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Abstract. The basic principle of graph rewriting is the stepwise replace-
ment of subgraphs inside a host graph. A challenge in such replacement
steps is the treatment of the patch graph, consisting of those edges of the
host graph that touch the subgraph, but are not part of it.
We introduce patch graph rewriting, a visual graph rewriting language
with precise formal semantics. The language has rich expressive power
in two ways. First, rewrite rules can flexibly constrain the permitted
shapes of patches touching matching subgraphs. Second, rules can freely
transform patches. We highlight the framework’s distinguishing features
by comparing it against existing approaches.

Keywords: Graph rewriting · Embedding · Visual language

1 Introduction

When matching a graph pattern P inside a host graph G, G can be partitioned
into (i) a match M , a subgraph of G isomorphic to the pattern P ; (ii) a context
C, the largest subgraph of G disjoint from M ; and (iii) a patch J , the graph
consisting of the edges that are neither in M nor in C. So the patch consists of
edges that are either (a) between M and C, in either direction, or (b) between
vertices of M not captured by the pattern P . For example, if P and G are
respectively

b

aa
and

b

aa

b

a

b
c

then the thick green subgraph is the (only) match M of P in G. The black
subgraph of G is the context C, and the dotted red subgraph is the patch J .
Metaphorically, patch J patches match M and context C together.

In graph rewriting, subgraphs of some host graph are stepwise replaced by
other subgraphs. A requirement for such replacements is that they are prop-
erly re-embedded in the host graph. We contend that the patch is the most
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distinctive and interesting aspect of graph rewriting. This is because its shape
is generally unpredictable, making it challenging to specify what constitutes a
proper re-embedding of a subgraph replacement. This contrasts strongly with the
situation for string and term rewriting, in which the embeddings of substrings
and subterms are highly regular.

Most existing approaches to graph rewriting are rather uniform and coarse-
grained in their treatment of the patch. For instance, suppose that we wish
to delete the match M from G. What should happen to the edges of patch
J , which would be left “dangling” by such a removal? The popular double-
pushout (DPO) [9] approach to graph rewriting conservatively dictates that
the application is not allowed in the first place: nodes connected to the patch
must be preserved by the rewrite step, and the patch shall remain connected as
before. The single-pushout (SPO) [18] variant, by contrast, permissively answers
that such a deletion is always possible. As a side-effect, however, any resulting
dangling patch edges are discarded.

In this paper, we introduce the patch graph rewriting (PGR) language. It has
the following features:

– Pluriform, fine-grained control over patches. Rules themselves encode which
kinds of patches are allowed around matches, as well as how they should
be transformed for the re-embedding, using a unified notation. Thus, these
policies are distinctly not decided on the level of the framework.

– An intuitive visual language. Despite their expressive power and formal se-
mantics, patch rewrite rules admit a visual representation that we believe to
be highly intuitive.

– Lightweight formal semantics. The formal details of PGR are based on ele-
mentary set and graph theory, and therefore accessible to a wide audience. In
particular, an understanding of category theory is not required to understand
these details, unlike for many dominant approaches in graph rewriting.

The remainder of our paper is structured as follows. To fix ideas and em-
phasize the visual language of PGR, we first provide an intuitive exposition in
Section 2, and then follow with a formal introduction in Section 3. We show the
usefulness of PGR by modeling wait-for graphs and deadlock detection in Sec-
tion 4. We compare PGR to other approaches in Section 5. In Section 6, finally,
we mention some future research directions for PGR.

2 Intuitive Semantics

We start with an intuitive introduction of PGR, to be made formally precise in
Section 3. The graph G in Figure 1 will serve as our leading example.

We begin by considering the rewrite rule in Figure 2. Figure 3 contains a
depiction of G in which the match, context and patch are highlighted: the thick
green subgraph is the match for the left-hand side of the rule, the solid black
subgraph is the context for this rule application, and the red dotted edges form
the patch. In PGR, the rewrite rule in Figure 2 cannot yet be applied in G. This
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Fig. 1. Graph G.

a b

Fig. 2. A simple rule.

b

c

a

d

e

Fig. 3. Match, context and patch.

is because without further annotations, the rule may only be applied if the patch
is empty, that is, if the node with the a-loop has no additional edges. In effect,
this rule only allows replacing an isolated node with an a-loop by two isolated
nodes, one of which has a b-loop.

a

1 2

b

Fig. 4. An annotated rule.

b

c

a

d

e b e

Fig. 5. Applying the rule on the left.

