
Highlights in Infinitary Rewriting and Lambda Calculus

Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop

Vrije Universiteit Amsterdam, Department of Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract

We present some highlights from the emerging theory of infinitary rewriting,
both for first-order term rewriting systems and λ-calculus.

In the first section we introduce the framework of infinitary rewriting for
first-order rewrite systems, so without bound variables. We present a recent
observation concerning the continuity of infinitary rewriting.

In the second section we present an excursion to the infinitary λ-calculus. Af-
ter the main definitions, we mention a recent observation about infinite looping
λ-terms, that is, terms that reduce in one step to themselves. Next we describe
the fundamental trichotomy in the semantics of λ-calculus: Böhm trees, Lévy–
Longo trees, and Berarducci trees. We conclude with a short description of a
new refinement of Böhm tree semantics, called clocked semantics.

1. Introduction

At the cradle of the information age, with the emergence of the notions
of computability and decidability some eighty years ago, the formal systems of
λ-calculus and Combinatory Logic saw the light. A descendant of these systems,
one or two generations later, was formed by the more general notion of term
rewriting systems, together with the rise of functional programming languages
and the theory of algebraic specifications. Again a generation later several ex-
tensions and applications of this format were developed, in particular infinitary
rewriting, term graph theory, the technology of narrowing and completion, the
termination proof tools, automated deduction and verification tools. In almost
all these areas our colleague and friend Yoshihito Toyama has made several
prominent contributions, that have shaped and enriched the field. Our paper
is dedicated to him, on the occasion of his 60th birthday, in admiration and
gratitude for his many accomplishments and his everlasting inspiration.

On suggestion of this volume’s editors, and also in the spirit of Toyama’s
interests, we have endeavoured to present in this paper an outlook on a strand

Email addresses: j.endrullis@vu.nl (Jörg Endrullis), r.d.a.hendriks@vu.nl (Dimitri
Hendriks), j.w.klop@vu.nl (Jan Willem Klop)

Preprint submitted to Elsevier September 26, 2019



of research that has emerged in the last two decades, concerning the infini-
tary extension of the λ-calculus and more general (orthogonal) term rewriting
systems.

Our paper will present some of the highlights of infinitary rewriting, mostly
in an informal way, leaving the completely detailed, formal proofs to the lit-
erature to which pointers are provided. Most of the material is by now well-
established, but we have inserted some new results and observations, and at
these points we have also included the proofs.

A few words about the rationale of infinitary rewriting. After the initial
set-up of the λ-calculus and Combinatory Logic (CL) in the thirties and their
subsequent analysis and employment in mathematical logic, a next major step
of mountainous importance was formed by the discovery by Scott, Plotkin,
Engeler and others of the famous mathematical models of λ-calculus and CL, in
the form of D∞, Pω and their variants. To describe the equality in these models
infinitary λ-terms were used, known as Böhm trees (and later variants such as
Lévy–Longo and Berarducci trees). The employment of infinite λ-terms, thus
entered the field in a natural way. This was still in a restricted form, Böhm trees
are infinite normal forms but cannot be applied to each other. Now rewriting
theory took the dimension of infinity seriously, and developed a full theory of
possibly infinite terms, including their application to each other. Thus we find
operational versions, as normal form models, for the main classic models D∞
and Pω.

A benefit of the infinitary λ-calculus and rewrite systems, is the ease of
calculations that directly correspond to the equality in the models. Of course
there were means for establishing equations such as Scott’s Induction Rule, but
calculating directly with the infinite terms seems more convenient. Examples
are given in this paper.

The original interest in this infinitary extension was triggered by term graph
rewriting [25], where we typically have cyclic term graphs, which after infinite
unwinding give rise to infinite trees.

It is arguable whether the transfinite extension of infinitary rewriting is
necessary or useful. In fact, by the Compression Lemma, we can restrict our
attention to reduction lengths not exceeding the ordinal ω, but it is much more
fun (besides facilitating reasoning) to create the vastly more extended space of
reductions of length of any countable ordinal, and consider rewrite systems that
contain computations of the giant ordinals ε0 and Γ0. If desired, one can always
be satisfied with the initial segment of rewrite theory up to ω. We note that
not all systems have compression, e.g. λ∞βη-calculus, see [58, page 691].

2. Infinitary rewriting for first order systems

2.1. Basics of infinitary rewriting

In this section we will consider possibly infinite terms over a first-order signa-
ture Σ. We assume familiarity with these notions, for which precise definitions
can be found, e.g., in Terese [58], Klop [37] and many other sources. For the

2



extension to infinite terms we observe that the rules of R = 〈Σ, R〉 apply just
as well to finite as to infinite terms; their applicability just depends on the pres-
ence of a finite ‘redex pattern’. Infinite terms arise from the set of finite terms,
Ter(Σ), by metric completion, using the well-known distance function d such
that for t, s ∈ Ter(Σ), d(t, s) = 2−n if the n-th level of the terms t, s (viewed
as labeled trees) is the first level where a difference appears, in case t and s
are not identical; furthermore, d(t, t) = 0. It is standard that this construction
yields 〈Ter(Σ), d〉 as a metric space. Now infinite terms are obtained by taking
the completion of this metric space, and they are represented by infinite trees.
We will refer to the complete metric space arising in this way as 〈Ter∞(Σ), d〉,
where Ter∞(Σ) is the set of finite and infinite terms over Σ.

A natural consequence of this construction is the emergence of the notion of
Cauchy convergence: we say that t0 → t1 → t2 → . . . is an infinite reduction
sequence with limit t, if t is the limit of the sequence t0, t1, t2, . . . in the usual
sense of Cauchy convergence. Cauchy convergence is sometimes also called weak
convergence. In fact, we will use throughout a stronger notion that has better
properties. This is strong convergence, which in addition to the stipulation for
Cauchy (or weak) convergence, requires that the depth of the redexes contracted
in the successive steps tends to infinity when approaching a limit ordinal from
below. So this rules out the possibility that the action of redex contraction
stays confined at the top, or stagnates at some finite level of depth. See further
Figure 1 for an intuitive illustration.

ω ·1 ω ·2 ω ·3 ω ·4 ω ·5 ω ·6 ω ·7 ω ·8 ω ·9 ω ·10 ω ·11 ω ·12 ω ·13ω ·14ω ·15ω ·16ω ·17ω ·18ω ·19

0 ω2

convergence of depths towards ω2

Figure 1: Depth of redex contractions tends to infinity at each limit ordinal.

A more precise definition is as follows: A transfinite rewrite sequence (of
ordinal length α) is a sequence of rewrite steps (tβ →R,pβ tβ+1)β<α such that
for every limit ordinal λ < α we have that if β approaches λ from below, then

(i) the distance d(tβ , tλ) tends to 0 and, moreover,

(ii) the depth of the rewrite action, i.e., the length of the position pβ , tends
to infinity.

The sequence is called strongly convergent if α is a successor ordinal, or there

3



exists a term tα such that the conditions (i) and (ii) are fulfilled for every limit
ordinal λ ≤ α. In this case we write t0 →→→R tα, or t0 →α tα to explicitly
indicate the length α of the sequence. The sequence is called divergent if it is
not strongly convergent.

There are several reasons why strong convergence is beneficial; the foremost
being that in this way we can define the notion of descendant (also residual) over
limit ordinals. Also the well-known Parallel Moves Lemma (see Section 2.2) and
the Compression Lemma (Theorem 2.3, below) fail for weak convergence, see [54]
and [8] respectively. It is further easy to establish that strongly convergent
reductions can have any countable length; weakly convergent reductions can
have any length, as the one-rule TRS with C → C demonstrates.

The notion of normal form, which now may be an infinite term, is unprob-
lematic: it is a term without a redex occurrence.

Example 2.1 (Zero times infinity). Let us discuss all the concepts introduced
so far by means of the following reduction rules for addition and multiplication
due to Dedekind [7], in combination with a reduction rule defining the constant
∞ for ‘infinity’:

A(x, 0)→ x M(x, 0)→ 0 ∞→ S(∞)

A(x, S(y))→ S(A(x, y)) M(x, S(y))→ A(M(x, y), x)

The constant 0 and the unary S for successor generate the finite natural num-
bers. These rules compute some familiar identities for ∞, such as

A(Sn(0),∞) = A(∞, Sn(0)) = A(∞,∞) =∞
M(Sn+1(0),∞) = M(∞, Sn+1(0)) = M(∞,∞) =∞

in the sense that these terms reduce to the same infinite normal form, namely
Sω = S(S(S(. . . ))).

How about zero times infinity? The equation M(∞, 0) = 0 is immediate,
but the term M(0,∞) is interesting, since it turns out to be undefined, as it
allows for, e.g., the following reduction cycle:

M(0,∞)→M(0, S(∞))→ A(M(0,∞), 0)→M(0,∞)

The whole reduction graph including all finite and infinite reducts of M(0,∞)
is displayed in Figure 2. It turns out to be full of cycles, the shortest one
constituting the top of the triangular reduction graph. All terms in the graph
are hypercollapsing (a notion to be explained later); the term below right, a
regular tree that we render in abbreviation as µx.A(x, 0) is reducible only to
itself, even in infinitely many different one step reductions. None of the terms
in the graph have a normal form, i.e., they are not WN∞. There is no longest
strongly convergent reduction, in fact there are strongly convergent reductions
of any countable ordinal length. The same holds for divergent reductions. The
diagonal steps are all collapsing steps, but no diagonal steps emanate from the
term µx.A(x, 0); it only collapses to itself. This µ-term is only a convenient

4



∞

M

A

∞

M

A ∞
A

∞

M(0,∞)

M(0, S(∞))

M(0, S(S(∞)))

M(0, Sω) A(M(0, Sω), 0)

A(M(0,∞), 0)

A(A(M(0,∞), 0), 0)

µx.A(x, 0)

A

A

A

A

A

A
A

A
A

A
0
0

0
0

0
0

0

0

0

0

Figure 2: Zero times infinity.

notation for an infinite term, namely the one depicted in the figure; it is not a
term in our rewrite system. In general, we use µx.C[x] to denote the infinite
term t that is the solution of t ≡ C[t].

We notice that in every TRS, even those with uncountably many symbols and
rules, all transfinite reductions have countable length. All countable ordinals
can indeed occur as the length of a strongly convergent reduction, e.g. for the
TRS a(x) → b(x). For ordinary Cauchy-convergent reductions this is not so:
the rewrite rule C → C yields arbitrarily long convergent reductions C →α

c C.
However, these are not strongly convergent, except the ones of finite length.

Strong convergence versus Cauchy convergence. We will have a closer look at
the difference between Cauchy convergence (CC) and strong convergence (SC).
First this is done with a signature extension, using a marker indicating activity;
next the connection with reduction loops is shown. Consider the following
abbreviations:

CC: Cauchy convergence, informally defined above;

SC: Strong convergence, also defined above;

CCC: Cauchy convergence with colors, explained below.

