary Rewriting and Equational Reasoning

8 A Formalization in Coq

The standard definition of infinitary rewriting, using ordinal length rewrite sequences and
strong convergence at limit ordinals, is difficult to formalize. The coinductive framework we
propose, is easy to formalize and work with in theorem provers.

In Coq, the coinductive definition of infinitary strongly convergent reductions can be
defined as follows:

Inductive ired : relation term :=
| Ired :

forall R I : relation term,
subrel I ired ->
subrel R ((root_step (+) lift I)* ;; lift R) ->
subrel R ired.

Here term is the set of coinductively defined terms, ;; is relation composition, (+) is the
union of relations, * the reflexive-transitive closure, lift R is R, and root_step is the root
step relation.

Let us briefly comment on this formalization. Recall that→∞ := µR. νS.G(R,S) where
G(R,S) = (→ε ∪ R)∗ ◦ S. The inductive definition of ired corresponds to the least fixed
point µR. Coq has no support for mutual inductive and coinductive definitions. Therefore,
instead of the explicit coinduction, we use the ν-rule from (8). For every relation T that
fulfills T ⊆ G(R, T), we have that T ⊆ νS.G(R,S). Moreover, we know that νS.G(R,S)
is the union of all these relations T . Finally, we introduce an auxiliary relation I to help
Coq generate a good induction principle. One can think of I as consisting of those pairs for
which the recursive call to ired is invoked. Replacing lift I by lift ired is correct, but
then the induction principle that Coq generates for ired is useless.

On the basis of the above definition we proved the Compression Lemma: whenever there
is an infinite reduction from s to t (s→∞ t) then there exists a reduction of length at most
ω from s to t (s →≤ω t). The Compression Lemma holds for left-linear TRSs with finite
left-hand sides. To characterize rewrite sequences →≤ω in Coq, we define:

Inductive ored : relation (term F X) :=
| Ored :

forall R : relation (term F X),
subrel R (mred ;; lift R) ->
forall s t, R s t -> ored s t.

Here mred are finite rewrite sequences →∗. The definition can be understood as follows.
We want the relation ored to be the greatest fixed point of H defined by H(R) = →∗ ◦ R.
So we allow a finite rewrite sequence after which the rewrite activity has to go ‘down’ to
the arguments. Again, as above for ired, we avoid the use of coinduction and define ored
inductively as the union of all relations R with R ⊆ H(R).

To the best of our knowledge this is the first formal proof of this well-known lemma. The
formalization is available at http://dimitrihendriks.com/coq/compression.

9 Conclusion

We have proposed a coinductive framework which gives rise to several natural variants of
infinitary rewriting in a uniform way:
(a) infinitary equational reasoning ∞= := νy. (←ε ∪ →ε ∪ y)∗,
(b) bi-infinite rewriting ∞→ := νy. (→ε ∪ y)∗, and

http://dimitrihendriks.com/coq/compression

J. Endrullis, H. H. Hansen, D. Hendriks, A. Polonsky, and A. Silva 157

(c) infinitary rewriting →∞ := µx. νy. (→ε ∪ x)∗ ◦ y .
We believe that (a) and (b) are new. As a consequence of the coinduction over the term
structure, these notions have the strong convergence built-in, and thus can profit from the
well-developed techniques (such as tracing) in infinitary rewriting.

We have given a mixed inductive/coinductive definition of infinitary rewriting and es-
tablished a bridge between infinitary rewriting and coalgebra. Both fields are concerned
with infinite objects and we would like to understand their relation better. In contrast to
previous coinductive treatments, the framework presented here captures rewrite sequences
of arbitrary ordinal length, and paves the way for formalizing infinitary rewriting in theorem
provers (as illustrated by our proof of the Compression Lemma in Coq).

Concerning proof trees/terms for infinite reductions, let us mention that an alternative
approach has been developed in parallel by Lombardi, Ríos and de Vrijer [30]. While we focus
on proof terms for the reduction relation and abstract from the order of steps in parallel
subterms, they use proof terms for modeling the fine-structure of the infinite reductions
themselves. Another difference is that our framework allows for non-left-linear systems. We
believe that both approaches are complementary. Theorems for which the fine-structure of
rewrite sequences is crucial, must be handled using [30]. (But note that we can capture
standard reductions by a restriction on proof trees and prove standardization using proof
tree transformations, see [19]). If the fine-structure is not important, as for instance for
proving confluence, then our system is more convenient to work with due to simpler proof
terms.

Our work lays the foundation for several directions of future research:
(i) The coinductive treatment of infinitary λ-calculus [19] has led to elegant, significantly

simpler proofs [9, 10] of some central properties of the infinitary λ-calculus. The coin-
ductive framework that we propose enables similar developments for infinitary term
rewriting with reductions of arbitrary ordinal length.