The rule in Figure 2 can be generalized to allow for patch edges from and to
the context by annotating the left-hand side of the rule as shown in Figure 4. We
call such annotations patch type edges. They can be thought of as placeholders
for sets of patch edges:

(i) The dotted arrow with source 1 is a placeholder for an arbitrary number
of edges from the context to the node with the a-loop.

(ii) Likewise, the outgoing dotted arrow with target 2 is a placeholder for an
arbitrary number of edges going into the context.

The rule is now applicable to all nodes that have an a-loop and no other loop,
allowing the node to be connected to the context through an arbitrary number
of edges. In particular, then, the rule is applicable to the match highlighted in
Figure 3, and it gives rise to the step shown in Figure 5.

Although we see how patch type edge annotations on the left-hand side can
be used to constrain the set of permitted patches around a match, it does not
tell us what to do with patch edges if a match is found. To indicate such trans-
formations, the solution is simply to reuse the patch type edges in the right-hand
side of the rule. The rule shown in Figure 4 does not reuse any of the patch type
edges, explaining why the corresponding patch edges are deleted in Figure 5.

a

1 2

b

1
2

Fig. 6. Redirecting patch edges.

b

c

a

d

e b e
b

c
d

Fig. 7. Applying the rule on the left.

One way to preserve the incoming edges bound to 1 and the outgoing

edges bound to 2 is shown in Figure 6. As the visual representation suggests,

the incoming edges bound to 1 get redirected to target the upper node of
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the right-hand side, and the sources of the outgoing edges bound to 2 are
redirected to the lower node. The respective sources and targets of the edges are
defined to remain unchanged. Applying the rule in G results in the rewrite step
depicted in Figure 7.

a

1 2

b
2

2

2

Fig. 8. Duplicating patch edges.

b

c

a

d

e
b e

d

d
d

Fig. 9. Applying the rule on the left.

Using this visual language, it is easy to duplicate, remove, and redirect edges
in the patch. The rule displayed in Figure 8 removes the incoming patch edges
bound to 1 , and duplicates the patch edges bound to 2 : one copy for the up-
per node of the right-hand side, and two copies for the lower node. The resulting
rewrite step is shown in Figure 9.

a

1 2

b

1 2

2

Fig. 10. Complex transformation.

b

c

a

d

e

b

eb

c

d

d

Fig. 11. Applying the rule on the left.

Patch graph rewriting also allows for some more exotic transformations, such
as inverting patch edges or pulling edges from the context into the pattern. The
rule in Figure 10 reverses the direction of 1 and pulls 2 into the pattern,
giving rise to the step in Figure 11.

a

1 2

3

1 2

3

1 2

3

Fig. 12. Node duplication.

b

c

a

f

d

e eb

c
d

f

b

c
d

f

Fig. 13. Applying the rule on the left.

All of the above rules are only applicable to nodes that have an a-loop and
no other loop. If we want the rule to be applicable to nodes that have additional
loops, this can be expressed as in Figure 12. This rule is now applicable to any
node with an a-loop. It makes a copy of the node, as well as all edges incident to
it (except for the a-loop, which is removed). If we slightly modify G to include
an f -loop on the middle node, the rule gives rise to the rewrite step in Figure 13.

In this brief visual introduction, we have focused on the transformation
of the patch. The left-hand sides of the rules has each time been a single
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node with an a-loop. Its generalization to other patterns is largely obvious,
but some edge cases arise. For instance, what could be the semantics of the rule

1 1 which redirects patch edges between nodes of the pat-
tern into the context? We now turn to the formal semantics of path rewriting,
which makes all preceding transformations precise and excludes such edge cases.