Given is the first-order signature Σ and a TRS (Σ, R). We extend this signature
by adding a colored ‘activity marker’ ?, a unary symbol with the reduction rule

?(x)→ x

The old reduction rules are changed in such a way that the right-hand side
is prefixed with ?. For example, for Combinatory Logic (CL) this gives the

5



following rules for S and I:

Ix→ ?(x) Sxyz → ?(xz(yz))

The resulting TRS is 〈Σ′, R′〉. Now given an old reduction in 〈Σ, R〉, we can lift
it to the colored version 〈Σ′, R′〉 by applying the rules as modified, introducing
the markers ?. The markers are removed in the next step using the ?-rule (intu-
itively, the heat generated by the activity ‘cools down’); formally, the immediate
removal of the markers accounts to a reduction strategy.

We now define Cauchy convergence with colors (CCC) of a rewrite sequence
in the original system 〈Σ, R〉 as Cauchy convergence of the lifted rewrite se-
quence in 〈Σ′, R′〉. So the infinite reduction in CL:

SII(SII)→ I(SII)(I(SII))→ SII(I(SII))→ SII(SII)→ . . .

is lifted to

SII(SII)→ ?(I(SII)(I(SII)))→ I(SII)(I(SII))→ ?(SII(I(SII)))

→ SII(I(SII))→ SII(?(SII))→ SII(SII)→ . . .

Proposition 2.1. For all reductions: SC ⇐⇒ CCC.

Proof. Both the introduction and the removal of the activity symbol ? cause
consecutive terms to differ at the depth of the rewrite step. Hence the depth
of the rewrite steps tends to infinity if and only if the sequence is Cauchy
convergent.

Thus we can remove the depth requirement in the definition of SC in favour
of a signature extension and the old concept CC. We could view CCC as ‘the’
definition, and then derive the depth requirement. As an alternative to the
activity markers, we could have employed a maximal labeling, see Terese [58,
Definition 8.4.14].

Remark 2.2. There is another interesting way to pinpoint the difference between
weak and strong convergence, which can be phrased in terms of reduction loops.
Here we distinguish a ‘loop’ from a ‘cycle’: a loop is a reduction cycle consisting
of a single reduction step. Now the difference between weak and strong conver-
gence lies in the presence of reduction loops. An inkling of this fact is already
seen in the one-rule TRS C → C seen above: its infinite reductions are weakly
but not strongly convergent.

More general, loops arise by reduction rules whose left-hand side is unifiable
with its right-hand side; the effect on weak versus strong convergence was noted
in Kennaway et al. [23], but the statement there is flawed. The observation
concerning loops and weak versus strong convergence is also present in Simon-
sen [55], who arrived independently at it, and, moreover, notes that this fact
is also valid in higher-order systems, in particular λ-calculus. The same obser-
vation, again arrived at independently, occurred in recent work by Endrullis,
Grabmayer, de Vrijer, reported in the unpublished note [18].

6



Finitary rewriting Infinitary or transfinite rewriting

finite reduction strongly convergent reduction

infinite reduction divergent reduction (“stagnating”)

normal form (possibly infinite) normal form

CR: two coinitial finite reductions can
be prolonged to a common term

CR∞: two coinitial strongly conver-
gent reductions can be prolonged by
strongly convergent reductions to a
common term

UN: two coinitial reductions ending in
normals forms, end in the same normal
form

UN∞: two coinitial strongly conver-
gent reductions ending in (possibly in-
finite) normal forms, end in the same
normal form

SN: all reductions lead eventually to a
normal form

SN∞: all reductions lead eventually
to a (possibly infinite) normal form,
equivalently: there is no divergent re-
duction

WN: there is a finite reduction to a
normal form

WN∞: there is a strongly convergent
reduction to a (possibly infinite) nor-
mal form

Table 1: The main properties in finite and infinitary rewriting.

2.2. Infinitary properties of transfinite term rewriting

We will now present and discuss the most important properties of infinitary
rewriting, as in Table 1. Here the left column states the finitary properties, and
the right column states the analogous properties for the infinitary case. Let us
briefly enumerate and discuss the most salient facts.

Infinitary confluence. In finite rewriting with orthogonal rewrite systems, even
with weakly orthogonal TRSs, we have the confluence property CR. A stepping
stone towards CR is PML, the Parallel Moves Lemma, stating that one reduction
step set out against a finite reduction admits converging reductions to a common
reduct:

s t1

t2 u

The property PML is half way to CR; a simple induction yields PML =⇒
CR. The generalization of PML to its infinitary version PML∞ is straightfor-
ward. Now for orthogonal and weakly orthogonal TRSs, we do have PML∞,
but CR∞ fails, as the following example witnesses.

7



C

ABC

BC

BABC

BBC

BBABC

BBBC

BBBABC
BBBBC

BBBBABC
BBBBBC

BBBBBABC
BBBBBBC

BBBBBBABC
BBBBBBBCBBBBBBBABCBBBBBBBBC

ABC

AC

AABC

AAC

AAABC

AAAC

AAAABC
AAAAC

AAAAABC
AAAAAC
AAAAAABC
AAAAAAC
AAAAAAABC
AAAAAAACAAAAAAAABCAAAAAAAAC

BC

BABC

BBC

AC

AABC

AAC

ABC

C

ABC

C

Figure 3: The ABC-example (Example 2.3), in perspective. The reduction graph is
rendered such that the distances in the euclidean metric of the plane respect the tree
metric.

Example 2.3. Consider the orthogonal TRS with the three rules

A(x)→ x B(x)→ x C → A(B(C))

The first two rules are so-called collapsing rules, by virtue of their right-hand
side being a single variable. Now we have reductions C →→→ Aω and C →→→ Bω.
Figure 3 depicts the tiling diagram for these reductions. However, the infinite
terms Aω, Bω only reduce to themselves; hence CR∞ fails.

Example 2.4. The ‘ABC-example’ that we saw in the preced-
ing example also works in the much more important rewrite
system Combinatory Logic CL, with the usual three basic
combinators I,K,S and their corresponding reductions rules
(see, e.g., Barendregt [3]), and also in infinitary λ-calculus
that we will consider in more detail in the next section. The
figure on the right, with the infinite collapsing tower of two
different collapsing contexts K�K and K�S shows how the
ABC-counterexample can be simulated using a fixed-point
construction in those calculi. To see that this is indeed a CR∞-
counterexample, note that µx.K(KxS)K →→→ µx.KxS and also
µx.K(KxS)K →→→ µx.KxK, while µx.KxS and µx.KxK only re-
duce to themselves (in any countable ordinal number of steps).

K

K

K

K

K

K

K

K
K ...

K
S

K

S

K

S

K

S

K

Remark 2.5. The counterexample µx.K(KxS)K against CR∞ gives us a hint as
to what is the cause of the failure of CR∞. First, let us recall the definition

8



Ter∞(Σ)

Iω

Ω

divergent
root active

hypercollapsing

alternatingly
hypercollapsing

CR∞

WN∞

SN∞

NF

UN∞

bad good

Fam(t)
t

Figure 4: Root-active and hypercollapsing terms.

of root-active term: this is a term admitting an infinite reduction in which
infinitely often the root redex is contracted (i.e., the whole term is a redex).
Root-active terms are ‘problematic’, they can be considered as ‘undefined’: they
never will reduce to a term where the root is stable and not subject to any further
reduction. Indeed, working modulo the set RA of root-active terms, we restore
CR∞. Now RA contains a subset HC of hypercollapsing terms that is even
more problematic or undefined. A hypercollapsing term is one that reduces
to an infinite tower of stacked collapsing contexts. A context C is collapsing
when C[x] →→ x. The last step of such a collapsing reduction is by virtue of
a collapsing reduction rule t → x, with a variable as right-hand side. Thus
without loss of generality we may assume that all contexts C a collapsing tower
is built of, collapse in a single step.

The notion CR∞ is fairly robust: only the hypercollapsing terms cause non-
CR∞. Even the root-active but not hypercollapsing terms do not disturb CR∞.
We can make this precise using the notion of family of a term t, Fam(t) which
is the set of all subterms of all reducts of t. The term t and its family Fam(t)
are shown in Figure 4.

Now we have the following theorem:

Theorem 2.2. For all terms t in an orthogonal TRS, we have

Fam(t) ∩HC = ∅ =⇒ CR∞(t)

A proof of Theorem 2.2 can be given by the analysis of collapsing rules and
ε-completion of rules, as mentioned in [26] and [58, Chapter 12, pages 705,706].
To give the intricate proof in its entirety is beyond the scope of this paper.

We conjecture that Theorem 2.2 can be sharpened by introducing a class of
alternating hypercollapsing terms, reducing to an infinite alternating tower of
two ‘essentially’ non-convertible collapsing contexts, like the term µx.K(KxS)K.

9



Unique infinitary normal forms. Even though CR∞ fails, fortunately its con-
sequence UN∞ does hold [24, 38]. Caveat : Here it is important that we have
orthogonal TRSs; for weakly orthogonal ones, also UN∞ fails, as we will see
later.

Let us point out a notable consequence of UN∞: for all orthogonal TRSs we
have SN∞ =⇒ CR∞, because SN∞ & UN∞ =⇒ CR∞. And note that we also
have the local version for all terms, i.e., ∀t. SN∞(t) =⇒ CR∞(t).

Infinitary normalization. As to infinitary normalization, there are three note-
worthy remarks.

(i) The first pertains to the definition of SN∞, stating that all reductions
eventually will normalize, i.e., reach a normal form. It is important to
realize what the negation of this property means, namely that there is
a depth n where infinitely many times a redex is contracted. Such a
‘stagnation’ reveals that the reduction is not strongly convergent, which we
call divergent. So we can rephrase SN∞ as stating: there are no divergent
reductions.

(ii) The second remark is that in finitary rewriting the properties SN and WN
as global properties of TRSs have a different strength: SN⇒WN but not
vice versa. However, in infinitary rewriting (with orthogonal TRSs), we
have somewhat surprisingly the equivalence SN∞ ⇐⇒ WN∞. Caveat:
This is so for the global properties SN∞ and WN∞; on the term level the
properties do have different strength, SN∞(t) implies WN∞(t), but not
necessarily vice versa. For an exposition of these facts see [38].

(iii) Third, infinitary normalization is closely related to productivity, that is,
infinitary constructor normalization where the infinite normal forms are
required to consist of constructor symbols only. The constructor symbols
are those symbols that do not occur as root symbols of left-hand sides of
the rules. Methods for proving productivity of individual terms have been
investigated in [13, 15], and methods for proving productivity globally,
for all finite terms, are studied in [63, 64, 19]. Techniques for proving
infinitary normalization have been developed in [62, 16]. The properties
infinitary normalization and productivity are of course undecidable, see
further [14, 11].

Most of the transpositions of the finitary notions to their infinitary coun-
terparts as in the Table 1 are straightforward. We stress the basic analogy for
infinitary reductions:

finite : infinite = strongly converging : divergent

Infinite ordinals give us a large space to manoeuvre, but often it is convenient
to stick to the first infinite ordinal ω. Indeed this can be done, for all orthogonal
iTRSs, and even for a somewhat larger class. This is our next stepping stone,
stating that for left-linear TRSs every reduction of length α can be compressed
to one with the same start and finish, but with finite length, or length ω.