(ii) The concepts of bi-infinite rewriting and infinitary equational reasoning are novel. We
would like to study these concepts, in particular since the theory of infinitary equational
reasoning is still underdeveloped. For example, it would be interesting to compare the
Church–Rosser properties

∞= ⊆ →∞ ◦ →∞ and (→∞ ◦ →∞)∗ ⊆ →∞ ◦ →∞ .

(iii) The formalization of the proof of the Compression Lemma in Coq is just the first step
towards the formalization of all major theorems in infinitary rewriting.

(iv) It is interesting to investigate whether and how the coinductive framework can be
extended to other notions of infinitary rewriting, for example reductions where root-
active terms are mapped to ⊥ in the limit [3, 2, 4, 18].

(v) We believe that the coinductive definitions will ease the development of new techniques
for automated reasoning about infinitary rewriting. For example, methods for proving
(local) productivity [13, 15, 35], for (local) infinitary normalization [34, 14, 12], for
(local) unique normal forms [17], and for analysis of infinitary reachability and infinitary
confluence. Due to the coinductive definitions, the implementation and formalization
of these techniques could make use of circular coinduction [20, 16].

Acknowledgments. We thank Patrick Bahr, Jeroen Ketema, and Vincent van Oostrom for
fruitful discussions and comments on earlier versions of this paper.

RTA 2015

158 A Coinductive Framework for Infinitary Rewriting and Equational Reasoning

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge Univ. Press, 1998.
2 P. Bahr. Abstract Models of Transfinite Reductions. In Proc. Conf. on Rewriting Techniques

and Applications (RTA 2010), volume 6 of Leibniz International Proceedings in Informatics,
pages 49–66. Schloss Dagstuhl, 2010.

3 P. Bahr. Partial Order Infinitary Term Rewriting and Böhm Trees. In Proc. Conf. on
Rewriting Techniques and Applications (RTA 2010), volume 6 of Leibniz International Pro-
ceedings in Informatics, pages 67–84. Schloss Dagstuhl, 2010.

4 P. Bahr. Infinitary Term Graph Rewriting is Simple, Sound and Complete. In Proc. Conf.
on Rewriting Techniques and Applications (RTA 2012), volume 15 of Leibniz International
Proceedings in Informatics, pages 69–84. Schloss Dagstuhl, 2012.

5 H.P. Barendregt. The Type Free Lambda Calculus. In Handbook of Mathematical Logic,
pages 1091–1132. Nort-Holland Publishing Company, Amsterdam, 1977.

6 H.P. Barendregt and J.W. Klop. Applications of Infinitary Lambda Calculus. Information
and Computation, 207(5):559–582, 2009.

7 C. Coquand and Th. Coquand. On the Definition of Reduction for Infinite Terms. Comptes
Rendus de l’Académie des Sciences. Série I, 323(5):553–558, 1996.

8 Th. Coquand. Infinite objects in type theory. In Henk Barendregt and Tobias Nipkow,
editors, Types for Proofs and Programs, International Workshop TYPES’93, Nijmegen,
The Netherlands, May 24–28, 1993, Selected Papers, volume 806 of LNCS, pages 62–78.
Springer, 1994.

9 Ł. Czajka. A Coinductive Confluence Proof for Infinitary Lambda-Calculus. In Rewriting
and Typed Lambda Calculi (RTA-TLCA 2014), volume 8560 of Lecture Notes in Computer
Science, pages 164–178. Springer, 2014.

10 Ł. Czajka. Coinductive Techniques in Infinitary Lambda-Calculus. ArXiv e-prints, 2015.
11 N. Dershowitz, S. Kaplan, and D.A. Plaisted. Rewrite, Rewrite, Rewrite, Rewrite, Re-

write,. . . . Theoretical Computer Science, 83(1):71–96, 1991.
12 J. Endrullis, R. C. de Vrijer, and J. Waldmann. Local Termination: Theory and Practice.

Logical Methods in Computer Science, 6(3), 2010.
13 J. Endrullis, C. Grabmayer, and D. Hendriks. Complexity of Fractran and Productivity. In

Proc. Conf. on Automated Deduction (CADE 22), volume 5663 of LNCS, pages 371–387,
2009.

14 J. Endrullis, C. Grabmayer, D. Hendriks, J.W. Klop, and R.C de Vrijer. Proving Infinitary
Normalization. In Postproc. Int. Workshop on Types for Proofs and Programs (TYPES
2008), volume 5497 of LNCS, pages 64–82. Springer, 2009.