3 Formal Semantics

Notation 1 (Preliminaries). For functions f : Af → Bf and g : Ag → Bg
with disjoint domains (but possibly overlapping codomains), we write f ∪ g
for the function (f ∪ g) : (Af ∪ Ag) → (Bf ∪ Bg) given by the union of
f and g’s underlying graphs. If typing permits, we generalize functions f to
tuples (x, y) and sets S in the obvious way, i.e., f((x, y)) = (f(x), f(y)) and
f(S) = { f(x) | x ∈ S }.

We define directed, edge-labeled multigraphs in the standard way.

Definition 2 (Graph). A graph G = (V,E, s, t, ℓ) with edge labels from L
consists of a finite set of vertices (or nodes) V , a finite set of edges E, a source
map s : E → V , a target map t : E → V , and a labeling ℓ : E → L. For e ∈ E,
we say that s(e), t(e) and ℓ(e) are the source, target and label of e, respectively.

For convenience, we will write x
α
−→ y ∈ E to denote an edge e ∈ E such that

s(e) = x, t(e) = y and ℓ(e) = α.

We depict graphs as usual. An explanation may be found in Appendix A. A
discussion on how to encode vertex labels as edge labels is found in Appendix B.

Definition 3 (Basic Graph Notions). We define the following basic graph
notions:

(i) An unlabeled graph G = (V,E, s, t) is a graph (V,E, s, t, ℓ) over a singleton
label set. In this case we suppress the edge labels.

(ii) A graph is simple if for all e, e′ ∈ E, s(e) = s(e′), t(e) = t(e′) and ℓ(e) =
ℓ(e′) together imply e = e′.

(iii) We say that graphs G and H are disjoint if VG ∩ VH = ∅ = EG ∩ EH .
(iv) For disjoint edge sets E ∩E′ = ∅, we define the graph union as follows:

(V,E, s, t, ℓ) ∪ (V ′, E′, s′, t′, ℓ′) = (V ∪ V ′, E ∪E′, s ∪ s′, t ∪ t′, ℓ ∪ ℓ′) .

To rename vertices and edges of a graph, we introduce “graph renamings”. A
renaming is a graph isomorphism, where the domain of the renaming is allowed
to be a superset of the set of vertices/edges of the graph. In this way, the same
renaming can be applied to various graphs with different vertex and edge sets.

Definition 4 (Graph Renaming). A graph renaming φ for a graph G consists
of two bijective functions φV : V1 → V2 and φE : E1 → E2 such that VG ⊆ V1
and EG ⊆ E1.
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The φ-renaming of G, denoted φ(G), is the graph (V,E, s, t, ℓ) defined by

V = φV (VG) s(φE(e)) = φV (sG(e)) ℓ(φE(e)) = ℓG(e)

E = φE(EG) t(φE(e)) = φV (tG(e))

for every e ∈ EG.

Definition 5 (Graph Isomorphism). Graphs G and H are isomorphic, de-
noted G ≈ H, if there is a graph renaming φ such that H = φ(G).

Let L be a finite nonempty set of labels. In the sequel, we tacitly assume
that all graphs have labels from L.

As motivated by the preceding sections, we allow to compose a context graph
C and a match graph M by a “patch” J that may add edges between the nodes
of C and M , as well as between the nodes of M .

Definition 6 (Patch). Let C and M be disjoint graphs. A patch for C and M
is a graph J such that EJ ∩ (EC ∪ EM ) = ∅ and VJ = s(EJ ) ∪ t(EJ ), and

(s(e), t(e)) ∈ (VC × VM ) ∪ (VM × VC) ∪ (VM × VM )

for every edge e ∈ EJ . In this relation mediated by J , we call C the context
graph and M the match graph.

Definition 7 (Patch Composition). Let J be a patch for a context graph C
and a match graph M . The patch composition of C and M through patch J ,
denoted by C ·J M , is the graph union C ∪ J ∪M .

Example 8. Consider the following graphs C, M and G, respectively:

1 2
b

3 4

56

b

a

a

c

3 4

56

b

a

a

c21
b

a

b
b b

The composition of C andM through patch J = { 2
a
→ 3, 6

b
→ 2, 4

b
→ 5, 4

b
→ 6 }

is G, in which C functions as the context graph and M functions as the match
graph (w.r.t. J).