10



M0

R1

M’0

R0

!" !".2

!".2!".2

R1

R2M”0

d
d

d

d

dddd

Figure 5: The umc (uppermost contracted) reflection procedure.

Theorem 2.3 (Compression Lemma [26, 58]). For every left-linear TRS we
have

t→α t′ =⇒ t→≤ω t′

To see that left-linearity is essential, consider the following TRS:

A→ C(A) B → C(B) f(x, x)→ E (1)

Then the reduction f(A,B)→ω+1 E cannot be compressed to length ≤ ω.
Figure 5 illustrates how standardization can be employed for compressing

reductions to length ≤ ω. Standardization is a method of transforming a re-
duction into a standard one, that is, one in which the steps are ordered in a
top-down fashion. The original reduction γ0 of ordinal length is displayed hor-
izontally. Blue steps or reductions are empty. The blue elementary reductions
diagrams are the ones in which ‘coincidence’ takes place; its initial sides are
identical, its converging sides empty. Red spots indicate a point of stagnation,
divergence, at depth d. (The procedure works for both strongly convergent
and divergent rewrite sequences.) This divergence as well as its depth, is re-
flected into the compressed reduction at the left side, vertical, of the diagram.
The right side and the bottom side are empty. The compressed reduction is a
permutation of the original one; for orthogonal systems they are known to be
Lévy-equivalent [26]. That the projections in the diagram are empty follows im-
mediately from the analysis of reduction diagrams in the infinitary case present
in [58, Chapter 12].

We construct the compressed, vertical reduction τ consisting of steps τ0,
τ1, . . . as follows. For i ∈ N we let τi contract a fairly chosen redex, outermost
among the redexes of which a descendant is contracted in γi, and define γi+1 =
γi/τi (that is, the projection of γi over τi). Here, by ‘fair’ we mean that every

11



redex will be chosen after some finite number of steps. Note that the set of
redexes of which a descendant is contracted is never empty unless γi is empty.
It can be shown that the thus constructed reduction τ is strongly converging
and has the same limit as γ0. (In the case of a divergent sequence γ0, τ also is
divergent.) For more details, we refer to Ketema [31].

ωω Iωω I2ωω I3ωω Iω ω

Iω (Iω)

Iω (I2ω)

Iω (I3ω)

Iω (Iω)

ω(Iω)

ω(I2ω)

ω(I3ω)

Iω(Iω)

Iω(I2ω)

Iω(I3ω)

I2ω(Iω)

I2ω(I2ω)

I2ω(I3ω)

I3ω(Iω)

I3ω(I2ω)

I3ω(I3ω)

ω(Iω) Iω(Iω) I2ω(Iω) I3ω(Iω)

Figure 6: The infinitary reduction graph of the term ωω with ω = SII is not a closed
graph. The red reduction steps are root steps. All infinite reductions in this graph are
divergent. The accumulation or limit points in the euclidean metric, as well as in the
tree metric, at the right and bottom side, are themselves not →→→-reducts, hence not
contained in this →→→-graph.

Example 2.6. The CL-term SII(SII) has the infinite reduction graph displayed
in Figure 6. Abbreviating ω = SII the terms at the nodes of this graph are
Inω(Imω) for n,m ≥ 0. Here are some observations:

(i) All the terms in this reduction graph are root-active, but not hypercol-
lapsing. (Note that the accumulation points containing the subterm Iω are
not part of the reduction graph as there are not the limit of convergent
reductions.)

(ii) There are continuum many infinite reductions contained in this reduction
graph; all are divergent; in particular they are root-active.

2.3. Infinitary rewrite systems and subsystems
When we compare properties of rewrite systems we must be precise whether

we mean finitary rewrite systems or infinitary rewrite systems. In particular we

12



must be precise about the domain or universe of our TRS or iTRS. Although
most of the time it will be clear from the context what is meant, sometimes some
extra precision is desirable. Therefore we define the notion of ‘sub-TRS’ per-
taining to a restriction of the domain (the set of terms), and not to a restriction
of the set of reduction rules:

Definition 2.1.

(i) A finitary TRS (or TRS for short) R = 〈Ter(Σ), R〉 over the signature Σ
is a pair consisting of the domain Ter(Σ), and a set of reduction rules R,
generating the reduction relation→ and its reflexive–transitive closure→→.

(ii) We may also consider TRSs R′ = 〈T ,R〉 based on a subset T ⊆ Ter(Σ),
which then is required to be closed under→→. Such a TRS is called a sub-
TRS of R. Almost always our assertions and theorems about TRSs are
in fact pertaining to all sub-TRSs. In case the domain T is all of Ter(Σ),
we call the TRS R′ full.

(iii) An infinitary TRS (or iTRS) R = 〈Ter∞(Σ), R〉 over Σ consists of the
domain Ter∞(Σ), the set of all finite and infinite terms over the signature
Σ, and reduction rules R, generating the infinitary reduction relation→α,
or →→→ for unspecified ordinal reduction length.

(iv) Again R′ = 〈T ,R〉 is a sub-iTRS of R if T ⊆ Ter∞(Σ) is closed under
→→→, and R′ is called full iTRS if T = Ter∞(Σ).

Definition 2.2. We define canonical transformations from finitary TRSs to
iTRSs and vice versa.

(i) If R = 〈T ,R〉 is a finitary TRS, then R∞ is the iTRS 〈T∞, R〉 where T∞

is the closure of T under →→→ in Ter∞(Σ).
(ii) Vice versa, we obtain from iTRS R = (T∞, R) a finitary TRS R−∞, by

omitting the infinite terms from T∞.

Remark 2.7. We can now be more precise in our assertions. First let us mention
some of the TRSs and iTRSs connected to CL, Combinatory Logic: The full
TRS CL has a sub-TRS CL(S) consisting of the finite S-terms. By closure under
→→→ it generates CL(S)∞, not to be confused with the larger (full) CL∞(S), the
sub-iTRS of CL∞ consisting of all finite and infinite S-terms. Note, by the way,
that there is an infinite S-term containing no S’s! Now we have:

(i) (H.P. Barendregt [3]) CL(S) 2 SN. The well-known counterexample to SN
is SSS(SSS)(SSS).

(ii) (J. Waldmann [61]) CL(S)∞ � SN∞.
(iii) (H. Zantema, personal communication) CL∞(S) 2 SN∞. The counterex-

ample, obtained by unification of left and right-hand side of the rewrite
rule for the S-combinator, is S(Sω)TT with T = µx.xx, the infinite binary
tree of application nodes. Note that Sω = S(Sω) and TT = T , and so the
term is looping:

S(Sω)TT → SωT (TT ) = S(Sω)TT

We can write this whole term in µ-notation, (µx.Sx)(µy.yy)(µy.yy).

13



Y1I

I(Y1I)

I2(Y1I)

I3(Y1I)

δY1I

δ2Y1I

δ3Y1I

δωI I(δωI) I2(δωI) Iω

Figure 7: Infinitary reduction graph of Y1I, a closed graph.

Remark 2.8. Note that for TRSs R we have (R∞)−∞ ⊇ R1, and vice versa for
iTRSs R, (R−∞)∞ ⊆ R. In fact, (R−∞)∞ is the sub-iTRS consisting of the
finitely generated terms from R.

Example 2.9.

(i) Let δ be a constant with the rule δxy → y(xy). In Smullyan [57] δ is called
the ‘Owl’. Further, we will have a constant ω with the rule ωx → xx,
and constant B with Bfgx → f(gx). With these constants we can build
Turing’s fixed point combinator (fpc) Y1 as ωZ where Z = Bδω. Then
indeed Y1x→→ x(Y1x), as follows:

Y1x = ωZx→ ZZx = BδωZx→ δ(ωZ)x = δY1x→ x(Y1x)

(ii) Consider the term Y1I and its reduction graph G(Y1I) in Figure 7. For the
sub-iTRS generated by the combinators S, I,B, δ, ω it is easy to conclude
that CR∞ holds: invoke [26, Theorem 6.10] stating that iTRSs containing
only a single non-parameterized collapsing rule (i.e., whose left-hand side
contains only one variable) are CR∞; in [26] these iTRSs are called almost
non-collapsing.

(iii) In CL we can actually define δ as SI, ω as SII, and B as S(KS)K. For the
more complicated iTRS with as domain the points of the graph G(Y1I),
and with the rules for I,K,S, the property CR∞ also holds, as can be seen
from the explicit determination of the whole reduction graph. Note that
now we cannot invoke [26, Theorem 6.10] due to the rule for K.

1We consider the TRS R = 〈T ,R〉 where R consists of the rules A → C(A), B → C(B)
and f(x, x) → E, over the set of terms T = {f(Cn(A), Cm(B)) | n,m ∈ N}. Then (R∞)−∞

contains the term E in its domain as a consequence of f(A,B) →→→ f(Cω , Cω) → E.

14



µx.xx

((∆ω)ω)ω

(∆ω)ω

∆ω

∆

δ

∆∆

µx.xx

((∆ω)ω)ω

(∆ω)ω

∆ω

∆

δ

∆∆

term graph edges

infinitary rewriting

Figure 8: Cyclic graphs for some reducts of ∆∆, getting more and more complex but
converging to the relatively simple normal form consisting of application nodes only.
All the ‘fuel’ initially present in the form of the δ’s, has been burnt out in the normal
form.

(iv) Turing’s fpc Y1 has as infinite normal form δω, which we abbreviate by ∆.
This ∆ is an example of an infinitary fpc: ∆x = δ∆x→ x(∆x)→→→ xω.

(v) ∆∆ is an interesting term. We have

∆∆→→→ ∆ω →→→ (∆ω)ω →→→ ((∆ω)ω)ω →→→ · · ·

See Figure 8. Somewhat surprisingly, ∆∆ does have a normal form, viz.
µx.xx; and moreover ∆∆ has the property SN∞. To see that µx.xx is
indeed the normal form, one may consider the reduction

∆∆→→→ (∆ω)ω ≡ ∆ω((∆ω)ω)→→→ (∆ω)ω((∆ω)ω)→→→ · · ·

and check that the reductions involved do not employ root redexes. (Only
in the reduction ∆∆→→→ ∆ω a root step is present; in the ‘later’ reductions
there are no root steps.) In fact we have a strongly convergent reduction

∆∆→→→ ∆ω →→→ (∆ω)ω →→→ ((∆ω)ω)ω →→→ · · · →→→ µx.xx

(vi) The term ∆∆ has uncountably many reducts. It has reductions of any
countable ordinal length. It is SN∞ with µx.xx as its unique normal form.
This normal form is in fact a Berarducci tree. The example of ∆∆ was
also mentioned in [9]. SN∞ can be proved as follows: We have CR∞ as
there are no collapsing rules in this TRS, which is a fragment (sub-TRS)
of CL. Since there is a normal form, we have WN∞. Hence, SN∞ follows
by the equivalence SN∞ ⇐⇒ WN∞ as global properties of TRSs.