15 J. Endrullis and D. Hendriks. Lazy Productivity via Termination. Theoretical Computer
Science, 412(28):3203–3225, 2011.

16 J. Endrullis, D. Hendriks, and M. Bodin. Circular Coinduction in Coq Using Bisimulation-
Up-To Techniques. In Proc. Conf. on Interactive Theorem Proving (ITP), volume 7998 of
LNCS, pages 354–369. Springer, 2013.

17 J. Endrullis, D. Hendriks, C. Grabmayer, J.W. Klop, and V. van Oostrom. Infinitary term
rewriting for weakly orthogonal systems: Properties and counterexamples. Logical Methods
in Computer Science, 10(2:7):1–33, 2014.

18 J. Endrullis, D. Hendriks, and J.W. Klop. Highlights in Infinitary Rewriting and Lambda
Calculus. Theoretical Computer Science, 464:48–71, 2012.

19 J. Endrullis and A. Polonsky. Infinitary Rewriting Coinductively. In Proc. Types for
Proofs and Programs (TYPES 2012), volume 19 of Leibniz International Proceedings in
Informatics, pages 16–27. Schloss Dagstuhl, 2013.

20 J. Goguen, K. Lin, and G. Roşu. Circular Coinductive Rewriting. In Proc. of Automated
Software Engineering, pages 123–131. IEEE, 2000.

J. Endrullis, H. H. Hansen, D. Hendriks, A. Polonsky, and A. Silva 159

21 B. Jacobs and J.J.M.M. Rutten. An Introduction to (Co)Algebras and (Co)Induction.
In Advanced Topics in Bisimulation and Coinduction, pages 38–99. Cambridge University
Press, 2011.

22 F. Joachimski. Confluence of the Coinductive Lambda Calculus. Theoretical Computer
Science, 311(1-3):105–119, 2004.

23 S. Kahrs. Infinitary Rewriting: Foundations Revisited. In Proc. Conf. on Rewriting Tech-
niques and Applications (RTA 2010), volume 6 of Leibniz International Proceedings in
Informatics, pages 161–176. Schloss Dagstuhl, 2010.

24 S. Kahrs. Infinitary Rewriting: Closure Operators, Equivalences and Models. Acta Inform-
atica, 50(2):123–156, 2013.

25 J.R. Kennaway and F.-J. de Vries. Infinitary Rewriting, chapter 12. Cambridge University
Press, 2003. in [32].

26 J.R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Transfinite Reductions in
Orthogonal Term Rewriting Systems. Information and Computation, 119(1):18–38, 1995.

27 J. Ketema and J.G. Simonsen. Computing with Infinite Terms and Infinite Reductions.
Unpublished manuscript.

28 J.W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science, volume II,
pages 1–116. Oxford University Press, 1992.

29 J.W. Klop and R.C de Vrijer. Infinitary Normalization. In We Will Show Them: Essays
in Honour of Dov Gabbay (2), pages 169–192. College Publications, 2005.

30 C. Lombardi, A. Ríos, and R.C de Vrijer. Proof Terms for Infinitary Rewriting. In Rewriting
and Typed Lambda Calculi (RTA-TLCA 2014), volume 8560 of Lecture Notes in Computer
Science, pages 303–318. Springer, 2014.

31 J.G. Simonsen. On Confluence and Residuals in Cauchy Convergent Transfinite Rewriting.
Information Processing Letters, 91(3):141–146, 2004.

32 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2003.

33 M. Vermaat. Infinitary Rewriting in Coq. Available at url http://martijn.vermaat.
name/master-project/.

34 H. Zantema. Normalization of Infinite Terms. In Proc. Conf. on Rewriting Techniques and
Applications (RTA 2008), number 5117 in LNCS, pages 441–455, 2008.

35 H. Zantema and M. Raffelsieper. Proving Productivity in Infinite Data Structures. In
Proc. Conf. on Rewriting Techniques and Applications (RTA 2010), volume 6 of Leibniz
International Proceedings in Informatics, pages 401–416. Schloss Dagstuhl, 2010.

RTA 2015

http://martijn.vermaat.name/master-project/
http://martijn.vermaat.name/master-project/

	Introduction
	Related Work
	Outline

	Preliminaries on Term Rewriting
	(Co)induction and Fixed Points
	New Definitions of Infinitary Term Rewriting
	Derivation Rules
	Mixed Induction and Coinduction
	Equivalence

	Equivalence with the Standard Definition
	Infinitary Equational Reasoning and Bi-Infinite Rewriting
	Infinitary Equational Reasoning
	Bi-Infinite Rewriting

	Relating the Notions
	A Formalization in Coq
	Conclusion