Before we consider the formal definition of rewriting, let us discuss the basic
principle and motivate some of the design choices. As a first approximation, a
graph rewrite rule L→ R is a pair of graphs that behave like patterns. Since the
edge and vertex identities in such rules are arbitrary (not to be confused with
the edge labeling), we close the rule under isomorphism. The rule should also be
applicable in contexts in which a patch connects a context and the pattern of the
rule. The rule L→ R thus give rise to rewrite steps of the form C ·J L

′ → C ·J′R′

for graphs C, valid patches J, J ′ and graphs L′ ≈ L and R′ ≈ R.
Additionally, we would like to exert control over the shape of patches in two

ways. A graph rewriting rule should enable one to (a) constrain the choices for
the patch J , and (b) define the patch J ′ in terms of J . For these purposes, we
introduce the concepts of a patch type and a scheme.
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Definition 9 (Patch Type). A patch type T for a graph G is an unlabeled
patch for G and the trivial graph with node set {� }. Here, the trivial graph
functions as the context graph.

Let J be a patch for a context graph C and match graph M , and T a patch
type for M . A patch edge (js

α
−→ jt) ∈ EJ (α any label) adheres to a patch type

edge (ts → tt) ∈ ET if the following conditions hold:

js ∈ VC ⇒ ts = � js ∈ VM ⇒ js = ts

jt ∈ VC ⇒ tt = � jt ∈ VM ⇒ jt = tt

The patch J adheres to patch type T if there exists an adherence map from J
to T , i.e., a function f : EJ → ET such that e adheres to f(e) for every e ∈ EJ .

The restriction to unlabeled patch type edges is motivated purely by simplic-
ity. We intend to relax the definition in future work.

Proposition 10 (Unique Adherences). Let the patch type T be a simple
graph. If a patch J adheres to T , then the witnessing adherence map is unique.

Intuitively, we use patch types to annotate the patterns of a rewrite rule.
The result we call a scheme.

Definition 11 (Scheme). A scheme is a pair (P, T ) consisting of a graph P ,
called a pattern, and a patch type T for P .

Example 12 (Depicting Schemes). We extend the
representation for graphs to schemes (P, T ) as shown
on the right. The pattern P consists of the solid la-
beled arrows, and the patch type T consists of the
dotted arrows. For dotted arrows without a source
(or target), the source (or target) is implicitly the
context graph node �. So T consists of the edges
{�→ 1, 3→ �, �→ 4, 4→ �, 1→ 3 }.

1 2

3

4

a
b

a

We are now ready to define a graph rewrite rule as a relation between schemes
(PL, TL) and (PR, TR). We equip the rewrite rule with a “trace function” τ
that relates edges in TR back to edges in TL, allowing us to interpret TR as
a transformation of TL, in which patch edges may be freely moved, deleted,
duplicated and inverted. For this we require the following constraint: if a patch
type edge e ∈ ETR

connects to the context, the corresponding edge τ(e) ∈ ETL

must also connect to the context. Without this constraint, it would not be clear
how to interpret e’s connection to the context.

Definition 13 (Quasi Patch Graph Rewrite Rule). A quasi patch graph

rewrite rule L
τ
−→ R is a pair of schemes L = (PL, TL) and R = (PR, TR),

equipped with a trace function τ : ETR
→ ETL

that satisfies � ∈ {s(e), t(e)} =⇒
� ∈ {s(τ(e)), t(τ(e))} for all e ∈ ETR

.
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We normally require the left patch type TL to be simple, so that the edges
of TL-adherent patches J adhere to a single edge in TL (Proposition 10). As we
shall see, this allows us to define a graph rewrite relation in which matches of a
rule produce a unique result (modulo ≈).

Definition 14 (Patch Graph Rewrite Rule). A patch graph rewrite rule is

a quasi patch graph rewrite rule (PL, TL)
τ
−→ (PR, TR) in which TL is simple.