15



2.4. Continuity of infinitary rewriting

Experimenting with several infinitary reduction graphs, we observe that they
seem to have a certain closure property, or rather, continuity property. We will
make this explicit now.

Definition 2.3. The Continuity Property (CP), is defined as follows:

∀i ∈ N. t→→→ si and s = lim
i→∞

si =⇒ t→→→ s

Note that by requiring s = limi→∞ si we tacitly assume that the limit exists.
The continuity property holds if and only if →→→ is pointwise closed, see further
[22, Section 4.1].

Theorem 2.4. For orthogonal TRSs we have SN∞ =⇒ CP.

For the proof of the theorem we introduce the notion of balanced standard re-
ductions which guarantees that parallel subterms are developed at equal speed.
We stress that balancedness does not hold for the usual notion of parallel stan-
dard reductions [58] as the latter allows for parallel subterms to be ignored
indefinitely. For a rewrite sequence σ of length α and an ordinal β < α, we
write σ(β) to denote the step at index β. We use pos(φ) to denote the position
of the step φ.

Definition 2.4 (Balanced Standard Reduction). Let σ be a rewrite sequence of
length α. Then σ is balanced standard if pos(σ(β)) is part of the redex pattern
of σ(γ) whenever β < γ < α and σ(γ) is the closest step after σ(β) such that
|pos(σ(γ))| < |pos(σ(β))|.

The definition requires that every rewrite step φ contributes to the closest
step ψ at a higher position; note that the position of ψ is not required to
be a prefix of the position of φ as in the usual definitions of (parallel) standard
reductions. The creation dependency between the steps is displayed in Figure 9.

s0 s1 s2 s3 s4 s5 s6 · · ·6 3 2 3 3 1 2

Figure 9: Illustration of balanced rewrite sequences. The steps are labeled by their
depths; (direct) creation dependencies between the steps are indicated by dashed lines.

Theorem 2.5 (Balanced Standardization). For every strongly convergent re-
duction s→→→ t in an orthogonal TRS there exists a balanced standard reduction
s→≤ω t of length ≤ ω.

Proof. By compression, we have a reduction σ : s →≤ω t. Then we transform
the reduction σ to a balanced standard reduction by permutation of steps, in

16



a way similar to the procedure in [36]. That is, by permutation we eliminate
the ‘anti-pairs’ that conflict with the definition of balanced standard. Here an
anti-pair is a subsequence of steps σ(n), σ(n + 1), . . . , σ(n + k) in σ such that
|pos(σ(n))| ≤ |pos(σ(n + i))| for all 1 ≤ i < k, |pos(σ(n))| > |pos(σ(n + k))|
and pos(σ(n)) is not in the redex pattern of σ(n + k). To transform σ to
balanced standard, we repeatedly ‘eliminate’ the anti-pair σ(n), . . . , σ(n + k)
such that the tuple 〈n + k, k〉 is minimal in the lexicographic order. That
is, among the anti-pairs that end first, we pick the one that starts last. To
eliminate the anti-pair, we permute (project) σ(n) over the remainder of the
subsequence σ(n + 1), . . . , σ(n + k). From the choice of the anti-pair it follows
that the step σ(n) is parallel to σ(n+ 1), . . . , σ(n+ k− 1), and does not overlap
with, but may be nested in or parallel to, the step σ(n + k). For finite rewrite
sequences σ, the argument for termination of this procedure is precisely as
in [36]. For infinite rewrite sequences σ, the construction converges towards a
strongly convergent sequence in the limit. This can be seen as follows. For
every depth d ∈ N, the construction terminates on the prefix of σ containing
all steps at depth ≤ d, transforming σ into the form σ1;σ2 (i.e., σ1 followed by
σ2) such that σ1 is balanced standard and ends with the last step at depth ≤ d.
Since permutations of steps at depth > d cannot create steps at depth ≤ d, all
subsequent permutations of anti-pairs will be in σ2.

For balanced standard reductions we obtain the following theorem and corol-
lary providing a bound on the speed of the conversion. We emphasize that these
properties do not hold for parallel standard reductions [58].

Theorem 2.6. Let R = (Σ, R) be an orthogonal TRS, and t ∈ Ter∞(Σ) a term
with SN∞(t). For every d ∈ N, there is only a finite set of balanced standard
reductions starting from t and ending with a step at depth ≤ d.

Proof. Let σ be a balanced standard reduction that starts from t and ends in
a root step. Then from the definition of balanced standard reduction it follows
that all steps in this reduction are either root steps, or they are part of a creation
chain for a root step in this reduction. As a consequence, all redexes contracted
in the reduction σ are root-needed [44]. By SN∞(t) the term t admits a reduction
to a root-stable form, and by [44, Corollary 5.7] root-needed reduction is root-
normalizing for orthogonal term rewrite systems. It immediately follows that t
contains only finitely many root-needed redexes. Thus SN∞(t) implies that
root-needed reduction is finitely branching and root-normalizing.

Let Φ be the set of balanced standard reductions starting from t and ending
in a root step. By König’s lemma and by the above reasoning, the set Φ is finite,
and each of the reductions in Φ is finite.

Let us consider a term of the form s = f(s1, . . . , sn). Then (∗) any balanced
standard reduction γ starting from s, not containing root steps and ending in
a step at depth d, can be seen as an interleaving (and placing in context) of
balanced standard reductions γ1, . . . , γn on the terms s1, . . . , sn each ending
in a step at depth ≤ d − 1 (the ‘−1’ stems from the removal of the context
f(. . . ,�, . . .)). From γ we obtain γ1, . . . , γn by selecting the steps within the

17



corresponding subterms. These selections are balanced standard again, since
a step cannot contribute to another step in a parallel subterm; thus the in-
terleaving of parallel reductions only results in additional requirements. The
reductions γ1, . . . , γn cannot end with a step ξ at depth ≥ d since then the last
step of γ would be at a lower depth, and thus from a reduction in a parallel
subterm (to which ξ cannot contribute).

Let T = {fi(si,1, . . . , si,ar(fi)) | 1 ≤ i ≤ |Φ|} be the set of end terms of
reductions in Φ. Every balanced standard rewrite sequence starting from t and
ending in a step at depth ≤ d consists of a prefix in Φ (or an empty prefix)
resulting in a term in T , and a suffix containing no root steps. We have already
seen that Φ is finite, and by (∗) this suffix is an interleaving of reductions
ending with a step at depth ≤ d − 1 on the subterms. Thus the claim follows
by induction on d ∈ N.

The following corollary is immediate.

Corollary 2.7 (Modulus of Convergence). Let R = (Σ, R) be an orthogonal
TRS, and t ∈ Ter∞(Σ) a term with SN∞(t). Every balanced standard reduction
starting from t has length ω at most. Moreover, there exists a modulus of
convergence νt : N → N such that for every depth d ∈ N and every balanced
standard reduction σ starting from t we have |pos(σ(n))| > d for all n ≥ νt(d).

We are now prepared for the proof of Theorem 2.4.

Proof of Theorem 2.4. For i ∈ N let σi : t →→→ si be given. By Theorem 2.5
we may assume that the reductions are balanced standard. Let I0 = N and
for d = 0, 1, . . . define infinite sets Id+1 ⊂ N as follows. Let d ∈ N. For every
reduction σi with i ∈ Id we consider the prefix τi,d of σi ending with the last step
at depth ≤ d. By Theorem 2.6 there is only a finite number of these prefixes,
and thus by the pigeonhole principle there is one prefix τd that occurs infinitely
often. We then let Id+1 = {i | i ∈ Id, τi,d = τd}.

As Id is infinite for every d ∈ N, the limit is preserved, that is, we have
limi∈Id,i→∞ = s. Moreover, for d > 0 we have Id ⊇ Id+1 and the sequences
{σi | i ∈ Id} coincide on the prefix up to the last step of depth ≤ d. Thus
the sequences converge towards a strongly convergent rewrite sequence with
limit s.

An alternative proof of Theorem 2.4 departing from the Standard Prefix
Lemma [39, Lemma 1], was recently suggested to us by Vincent van Oostrom.
This, however, would first require a generalization of the Standard Prefix Lemma
to the infinite setting.

Remark 2.10 (Necessity of the conditions in Theorem 2.4).

(i) Orthogonality is necessary. For a non-orthogonal counterexample consider
the following TRS (similar to [12, Definition 6.3] and [22, Example 4.5]):

c→ b(c) b(c)→ a(d) b(a(x))→ a(a(x))

Then c→→ bn(c)→ bn−1(a(d))→→ an(d) for all n ∈ N, but not c→→→ aω.

18



(ii) G(SII(SII)) 2 CP. This is because SN∞ does not hold for the terms in this
reduction graph, which is depicted in Figure 6.

(iii) CR∞ is not enough to imply CP. Consider the following rewrite rules

bU → Ua (walk up)

tU → tD (turn at the top)

Da→ bD (walk down)

Ds→ Uas (turn at the bottom)

This system is orthogonal and has no collapsing rules, so it is CR∞. We
have:

tDs→ tUas→→ tUaas→→ tUaaas→→ · · ·

But not tDs→→→ tU(aω). Note, however, that this TRS is not SN∞.

3. Infinitary λ-calculus

After our exposé of infinitary rewriting for first-order orthogonal TRSs,
we now turn to the same for λβ-calculus [27]. For a generalization of λ∞β-
calculus to infinitary Combinatory Reduction Systems, we refer to [32, 29, 33,
34, 35]. At the end of this section we will also look at the infinitary extension
of the λβη-calculus, but there we encounter a negative state of affairs. As to
λ∞β-calculus, the same notion of strongly convergent reduction applies. In this
paper we will gloss over the details of taking care of α-conversion (renaming
of bound variables); for a treatment of that issue we refer to [27, 58, 40]. The
notion of β-reduction is entirely straightforward, we will not spell this out here.
As before, the Compression Lemma holds, and, also as before, CR∞ fails. In
fact, now even the infinitary Parallel Moves Lemma, PML∞, fails. Let us prove
this fact.

Proposition 3.1 ([27]). The properties PML∞, and hence also CR∞, fail in
λ∞β-calculus.

Proof. Let Y0 = λf.ωfωf with ωf = λx.f(xx) and consider Y0I. Then on the
one hand Y0I →β (λx.I(xx))(λx.I(xx)) →→→ Iω, and on the other hand Y0I →β

(λx.I(xx))(λx.I(xx)) →2
β Ω = (λx.xx)(λx.xx). Both Iω and Ω reduce only to

themselves, so they have no common reduct.

We continue the analogy with the first-order case. Also now we have λ∞β |=
UN∞; unicity of infinite normal forms is guaranteed. Of course, a(n infinite)
normal form is just a term without β-redex. As for the first-order case, we will
have a brief look at what constitutes the difference between weak and strong
convergence, now for infinitary β-reductions. The same remark as before about
CCC, colored Cauchy convergence, applies. And again, see Remark 2.2, the
difference between weak and strong convergence manifests itself in the presence
of β-reduction loops M →β M .

19



3.1. Looping terms

A looping term simply is a term M such that M → M . For the finite
λβ-calculus, the only looping terms are terms which have Ω as a subterm, see
Lercher [41]. For the infinitary λβ-calculus, it is non-trivial to characterize the
looping terms. This characterization has been found by Endrullis and Polon-
sky [46].

Obviously we have:

(i) If M →p M at position p, then M |p is looping.

(ii) If M is looping, then any term C[M ] is.

and therefore the interesting cases are the terms that loop via a root step; we
call these root-looping terms. In infinitary λ-calculus, a term is root looping if
and only if it is of one of the following forms:

(i) Ω

(ii) Iω

(iii) BB where B is the infinite solution of B = λx.xB,

(iv) (λv0.(λv1.(λv2....)t2)t1)t0 such that ti is obtained from ti+1 by replacing
v0 by t0 and all variables vj+1 by vj . We call such a term a cascade.

λv0

λv1

λv2

λx4 t3

t2

t1

t0

π

π

π

Figure 10: The shape of cascades; here π stands for replacing all variables vj by vj+1

followed by replacing an arbitrary (possibly infinite) number of occurrences of t0 by v0.

Note that item (iv) is an infinite scheme of looping λ-terms, illustrated in
Figure 10. An example of a looping term is depicted in Figure 11.

For the first-order case we have a complete characterization of what causes
the failure of CR∞ for orthogonal TRSs. It is due to the presence of either
two collapsing rules, as in the ABC-counterexample (Example 2.3), or to the
presence of a parameterized collapsing rule like Kxy → x in CL (Example 2.4),
see [26, Theorem 6.10].

For λ∞β the failure of CR∞ is a far more complicated phenomenon, see
also [33]. We saw the counterexample given by the term Y0I in the proof of

20



λx1

λx2

λx3

λx4

a x3

a x2

a x1

aω

β

Figure 11: An infinite looping λ-term.

Proposition 3.1, reducing to both Ω and Iω. But there are several counterexam-
ples to CR∞ that seem quite different. One counterexample is in fact given by
the looping term in Figure 11. A simpler one is in Figure 12.

We will explain the interesting proofs that they indeed are CR∞ counterex-
amples in the following two examples, both employing ARSs, abstract reduction
systems. We describe first the easier one.

Example 3.1. Consider the ARS A = 〈Nω,→〉 with as domain the set of streams
of natural numbers, and reduction relation → consisting of the operation of
adding two consecutive entries in the stream. Now it is easy to see that the
element 1ω is not CR∞, as it reduces infinitarily to both 2ω and 12ω, two
streams that have no common →→→-reduct. It is easy to see that the reduction
graph of the infinite λ-term in Figure 12 is in fact isomorphic to the reduction
graph G(1ω) in this ARS A.

Example 3.2. Now we consider the ARSA = 〈(N)ω,→〉 consisting of the streams
of extended natural numbers N = N ∪ {∞}. The reduction relation is again the
addition of two consecutive stream entries, now with the understanding that
n +∞ = ∞ + n = ∞. Now consider the stream ∞111 . . ., corresponding in
fact to the infinite looping term in Figure 11. Also the reduction graph of this
looping term is isomorphic to that of the stream as mentioned. That it is non-
CR∞ is a nice puzzle, which we offer in particular to Yoshihito knowing his
talent for devising and solving puzzles.

3.2. A topography of notions of ‘undefined’ in λ-calculus

In Section 2 we have zoomed in on the localization of good and bad proper-
ties for infinitary first-order rewriting. Several of these notions have analogous

21



λx2

λx4

λx6 S2(x4)

S2(x2)

S2(x0)

λx1

λx2

λx3 S(x2)

S(x1)

S(x0)

λx1

λx3

λx5 S2(x3)

S2(x1)

S1(x0)

λx1, λ
x3, λx5

,. . . λx2, λx4, λx6,. . .

Figure 12: Another counterexample to CR∞ of λ∞β-calculus.

counterparts in finite and infinitary λ-calculus, but we will have now a fresh
look at the situation for λ-terms.

Just as for the first-order case, we find that equating a class of problematic
terms restores CR∞. There it was tied up to hypercollapsing terms, but in
the λ∞β-calculus it is more complicated as there is more choice in adopting a
certain class as ‘undefined’ terms and then identifying them. The most well-
known way is the one of Böhm trees. But there are two other canonical choices
as we will see now. Besides these three paradigm notions of undefined, there
are continuum many other possibilities, satisfying some basic requirements for
‘undefined’.

For the three paradigm semantic frameworks there are important motiva-
tions: Böhm trees (BTs) [6], the most ‘classical’ one, is intimately connected to
the theory of the model Pω, Lévy–Longo trees (LLTs) [42, 43] has originated
from desiderata that arose in the practice of functional programming languages,
and Berarducci trees (BeTs) [5] came from consistency studies (which terms can
be consistently equated; ‘easy’ terms).

All the different notions of ‘undefined’ give directly rise to models for finite
and infinitary λ-calculus. So in order to have a better view on the model theory
of λ-calculus it is important to develop a topography of notions of undefined.

3.2.1. The threefold path

Böhm trees provide a semantics of λ-calculus where terms without head nor-
mal form are considered meaningless. In fact, this semantical view is one of three
canonical semantical frameworks that arise in a uniform way by considering the
three dimensions d, l, r in which λ-terms can grow:

d down, in an abstraction;

l left in an application;

r right in an application,

22



see Figure 13.

d

l r

λ001

d

l r

λ101

d

l r

λ111

Figure 13: Suppressed dimensions.

Each of these three dimensions d, l, r can be ‘suppressed’ in counting the depth
of an occurrence in a λ-term, giving rise a priori to eight possible semantics,
that are indicated by tuples 000, . . . , 111 stating which of the directions d, l, r,
is nullified (0), or counted (1). E.g., the 110-depth counts only d- and l-steps,
disregarding the r-steps. Using this notion of depth in a term, we define the
usual 2−n notion of distance between λ-terms, referring to the least depth n
where they differ. After metric completion this leads to eight complete metric
spaces of finite and infinite λ-trees. They are equipped with generalizations
of the finitary notions of substitution, α-conversion and β-reduction. Of these
λdlr-calculi, λ000 is trivial as an infinitary calculus: it is the finite λ-calculus.
Four others, λ010, λ011, λ100, and λ110, have to be discarded as they lack some
basic properties, such as substitutivity of the reduction relation, see further [27].

Three remain: λ001, λ101, and λ111, see Figures 13 and 14. It turns out that

λx

λy

λz

x

001-depth 1
{l, d}-steps don’t count

λx

λy

λz

x

101-depth 4
{l}-steps don’t count

λx

λy

λz

x

111-depth 7
all steps count

Figure 14: Depth count of an occurrence of x in the three paradigm semantics.

these three infinitary calculi λ001, λ101, λ111 when extended with the obvious
Ω-rules (rules for replacing undefined terms with Ω, rules for moving the Ω’s up-
wards; here Ω is understood to be a symbol) to get rid of meaningless terms (to

23



wit, terms without head normal form (hnf), terms without weak head normal
form (whnf), and ‘mute’ terms without root stable form, respectively), are the
natural habitats for the three well-known notions of infinite λ-trees: λ001 con-
tains the Böhm trees BT(M), with M a λ-term, λ101 contains the Lévy–Longo
(or lazy) trees LLT(M), and λ111 contains the Berarducci trees BeT(M). In all
three infinitary λ-calculi we obtain the Böhm trees, the Lévy–Longo trees, and
the Berarducci trees in a uniform way as infinitary normal forms.

In Table 2 we give a complete survey of the notions involved. The last row
of this table describes the normal forms with respect to reduction at depth 0 in
the respective metric; we refer to Table 4 for a characterization of these redexes.

tree family BT LLT BeT

dimensions d, `, r 001 101 111

domain Ter(λd`r) Ter(λ001) Ter(λ101) Ter(λ111)

strategic redex spine ⇐ head lazy root

dlr-unsolvable no hnf no whnf mute, no rnf

Ω-rules ΩM → Ω, λx.Ω→ Ω ΩM → Ω none

refinement BT(M) LLT(M) BeT(M)

λβdlr dlβ lβ β

λβdlr-normal forms HNF WHNF non-redexes

⊆ ⊆
⇐ ⇐
⇐ ⇐

≤Ω ≤Ω

⊆ ⊆

Table 2: Survey of BT-LLT-BeT properties.

Definition 3.1.

(i) A term is a head normal form (hnf) if it is of the form λ~x.y ~M with

~x = x1 . . . xn and ~M = M1 . . .Mm.

(ii) A term is a weak head normal form (whnf) if is an abstraction λx.M or a
vector xM1 . . .Mm where x is a variable.

(iii) A term is a root normal form (rnf), or root-stable, if it is a variable, an
abstraction λx.M , or an application MN where M does not reduce to an
abstraction.

The definition of Böhm tree BT(M) of M is classic, and likewise that of the
Lévy–Longo tree or lazy tree LLT(M). For completeness sake we repeat the
definitions. See Table 3 and Figure 15 for examples of these kinds of trees.

Definition 3.2 (Böhm trees, BT(M)).

BT(M) =

{
λ~x.y BT(M1) . . .BT(Mm) if M has hnf λ~x.yM1 . . .Mm,

Ω otherwise.

24



Definition 3.3 (Lévy–Longo trees, LLT(M)).

LLT(M) =


x LLT(M1) . . . LLT(Mm) if M has whnf xM1 . . .Mm,

λx.LLT(M ′) if M has whnf λx.M ′,

Ω otherwise.

A term of order 0 is a term that cannot be β-reduced to an abstraction term.
A term M is mute [5] if it is a term of order 0 which cannot be reduced to a
variable or to an application M1M2 with M1 a term of order 0. Equivalently:
M has an infinite reduction with at the root infinitely many times a redex
contraction.

Definition 3.4 (Berarducci trees, BeT(M)).

BeT(M) =


y if M →→ y,

λx.BeT(N) if M →→ λx.N ,

BeT(M1)BeT(M2) if M →→M1M2 such that M1 is of order 0

Ω in all other cases (i.e., when M is mute.)

3.2.2. Strategic redexes: root, head, lazy and spine redex

To have a spine is very important, and for λ-terms it is the same. In fact, on
the spine of a λ-term all the ‘important’ redexes are located. We will call them
strategic redexes; they are known as root, head [4], lazy [1] and spine redex [4].
The spine of a λ-term, finite or infinite, is the leftmost path when viewing the
term as a tree, that is, it is the maximal dl-branch consisting precisely of those
positions that do not contain 2 (we never take a right branch of an application).
Redexes whose patterns are on the spine are spine redexes. The uppermost one
is the head redex. It is the root redex if its root is that of the whole term.

z

z

z

z

ωz

BeT

λx0

λx1

λx2

Black hole,
or Ogre [52]

LLT BeT

z

z

z

z

zω

LLTBT BeT

Figure 15: Three infinite λ-terms. The color flags mention to which families of trees
they belong.