Since we restrict attention to unlabeled patch type graphs in this paper, we
will use the opportunity to visualize the trace function τ by means of labels on
patch type edges.

Example 15 (Depicting Rules). A depiction of a valid rewrite rule is:

a
b

a

2

1

3

4 5

2
1

c

a

4

4

3

The trace function τ is visualized by means of labels on the type edges: τ maps
type edges with label n on the right-hand side to the type edge with label n on the
left-hand side. Throughout the paper, colors are merely used as a supplementary
visual aid. (An application example will be given in Example 19.)

Definition 16 (Rule Isomorphism). (Quasi) rewrite rules L1

τ1−→ R1 and

L2

τ2−→ R2 are isomorphic, denoted L1

τ1−→ R1 ≈ L2

τ2−→ R2, if there exists a graph
renaming φ such that φV (�) = �, φ((L1, R1)) = (L2, R2), and φE ◦τ1 = τ2 ◦φE.

Definition 17 (Patch Graph Rewrite System). A (quasi) patch graph
rewrite system (PGR) R is a set of (quasi) rewrite rules. For R we define
the isomorphism closure class R≈ = { y | x ∈ R, y ≈ x }.

For a patch J , patch type T and adherence map h : EJ → ET , we define

ctx(e, h) =











{ s(e) } if s(h(e)) = �

{ t(e) } if t(h(e)) = �

∅ otherwise

for every e ∈ EJ . So ctx (e, h) contains the context node involved in the edge e,
or is ∅ if the edge does not involve the context.

Definition 18 (Patch Graph Rewriting). A (quasi) patch graph rewrite sys-
tem R induces a rewrite relation →R on the set of graphs as follows:
C ·J PL →R C ·J′ PR if

(i) (PL, TL)
τ
−→ (PR, TR) ∈ R

≈,
(ii) hL : EJ → ETL

is an adherence map from patch J to patch type TL,
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(iii) hR : EJ′ → ETR
is an adherence map from patch J ′ to patch type TR, and

(iv) for every t ∈ ETR
there exists a bijection σ : h−1

R (t) → h−1

L (τ(t)) such that
ℓR(e) = ℓL(σ(e)) and ctx(e, hR) ⊆ ctx(σ(e), hL) for every e ∈ h−1

R (t).

For such a rewrite step, we say that the graph C ·J PL contains the redex PL.

Example 19 (Application Example). The rule given in Example 15 gives rise to
the following rewrite step:

a

b

a

b

d

b

b

b

c c

a
b
b

d

b

b

c

In the graph on the left we have highlighted the match (thick green) and the
patch (dotted). We have additionally indicated the adherence map of the patch
edges by reusing the colors of the rule definition.

We refer to Section 2 for many examples of simple rewrite rules and rewrite steps,
and to Appendix C for rewrite rules demonstrating standard graph operations
such as merging, copying and splitting nodes. A graph rewrite system modeling
wait-for graphs will be given in Section 4.

Remark 20 (Finding Redexes). Checking for the presence of a redex is simple. A

graph G contains a redex with respect to rule (PL, TL)
τ
−→ (PR, TR) ∈ R if and

only if

1. there exists a subgraph M of G isomorphic to PL, and
2. every edge e /∈ EM incident to a v ∈ VM adheres to an edge in TL.

Definition 18 can be understood in more operational terms as follows.

Lemma 21 (Constructing J ′). If conditions (i) and (ii) of Definition 18 are
satisfied (fixing some adherence map hL), the patch J ′ and adherence map hR
that satisfy conditions (iii) and (iv) are uniquely determined up to isomorphism.
The patch J ′ can be constructed using the following procedure.

For every type edge t = (ts → tt) ∈ ETR
, consider every patch edge j =

(js
α
−→ jt) ∈ EJ for which hL(j) = τ(t) = (tτs → tτt ) ∈ ETL

. There are five
exclusive cases:

1. If � /∈ {ts, tt}, add a new edge ts
α
−→ tt to J

′.

2. If ts = tτs = �, add a new edge js
α
−→ tt to J

′.