25



M BT(M) LLT(M) BeT(M)
(λx.xx)(λx.xx) Ω Ω Ω

(λxy.xx)(λxy.xx) Ω • •
(λx.xxz)(λx.xxz) Ω Ω ωz

(λx.z(xx))(λx.z(xx)) zω zω zω

λy.((λx.xx)(λx.xx)) Ω λy.Ω λy.Ω
(λx.xx)(λx.xx)y Ω Ω Ωy

Table 3: BT, LLT, BeT-examples.

The definition is illustrated in Figure 16, and proceeds, informally, as follows.
In the BT (001) sense, there may be several redexes at depth 0, the spine redexes;
the uppermost one in the syntactic sense is the head redex. In the LLT (101)
sense, there is at most a unique redex at depth 0, which is the lazy redex. In
the BeT (111) sense, there is at most one, unique, redex at depth 0, the root
redex.

An elegant characterization of depth-0 redexes is due to Fer-Jan de Vries [59].
Depending on which of the derivation rules d, l, r is adopted, the inference sys-
tems given in Table 4 allows just the redexes of dlr-depth 0 to be contracted;
e.g., with rules β, d, l we have spine reduction; with β, l we have lazy reduction,
and with only β we have root reduction. The normal forms for these three
notions of reduction are the hnfs, the whnfs, and the non-redexes, respectively.

For BTs and LLTs, the ‘building blocks’ are as depicted in Figure 17. Note
that in [3] another notation is used, which may be called the hnf-notation; there
a ‘building block’ is obtained by pinching together the boomerang shaped figure

λx1

λx2

λy1

λy2

λz1spine

head

λy1lazy

λy1root

redex is root =⇒ lazy =⇒ head =⇒ spine

Figure 16: The strategic redexes: root, lazy, head and spine.

26



(λx.M(x))N →M(N)
β

M → N
λx.M → λx.N

d
M → N

MZ → NZ
l

M → N
ZM → ZN

r

Table 4: Characterizing redexes at depth 0, due to [59]. The rules d, l, r are also known
as ξ, ν, µ [45].

λx0

λx1

λx2

λxn

x

λx0

λx1

λx2

λxn

x

Figure 17: A pair of socks: building blocks for BTs and LLTs.

of the form d∗l∗ ending in a variable. (The left sock in Figure 17.) Then we

obtain the building block λ~x.y . The building blocks for LLTs are sub-blocks

of those for BTs. And in turn, the building blocks for BeTs are even smaller
sub-blocks, namely application nodes, abstraction nodes λx, variables, Ω. So
the composition or decomposition of the building blocks parallels the refinement
order in BT(M) ≤Ω LLT(M) ≤Ω BeT(M). In a slogan:

The finer the building blocks, the finer the semantics.

3.2.3. Head-normalization theorems

A classical theorem in λ-calculus states that if a λ-term M has an infinite
head reduction, it does not have (i.e., reduces to) an hnf, see [3, Theorem 8.3.11].
We abbreviate this as M ∈ �head: M admits a reduction of which every step
is a head step.

A stronger version, sometimes called the ‘quasi-head normalisation theo-
rem’ [3, Exercise 13.6.13], states that if M has an infinite reduction with in-
finitely many head steps, it does not have an hnf. So here one is allowed
to do something arbitrary in between the head steps. We abbreviate this as
M ∈ �♦head. These notions are in fact equivalent; the proof is by pushing
all the head steps to the front of the reduction sequence using some commut-
ing diagrams. (See the proof of Theorem 13.2.6 in [3], there for quasi-leftmost
reduction.)

27



We now capture in one diagram all these head/lazy/spine normalization
theorems, both in the � and the �♦-sense, see Figure 18. The proofs are very

� root

�♦ root

�♦ lazy � lazy

�♦ head � head

�♦ spine � spine

ΩBeT (mute terms, no root stable form)

ΩLLT (no weak head normal form)

ΩBT (no head normal form, unsolvables)

⊆
⊆

=

⊆

=

=

= =

=

=

=

Figure 18: Head-normalization theorems.

much in the spirit of the one indicated above for �head and �♦head; see also [4].

3.2.4. Continuum notions of ‘undefined’

Apart from the three main notions of undefined as given by the BT, LLT,

BeT trichotomy, there are many more, in fact 22ℵ
many, that satisfy some

‘reasonable’ requirements. An analysis of what are these ‘axioms’ for notions of
undefined has been made in [2, 28, 58, 30, 51, 52]. The result of this analysis
is that the important properties CR∞, UN∞ are then uniformly proved for this
large class of notions of undefined. And this yields just as many models for
the λ-calculus. One might ask whether all these notions of undefined also have
an accompanying notion of ‘strategic’ redex, like root, lazy, head. Such redex
contractions should lead to defined results, like BT, LLT, BeT, if they exist; and
if an infinite reduction exists with infinitely many contractions of a strategic
redex, the begin term should be undefined.

3.2.5. Lambda theories

The syntactic analysis of finite and infinitary λ-calculus sheds more light on
some of the main models of λ-calculus, Pω. It is long known that the theory of
Pω (i.e., all equations M = N true in Pω) is that of BT-equality. It is interesting
that we can split up this equality in two ‘orthogonal’ components: on the one
hand there is equating all unsolvables (i.e., terms M with BT(M) = Ω), called
the theory H in [3]; on the other hand, there is the ‘infinite expansion’ given by
the theory of λωβ. The supremum of both theories is the theory of Pω.

Figure 19 gives the partial order of these theories, for the three different
frameworks. The B in that figure is the theory of BT-equality described first
in [3, Section 18.4]. This can be seen as a precursor of our λ∞βΩBT. BTs are
there applied to each other by first taking their projections up to depth n, then
applying these finite BTs to each other, and finally taking the limit. (It would be

28



Th(Pω) = Th(λ∞β ΩBT) = B

Th(λ∞β ΩLLT)

Th(λ∞β ΩBeT)
Th(λβ ΩBT) = H

Th(λβ ΩLLT)

Th(λβ ΩBeT)

Th(λ∞β)

Th(λβ)

Figure 19: Partial order of λ-calculus theories.

an interesting student assignment to prove the equivalence with the more direct
set-up via the present λ∞βΩBT-calculus.) A related partial order of λ-theories
is given in [3, p. 464] (there taking into account both the η-rule and the ω-rule).
See also [50, 51, 52, 53] where in addition the partial order of meaningless sets
of terms is investigated. (As a second interesting research question, we suggest
taking η and ω into account, starting from the partial order above.)

3.2.6. Restoring infinitary confluence by quotienting undefined terms

It is a pitfall to think that all normal forms from λ∞β-calculus are BTs.
To see what is the difference, we formulate the following theorem. Of course
one can characterize the normal forms from λ∞β-calculus in a negative way,
by stating that they do not contain (the pattern of) a β-redex; but this does
not give insight in their structure, from what components they are built, see
Figure 20. Now we see that the components with infinite spine are not possible
in a Böhm tree. On the other hand, the normal forms from λ∞β-calculus are
BeTs, Berarducci trees. Below we will use this fact.

It is interesting to consider the question what BTs are actually realizable
by finite λ-terms, i.e, which of them are finitely generated. Note that we can
compose continuum many BTs with their building blocks as given in Figure 17,
or equivalently, as normal forms of infinitary λ∞βΩBT-calculus. This question
is answered in [3, Theorem 10.1.23], in the way one would expect; all and only
the computably enumerable BTs are finitely generated, of course provided they
have only finitely many free variables. Interestingly, this characterization is
much more subtle for the λI-version of the BTs; it then requires moreover the

29



computability of a variable indicator, see [3, Theorem 10.1.25]. It would be
interesting to do this exercise also for the case of LLT and BeT.

Theorem 3.2. The normal forms from λ∞β-calculus are built (coinductively)
from the four building block types as in Figure 20, namely a variable, hnf-
contexts, the Ogre [52], and d∗lω-terms.

λx0

λx1

λx2

λxn

x

λx0

λx1

λx2

λx3

λx4

...

λx0

λx1

λx2

λxn

. . .

Figure 20: Building blocks for λ∞β-normal forms.

Proof. That a possibly infinite composition of these building blocks contains no
β-redex, and hence is a λ∞β-normal form, is clear.

Vice versa, given a λ∞β-normal form, we construct such a decomposition
as follows. Color the d, l-steps blue, and the r-steps red (see Figure 13). (In
the figure of the building blocks this is already done.) Now consider maximal
connected blue fragments in the tree. This constitutes the desired composition,
together with the occurrences of variables at the end of some branches.

We end this section with Table 5 summarizing the main properties of the
different λ-calculi, and remark that UN∞ for λ∞β is a corollary of UN∞ for λ111

via de Vrijer’s Triple Extension Lemma stated below, cf. [60, Proposition 3.1] for
a slightly different version. This lemma states that if we can find an extended
ARS such that the domain is extended, the reduction relation is extended, and
the set of normal forms is extended, then UN of the extension implies UN of
the original ARS.

Lemma 3.3 (Triple Extension Lemma). Let A1 = 〈A1,→1〉 and A2 = 〈A2,→2〉
be ARSs having normal forms NF1 ⊆ A1 and NF2 ⊆ A2 respectively. Assume
that we have a triple extension:

(i) A1 ⊆ A2, and

(ii) →1 ⊆ →2, and

(iii) NF1 ⊆ NF2.

Then UN(A2) =⇒ UN(A1).

30



λ∞β λ∞βη λ001 λ101 λ111

CR∞ no no yes yes yes
UN∞ yes no yes yes yes

Table 5: The main properties for the λ-calculi.

Proof. Assume UN(A2), and consider a peak s←∗1 · →∗1 t in A1 with two normal
forms s, t ∈ NF1. Then s ←∗2 · →∗2 t by →1 ⊆ →2 and s, t are normal forms in
A2 by NF1 ⊆ NF2. Hence, s ≡ t.

We note that the Triple Extension Lemma is valid also for the conversion
version of UN where it is required that convertible normal forms are syntactically
equivalent.

To see that UN∞ for λ∞β is a corollary of UN∞ for λ111 we choose: A1 as
the set of finite and infinite λ-terms with →1 =→→→β , and A2 are the finite and
infinite λ-terms over the extended signature with Ω the set of terms of λ111,
and →2 is →→→βΩ (that is, together with the usual ΩBeT-rules for replacing root
active terms with Ω). Note that the set of λ∞β-normal forms is a subset of the
set of λ∞βΩBeT-normal forms. Not so for BT and LLT!

3.3. Clock semantics2

Böhm trees are invariant under β-reduction. This yields a simple method
to discriminate (finite) λ-terms M,N : just compute BT(M) and BT(N), and
if BT(M) 6= BT(N), then M 6=β N

3. But what if we want to β-discriminate
M,N when their BTs do coincide? In the following example this is actually the
case.

In [47] Scott mentions the equation BY = BYS (also discussed in [9]) as an
interesting example of an equation not provable in λβ (that is, it does not hold
in finitary λ-calculus), while easily provable with Scott’s Induction Rule. Here
B = λfgx.f(gx) and S = λxyz.xz(yz) are the usual combinators, and Y is a
fixed point combinator, that is, a term with Yf =β f(Yf). Scott mentions that
he expects that using ‘methods of Böhm’ the non-convertibility in λβ can be
established, but that he did not attempt a proof. On the other hand, with the
induction rule (of Scott) the equality is easily established. Indeed this equation
holds in the infinitary λ-calculus λβ∞: a straightforward calculation shows that
in λβ∞, we have BY = BYS = λab.(ab)ω. That the equation is not provable
in λβ, is a nice short proof. Here we take for the fpc Y, Curry’s fpc Y0, (as in
Scott [47]), defined by Y0 = λf.ωfωf where ωf = λx.f(xx).

Proposition 3.4. BY0 6=β BY0S.

Proof. Postfixing the combinator I = λx.x yields BY0I and BY0SI. Now BY0I =β

Y0 and BY0SI =β Y0(SI) = Y1, where Y1 is Turing’s fpc, Y1 = ZZ with Z =

2This section is based on our work [20].
3For another method to prove terms being not convertible, we refer to [10].

31



λxf.f(xxf). Because Y0 6=β Y1 (see, e.g., [20] for a proof), the result follows. In
the same breath we can strengthen this non-equation to all fpcs Y, by the same
calculation followed by an application of Intrigila’s theorem [21] stating that for
no fpc Y we have Y = Yδ = Y(SI).

Here we could profit from some lucky coincidences. But how can we in more
general circumstances β-discriminate M,N when their BTs do coincide? A clue
is given by inspecting the BTs of the terms BY0 and BY0S, and in particular
how they are computed, in what ‘tempo’.

The idea is that we will extract from a λ-term more than just its BT, but also
how the BT was formed; one could say, in what tempo, or in what rhythm. A BT
is formed from static pieces of information, but these are rendered in a clock-wise
fashion, where the ticks of the internal clock are head reduction steps. Thus we
arrive at a refined notion of BT, where we annotate at the nodes the necessary
ticks of the clock, i.e., the number of head reduction steps, needed to go from
one position in the BT to a successor position. The equality thus arising is
strictly intermediate between β-convertibility =β , and Böhm tree equality =BT.
The clocked Böhm trees of BY0 and BY0S are displayed in Figure 21.

λb
[3]

λc

·

·

b

c
[0] ·

[1]

·

b

c
[0] ·

[1]

·

b

c
[0] . . .

λb
[6]

λc

·

·

b

c
[0] ·

[4]

·

b

c
[0] ·

[4]

·

b

c
[0] . . .

Figure 21: Clocked Böhm trees of BY0 and BY0S.

Definition 3.5 (Simple terms). A term M is simple, if in no reduction of M a
redex is multiplied. So every redex (λx.A)B contracted in a reduct of M has the
property that x occurs at most once in A, or B is in normal form. An equivalent
and useful reformulation is that in reduction diagrams involving reducts of M
no splitting in elementary diagrams occurs.

An example of a term that is not simple is Y0δ with δ = λxy.y(xy); it
reduces to ωδωδ and this term may duplicate the redex in the second ωδ. But
the reduct ZZ = Y1 of ωδωδ is simple, and likewise all ZZδ∼n. (Here we use
the notation AB∼n, defined by AB∼0 = A and AB∼n+1 = ABB∼n.) This

32



example illustrates that although sometimes the terms under consideration are
not simple, with some luck they can be reduced to simple terms. Another
example is Y1(SS)SI as in the example above. Due to the presence of the redex
(SS) this term is not simple. But it can easily be made simple, by reducing
SS to its normal form λyzz′.zz′(yzz′). (But there are also terms that have no
simple reduct, i.e., cannot be simplified in this sense.)

In order to discriminate λ-terms M and N , we are of course allowed to
consider convertible terms M ′ =β M and N ′ =β N , in particular simple reducts.
For the latter, different clock behavior proves non-convertibility.

Theorem 3.5 ([20]). For simple terms, clocks are invariant under reduction.

This theorem enables us to prove non-convertibility of λ-terms with simple
reducts, by inspection of their clock behavior: if they have different clocks they
are non-convertible.

3.4. λ∞βη-calculus

The preceding theory begs the question how it can be generalized from the
infinitary λ∞β-calculus to the infinitary λ∞βη-calculus, which arises by adding
the η-rule. That is, the rewrite rules of λ∞βη are:

(λx.M)N →M [x:=N ] (β)

λx.Mx→M if x is not free in M (η)

Familiarity with the finite λ-calculus learns that the extension of λβ-calculus
to λβη-calculus preserves many desirable properties, the foremost being the
Church–Rosser property (CR). Working with the λ∞β-calculus we do not have
the infinitary CR-property, CR∞, as we saw, but we do have its corollary, UN∞.
So it is natural to ask whether this property is preserved in the λ∞βη-calculus.
However, this property breaks down dramatically. The essence of this break-
down is already clearly visible in the first-order framework, as we will now show,
to form a stepping stone to the infinitary lambda calculus setting.

3.4.1. Failure of UN∞ for weakly orthogonal iTRSs.

While orthogonal TRSs enjoy the property UN∞ (see [26, 38]), UN∞ breaks
down for weakly orthogonal TRSs (see [17]). The following simple counterex-
ample can be used: for the signature consisting of the unary symbols P and
S, consider the rewrite rules P(S(x)) → x and S(P(x)) → x. For convenience,
we drop the brackets and consider the corresponding string rewriting system
(SRS):

PS→ ε SP→ ε

where ε is the empty word. This system has two trivial critical pairs:

P← PSP→ P S← SPS→ S ,

and hence is weakly orthogonal.

33



Now consider the term ψ defined as follows:

ψ = PSSPPPSSSSPPPPPSSSSSS . . .

that is, ψ = P1S2P3S4P5S6 . . .. If we only apply rule PS → ε the P-blocks are
absorbed by the larger S-blocks to their right (that is: PnSn+1 →∗ ε), leaving
the normal form Sω. Likewise, applying only SP→ ε yields Pω:

Sω ←←← ψ →→→ Pω

Note that Sω and Pω are normal forms, the only infinite normal forms. It is
not difficult to prove that ψ →→→ w for every infinite PS-word w. In particular
ψ → (PS)∞ which has no normal form, it rewrites only to itself.

Given an infinite PS-word w we can plot in a graph the surplus number of
S’s of w when stepping through the word w from left to right, see e.g. Figure 22.
The graph is obtained by counting S for +1 and P for −1. For w = (SP)ω the
graph takes values, consecutively, 1, 0, 1, 0, . . ., for w = Sω it takes 1, 2, 3, . . .,
and for w = Pω we have −1,−2,−3, . . .. The graph of the counterexample ψ is
displayed in Figure 22.

+∞

+∞

−∞

0 •
•
•
•
•
•
•

n

Figure 22: Graph for the oscillating PS-word ψ = P1 S2 P3 . . . .

It can be shown that if the graph of a word w:

(i) has no upper bound, then w →→→ Sω,

(ii) has no lower bound, then w →→→ Pω,

(iii) has no upper and lower bound, then w →→→ v for any infinite PS-word v.

3.4.2. Failure of UN∞ for λ∞βη-calculus.

Like P(S(x)) → x and S(P(x)) → x, the the λ∞βη-calculus [49, 48] is a
weakly orthogonal rewrite system. More precisely, the λ∞βη-calculus is a weakly

34



orthogonal higher order rewrite system, see [58, Def. 11.6.10] and [35]. The
λ∞βη-calculus allows for two critical pairs:

Mx
β← (λx.Mx)x

η→Mx λx.M [y:=x]
β← λx.(λy.M)x

η→ λy.M

The terms λx.M [y:=x] and λy.M are equal modulo renaming of bound vari-
ables. Hence both critical pairs are trivial and λ∞βη is weakly orthogonal.

It turns out that the counterexample ψ = P1S2P3S4P5S6 . . . from the previ-
ous section has a direct translation to λ∞βη, see [17]. This translation can be
made formally precise as follows:

Definition 3.6. We define L M : {P,S}ω → Ter∞(λ) by LwM = LwM0, for all
w ∈ {P,S}ω, where LwMi is defined coinductively, for all i ∈ Z, as follows:

LPwMi = LwMi−1 xi LSwMi = λxi+1.LwMi+1

The translation of ψ is the λ-term LψM, displayed in the middle of Figure 23.
This term has two normal forms (corresponding to Sω and Pω), as indicated in
the figure. In [49] positive CR∞ results are mentioned for Böhm Tree normal
forms in λ∞βη-calculus.

·
λx0

λx1

·
·

·
λx−1

λx0

λx1

λx2

·
·

·
·

·
...

x−2

x−1

x0

x1

x2

x−1

x0

x1

x0

λx1

λx2

...

·
·

·
...

x−2

x−1

x0

β η

Figure 23: Counterexample to UN∞ in λ∞βη.

References

[1] S. Abramsky and C.-H. L. Ong. Full Abstraction in the Lazy Lambda
Calculus. Information and Computation, 105(2):159–267, 1993.

35



[2] Z. M. Ariola, R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries.
Syntactic Definitions of Undefined: On Defining the Undefined. In Proc.
Conf. on Theoretical Aspects of Computer Software (TACS 1994), pages
543–554, 1994.

[3] H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics, vol-
ume 103 of Studies in Logic and The Foundations of Mathematics. North-
Holland, revised edition, 1984.

[4] H. P. Barendregt, R. Kennaway, J. W. Klop, and M. R. Sleep. Needed
Reduction and Spine Strategies for the Lambda Calculus. Information and
Computation, 75(3):191–231, 1987.

[5] A. Berarducci. Infinite λ-Calculus and Non-Sensible Models. In Logic and
Algebra (Pontignano, 1994), pages 339–377. Dekker, New York, 1996.

[6] C. Böhm, editor. Proc. Symp. on Lambda-Calculus and Computer Science
Theory, volume 37 of Lecture Notes in Computer Science. Springer, 1975.

[7] R. Dedekind. Was Sind und Was Sollen die Zahlen? Friedrich Vieweg und
Sohn, 1893.

[8] N. Dershowitz, S. Kaplan, and D. A. Plaisted. Rewrite, Rewrite, Rewrite,
Rewrite, Rewrite, . . . . Theoretical Computer Science, 83(1):71–96, 1991.

[9] M. Dezani-Ciancaglini, P. Severi, and F.-J. de Vries. Infinitary Lambda
Calculus and Discrimination of Berarducci Trees. Theoretical Computer
Science, 2(298):275–302, 2003.

[10] J. Endrullis and R. de Vrijer. Reduction Under Substitution. In Proc. 19th
Int. Conf. on Rewriting Techniques and Applications (RTA 2008), volume
5117 of Lecture Notes in Computer Science, pages 425–440. Springer, 2008.

[11] J. Endrullis, H. Geuvers, J. G. Simonsen, and H. Zantema. Levels of Un-
decidability in Rewriting. Information and Computation, 209(2):227–245,
2011.