3. If tt = tτt = �, add a new edge ts
α
−→ jt to J

′.

4. If ts = tτt = �, add a new edge jt
α
−→ tt to J

′.

5. If tt = tτs = �, add a new edge ts
α
−→ js to J ′.
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Here, the “new” edge j′ is an edge not in C, PR or the intermediate construction
of J ′. The adherence map hR is defined such that hR(j

′) = t for each of the
considered j′ and t.

Non-quasi rules have the following desirable property.

Proposition 22 (Rule Determinism). Let G = C ·J PL. If a rule (PL, TL)
τ
−→

(PR, TR) ∈ R
≈ derives both G →R C ·J′ PR = G′ and G →R C ·J′′ PR = G′′,

then G′ ≈ G′′.

Proof. This is a direct consequence of Proposition 10 and Lemma 21. ⊓⊔

In contrast to (non-quasi) graph rewrite rules, quasi rules are not generally
deterministic. For instance, consider the quasi rewrite rule

1

2

1

which can match any graph G consisting of two nodes x and y and n edges from
x to y. For each e ∈ EG, the left adherence map hL can either map e to the
patch type edge labeled with 1, or to the type edge labeled with 2. Thus, 2n

choices for hL are possible, and each choice causes a different subset of J to be
deleted in a single rewrite step.

Notation 23 (Shorthand Notation). Given a pattern P , we often want to allow
for any patch edges between the nodes of a subset N ⊆ VP as well as the context
node �. In the notation we have discussed so far, we would then need to draw
the complete patch type graph induced by N ∪ {� } (minus the loop on �),
which consists of (|N |+ 1)2 − 1 patch type edges.

To avoid spaghetti-like figures, we extend the visual presentation of schemes
by allowing each node to be annotated with a set of names (written without set
brackets). We say that a node has name x if x is in the set of names of this node.
So a node can have 0 or more names. The name annotations are then shorthand
for the following patch type edges:

(i) For every node n and name x of n, the node n has the two patch type edges

n(�, x) (x,�) from and to the context.

(ii) For every pair of nodes n,m and every name x of n and y of m, there is

implicitly the patch type edge n m(x, y) from from n to m. Here

n and m can be the same node, and x can be equal to y.

Observe that rules are non-quasi iff every node in the left-hand side has at most
one name. We therefore require that distinct nodes do not share names.

As an example, a rule for merging two nodes can be written as

x y

a

x, y
(1)
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which is shorthand for

a

(�, x)

(x,�)

(x, x)

(x, y)

(y, x) (�, y)

(y,�)

(y, y)

(�, x)

(x,�)

(�, y)

(y,�)

(x, x) (y, y)

(x, y)

(y, x)

For a more elaborate shorthand notation, see Appendix D.

4 Modeling Wait-For Graphs and Deadlock Detection

We now give a more extensive and more realistic modeling example that show-
cases the expressive power of PGR.

A wait-for graph [14] is a hypergraph in which nodes represent processes, and
hyperedges represent requests for resources. A hyperedge has a single source p,
representing the process requesting the resources, and M > 0 targets distinct
from p, representing the processes from which a resource is requested. The pro-
cess p requires 0 < N ≤ M of these resources. Thus, for a fixed M , there are
multiple types of hyperedges, each representing a particularN -out-of-M request.
Processes can have at most one outgoing N -out-of-M request.

The following distributed system behavior is associated with wait-for graphs.
A process without an outgoing request is said to be unblocked. An unblocked
process can grant an incoming request, deleting the edge, or create a new N -
out-of-M request. A process becomes unblocked when its pending N -out-of-M
request is resolved, i.e., when N targeted processes have granted the request.

In order to better illustrate some of PGR’s transformational power, we intro-
duce one additional, noncanonical behavior. We consider a process p overloaded
when it has n > 2 incoming requests. When p is overloaded, a clone of p, c(p),
may be created which takes over n− 2 of p’s incoming requests. Because we as-
sume that any outgoing request must be resolved before any incoming requests
can be resolved, c(p) replicates p’s outgoing request, if p has one.