[12] J. Endrullis, H. Geuvers, and H. Zantema. Degrees of Undecidability
in Term Rewriting. In Proc. Int. Workshop on Computer Science Logic
(CSL 2009), volume 5771 of LNCS, pages 255–270. Springer, 2009.

[13] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-Oblivious Stream Pro-
ductivity. In Proc. Conf. on Logic for Programming Artificial Intelligence
and Reasoning (LPAR 2008), number 5330 in LNCS, pages 79–96. Springer,
2008.

[14] J. Endrullis, C. Grabmayer, and D. Hendriks. Complexity of Fractran and
Productivity. In Proc. Conf. on Automated Deduction (CADE 22), volume
5663 of LNCS, pages 371–387, 2009.

36



[15] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop. Pro-
ductivity of Stream Definitions. Theoretical Computer Science, 411:765–
782, 2010.

[16] J. Endrullis, C. Grabmayer, D. Hendriks, J. W. Klop, and R. C. de Vrijer.
Proving Infinitary Normalization. In Postproc. Int. Workshop on Types
for Proofs and Programs (TYPES 2008), volume 5497 of Lecture Notes in
Computer Science, pages 64–82. Springer, 2009.

[17] J. Endrullis, C. Grabmayer, D. Hendriks, J. W. Klop, and V. van Oostrom.
Unique Normal Forms in Infinitary Weakly Orthogonal Rewriting. In Proc.
21st Int. Conf. on Rewriting Techniques and Applications (RTA 2010),
volume 6 of Leibniz International Proceedings in Informatics, pages 85–
102. Schloss Dagstuhl, 2010.

[18] J. Endrullis, C. Grabmayer, and R. C. de Vrijer. Equivalence of Two
Versions of SN∞ (w-SN∞ and s-SN∞). 2008.

[19] J. Endrullis and D. Hendriks. Lazy Productivity via Termination. Theo-
retical Computer Science, 412(28):3203–3225, 2011.

[20] J. Endrullis, D. Hendriks, and J. W. Klop. Modular Construction of Fixed
Point Combinators and Clocked Böhm Trees. In Proc. Symp. on Logic in
Computer Science (LICS 2010), pages 111–119. IEEE Computer Society,
2010.

[21] B. Intrigila. Non-Existent Statman’s Double Fixed Point Combinator Does
Not Exist, Indeed. Information and Computation, 137(1):35–40, 1997.

[22] S. Kahrs. Infinitary Rewriting: Foundations Revisited. In Proc. 21st Int.
Conf. on Rewriting Techniques and Applications (RTA 2010), volume 6 of
Leibniz International Proceedings in Informatics, pages 161–176. Schloss
Dagstuhl, 2010.

[23] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. An Infinitary
Church–Rosser Property for Non-Collapsing Orthogonal Term Rewriting
Systems. Technical Report CS-R9043, CWI, 1990.

[24] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfi-
nite Reductions in Orthogonal Term Rewriting Systems. In Proc. 4th Int.
Conf. on Rewriting Techniques and Applications (RTA 1991), volume 488
of Lecture Notes in Computer Science, pages 1–12. Springer, 1991.

[25] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. The adequacy
of term graph rewriting for simulating term rewriting. ACM TOPLAS,
16:493–523, 1994. An earlier version appeared as chapter 12 of [56].

[26] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Transfi-
nite Reductions in Orthogonal Term Rewriting Systems. Information and
Computation, 119(1):18–38, 1995.

37



[27] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F.-J. de Vries. Infinitary
Lambda Calculus. Theoretical Computer Science, 175(1):93–125, 1997.

[28] J. R. Kennaway, V. van Oostrom, and F.-J. de Vries. Meaningless Terms
in Rewriting. The Journal of Functional and Logic Programming, 1, 1999.

[29] J. Ketema. On Normalisation of Infinitary Combinatory Reduction Sys-
tems. In Proc. 19th Int. Conf. on Rewriting Techniques and Applications
(RTA 2008), volume 5117 of Lecture Notes in Computer Science, pages
172–186. Springer, 2008.

[30] J. Ketema. Comparing Böhm-Like Trees. In Proc. 20th Int. Conf. on
Rewriting Techniques and Applications (RTA 2009), volume 5595 of Lecture
Notes in Computer Science, pages 239–254. Springer, 2009.

[31] J. Ketema. Reinterpreting Compression in Infinitary Rewriting. In Proc.
23rd Int. Conf. on Rewriting Techniques and Applications (RTA 2012),
volume 15 of Leibniz International Proceedings in Informatics, pages 209–
224. Schloss Dagstuhl, 2012.

[32] J. Ketema and J. G. Simonsen. Infinitary Combinatory Reduction Systems.
In Proc. 16th Int. Conf. on Rewriting Techniques and Applications (RTA
2005), volume 3467 of Lecture Notes in Computer Science, pages 438–452.
Springer, 2005.

[33] J. Ketema and J. G. Simonsen. Infinitary Combinatory Reduction Systems:
Confluence. Logical Methods in Computer Science, 5(4):1–29, 2009.

[34] J. Ketema and J. G. Simonsen. Infinitary Combinatory Reduction Systems:
Normalising Reduction Strategies. Logical Methods in Computer Science,
6(1:7):1–35, 2010.

[35] J. Ketema and J. G. Simonsen. Infinitary Combinatory Reduction Systems.
Information and Computation, 209(6):893–926, 2011.

[36] J. W. Klop. Combinatory Reduction Systems, volume 127 of Mathematical
centre tracts. Mathematisch Centrum, 1980.

[37] J. W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer
Science, volume II, pages 1–116. Oxford University Press, 1992.

[38] J. W. Klop and R. C. de Vrijer. Infinitary Normalization. In We Will
Show Them: Essays in Honour of Dov Gabbay (2), pages 169–192. College
Publications, 2005.

[39] J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Reduction Strategies
and Acyclicity. In Rewriting, Computation and Proof, Essays Dedicated to
Jean-Pierre Jouannaud on the Occasion of his 60th Birthday, volume 4600
of Lecture Notes in Computer Science, pages 89–112, 2007.

38



[40] A. Kurz, D. Petrisan, P. Severi, and F.-J. de Vries. An Alpha-Corecursion
Principle for the Infinitary Lambda Calculus. In Proc. 11th Int. Workshop
on Coalgebraic Methods in Computer Science. Springer, 2012.

[41] B. Lercher. Lambda-Calculus Terms That Reduce To Themselves. Notre
Dame Journal of Formal Logic, 17(2):291–292, 1976.

[42] J.-J. Lévy. An Algebraic Interpretation of the λβK-Calculus, and an Appli-
cation of a Labelled λ-Calculus. Theoretical Computer Science, 2(1):97–114,
1976.

[43] G. Longo. Set-Theoretical Models of λ-Calculus: Theories, Expansions,
Isomorphisms. Annals of Pure and Applied Logic, 24(2):153–188, 1983.

[44] A. Middeldorp. Call by Need Computations to Root-Stable Form. In Proc.
Symp. on Principles of Programming Languages (POPL 1997), pages 94–
105. ACM, 1997.

[45] C.-H. L. Ong. The Lazy Lambda Calculus: an Investigation into the Foun-
dations of Functional Programming. PhD thesis, University of Cambridge,
1992.

[46] A. Polonsky and J. Endrullis. A Characterization of Reduction 1-Cycles in
Infinitary Lambda Calculus. 2012. Submitted.

[47] D. S. Scott. Some Philosophical Issues Concerning Theories of Combina-
tors. In Lambda Calculus and Computer Science Theory, volume 37 of
Lecture Notes in Computer Science, pages 346–366, 1975.

[48] P. Severi and F.-J. de Vries. A Lambda Calculus for D∞. Technical report,
University of Leicester, 2002.

[49] P. Severi and F.-J. de Vries. An Extensional Böhm Model. In Rewrit-
ing Techniques and Applications, volume 2378 of LNCS, pages 159–173.
Springer, 2002.

[50] P. Severi and F.-J. de Vries. Order Structures for Böhm-like Models. In
Computer Science Logic, volume 3634 of LNCS. Springer, 2005.

[51] P. Severi and F.-J. de Vries. Decomposing the Lattice of Meaningless Sets
in the Infinitary Lambda Calculus. In Proc. of 18th Int. Workshop on
Logic, Language, Information and Computation (WoLLIC 2011), volume
6642 of Lecture Notes in Computer Science, pages 210–227. Springer, 2011.

[52] P. Severi and F.-J. de Vries. Weakening the Axiom of Overlap in Infinitary
Lambda Calculus. In Proc. 22nd Int. Conf. on Rewriting Techniques and
Applications (RTA 2011), volume 10 of Leibniz International Proceedings
in Informatics, pages 313–328. Schloss Dagstuhl, 2011.

39



[53] P. Severi and F.-J. de Vries. Meaningless Sets in Infinitary Combinatory
Logic. In Proc. 23rd Int. Conf. on Rewriting Techniques and Applications
(RTA 2012), volume 15 of Leibniz International Proceedings in Informatics,
pages 288–304. Schloss Dagstuhl, 2012.

[54] J. G. Simonsen. On Confluence and Residuals in Cauchy Convergent Trans-
finite Rewriting. Information Processing Letters, 91(3):141–146, 2004.

[55] J. G. Simonsen. Weak Convergence and Uniform Normalization in In-
finitary Rewriting. In Proc. 20th Int. Conf. on Rewriting Techniques and
Applications (RTA 2009), volume 6 of Leibniz International Proceedings in
Informatics, pages 311–324. Schloss Dagstuhl, 2010.

[56] M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van Eekelen, editors. Term
Graph Rewriting: Theory and Practice. John Wiley, 1993.

[57] R. Smullyan. To Mock a Mockingbird, and Other Logic Puzzles. Alfred A.
Knopf, New York, 1985.

[58] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

[59] F.-J. de Vries. Böhm Trees, Bisimulations and Observations in Lambda
Calculus. In Proc. 2nd Fuji Int. Workshop on Functional and Logic Pro-
gramming, pages 230–245. World Scientific, 1997.

[60] R. C. de Vrijer. Conditional Linearization. Indagationes Mathematicae,
10(1):145–159, 1999.

[61] J. Waldmann. The Combinator S. Information and Computation, 159(1–
2):2–21, 2000.

[62] H. Zantema. Normalization of Infinite Terms. In Proc. 19th Int. Conf.
on Rewriting Techniques and Applications (RTA 2008), number 5117 in
Lecture Notes in Computer Science, pages 441–455, 2008.

[63] H. Zantema and M. Raffelsieper. Stream Productivity by Outermost Ter-
mination. In Proc. Workshop on Reduction Strategies in Rewriting and
Programming (WRS 2009), volume 15 of Electronic Proceedings in Theo-
reatical Computer Science, pages 83–95, 2009.

[64] H. Zantema and M. Raffelsieper. Proving Productivity in Infinite Data
Structures. In Proc. 21st Int. Conf. on Rewriting Techniques and Ap-
plications (RTA 2010), volume 6 of Leibniz International Proceedings in
Informatics, pages 401–416. Schloss Dagstuhl, 2010.

40