We first define a graph grammar that defines the class of valid wait-for graphs.
Then, we will show how to augment the rule set in order to model the distributed
system behavior. Finally, we explain how deadlocks can be detected. Through-
out, we encode hypergraphs as multigraphs. Note that in this encoding, vertices
representing processes are always free of loops, while vertices representing hyper-
edges always have loops. Hence, the given rules can appropriately discriminate
between the two types of vertices.

4.1 Wait-For Graph Grammar

The starting graph of the grammar is the empty graph, denoted by ∅. Rule

∅ (create)
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models process creation, and rule

2 3

1

2 3

1

z s
(1-of-1)

allows constructing a valid 1-out-of-1 request between nodes. Labels z and s
should be interpreted as 0 and the successor function, respectively, so that n
s-loops encode that n requests are yet to be granted.

In the grammar, any N -out-of-M request can be extended to a valid N -out-
of-(M + 1) request using rule

4 5

1

3

z 2

4 5

1

3

z 2

(ext-0)

and to a valid (N + 1)-out-of-(M + 1) request using rule

4 5

1

3

z
2

4 5

1

3

z
2s

(ext-1)

These four rules suffice for generating any valid wait-for graph.

4.2 System Modeling

To model a distributed system, we need rule create for process creation, as well
as its inverse, destroy, for process destruction. Note that destroy constrains
the process selected for destruction to be isolated in our framework (i.e., it is
not associated with any pending requests), as desired.

Any N -out-of-M request is understood to be an atomic action. So for, e.g.,
modeling 2-out-of-2 requests, we need the rule

2

3

4

5

1

2

3

4

5

1

z s
s

(2-of-2)

Such rules can be easily simulated by a contiguous sequence of rewrite steps
1-of-1 · ext-0∗ · ext-1∗, in which the node making the request remains fixed.
We omit the details.
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A grant request may be modeled by

2

1

s

3

4

2

1

3

4

(grant)

and a request resolution by

z
1

2
∅ (resolve)

This leaves only the cloning behavior for an overloaded process p. This re-
quires two rules: one for the case in which p is unblocked, and one for the case
in which p is blocked. We use the shorthand notation introduced in Notation 23,
so that named nodes ri induce type edges among themselves and from and into
the context.1

The case in which p is unblocked is modeled by rule

r2

r1

r3

1

r2

r1

r3
1 (clone-1)

and the case in which p is blocked is modeled by rule

r2

r1

r3
1

2

3
r2

r1

r3
1

2

3

2

3

(clone-2)

Cloning would be easier to express if PGR were to be extended with support
for hyperedges and cardinality constrained type edges. We envision a rule like

1

2
3

= 2

> 0

1

2

3

3

(clone*)

to capture the same cases as rules clone-1 and clone-2 combined. We leave
such an extension to future work. In particular, the precise semantics of hyper-
edge transformation would have to be determined.

1 The type edges between distinctly named nodes ri 6= rj are redundant in the con-
sidered scenario, since we know that these type edges will never have adherents.
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4.3 Deadlock Detection

Deadlock detection on some valid wait-for graph G can be performed by re-
stricting the rewrite system to rules grant, resolve and destroy, yielding
a terminating rewrite system. Then the network represented by G contains a
deadlock if and only if the (unique) normal form of G is the empty graph ∅.

For a comparable modeling example, see Appendix E, in which the Dijkstra–
Scholten termination detection algorithm is modeled.

5 Comparison

We compare PGR to several other rewriting frameworks. We have selected these
frameworks because of their popularity and/or because they bear certain simi-
larities to our approach.

Double-Pushout (DPO). Ehrig et al.’s double-pushout approach (DPO) [9]
is one of the most prominent approaches in graph rewriting.

A rewrite rule in the DPO approach is of the form L ←֓ K → R, where L is
the subgraph to be replaced by subgraph R. The graphK is an “interface”, used
to identify a part of L with a part of R, and it can be thought of as describing
which part of L is preserved by the rule. The identification is formally established
through the inclusion L ←֓ K and the graph morphism K → R. The morphism
K → Rmay be non-injective, allowing it to merge nodes that are in the interface.

A DPO rewrite rule L
ϕ
←֓ K

ψ
→ R is applied inside a graph G as follows [7,8].

Let m : L→ G be a graph morphism, which we may assume to be injective [16].
The graph m(L) ≈ L is said to be a match for L. The arising rewrite step
replaces m(L) of G by a fresh copy c(R) of R, redirecting edges left dangling by
the removal of a v ∈ m(L) to node c(ψ(ϕ−1(m−1(v)))). For the redirection of
edges to work, nodes that leave dangling ends need to be part of the interface,
that is, in m(ϕ(K)). This is known as the “gluing condition”.2 If the gluing
condition is not met, the rewrite step is not permitted.

Using Notation 23, it is easy to see that PGR at least as expressive as DPO

with respect to the generated rewrite relation. A DPO rule L
ϕ
←֓ K

ψ
→ R can

be directly simulated by a PGR rule L → R in which the nodes are annotated
with their (set of) names in the interface: v ∈ VL is annotated with the names
ϕ−1(v), and v ∈ VR is annotated with the names ψ−1(v).

However, DPO is stronger in one respect: a DPO rewrite step preserves the
subgraph specified in K, whereas a PGR rewrite can be thought of as destroying
and replacing the left-hand side of the rule. The consequences for metaproperties
relating to parallelism and concurrency will have to be investigated.

Generalized DPO. In some variants of DPO, the inclusion L ←֓ K is general-
ized to a (possibly non-injective) morphism ϕ : K → L. Intuitively, this allows a

2 By the injectivity assumption for m, we need not consider what is known as the
“identification condition”.
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node v of L to be “split apart” in the interface K. Applying the DPO method to
a host graph ensures that the patch graph edges incident to v will be incident to
one of v’s split copies. It does not dictate how these edges should be distributed.
Thus, such rewrite steps are non-deterministic.

Generalized DPO rules L
ϕ
← K

ψ
→ R can be translated to PGR rules L→ R

in the same way as discussed for DPO. Since ϕ is no longer required to be
injective, nodes v ∈ VL can be annotated with multiple names ϕ−1(v), thereby
leading to (non-deterministic) quasi rules (Definition 13).See also Example 26.

Single-Pushout (SPO). The single-pushout (SPO) approach by Löwe [18]
is the destructive sibling of DPO. It is operationally like DPO, but it drops the
gluing condition. Any edges that would become dangling in the host graph are
instead removed.

An SPO rule L
ϕ
←֓ K

ψ
→ R can be simulated by a PGR rule L → R with

annotations as discussed above for DPO, except that each node v ∈ VL, for
which ϕ−1(v) is empty, is now annotated by a fresh name. The rewrite step will
then delete all patch edges connected to such a node.

DPO Rewriting in Context (DPO-C). The DPO Rewriting in Context
(DPO-C) approach by Löwe [19, 20] addresses the issue of non-determinism in
generalized variants of DPO, using ingoing and outgoing arrow annotations to
dictate how these edges should be distributed over split copies. The visual repre-
sentation of DPO-C therefore bears some similarity to that of PGR. In addition,
absence of arrow annotations also define negative application conditions like
in PGR. However, the patch cannot be transformed as freely as in PGR. For
instance, see rule (2) below.

AGREE. AGREE [3] and PBPO [4] by Corradini et al. extend DPO with
the ability to erase and clone nodes, while also being able to specify how patch
edges are distributed among the copies. For this purpose, a “filter” for the edges
determines what kind of patch edges are to be dropped. This filter can distin-
guish different types of edges based on their source, target and label. Thereby
AGREE and PBPO subsume mildly restricted versions of DPO, SPO, and other
formalisms.

PGR has some features that are not present in AGREE and PBPO. First, in
PGR rule applicability can be restricted by conditions on the permitted shape
of the patch. Second, PGR allows (almost) arbitrary redirecting, moving and
copying of patch edges outside the scope of AGREE and PBPO. For instance,

1 2 6 7 126 7 (2)

cannot be expressed in the latter frameworks. Also inverting the direction of
patch edges, or moving patch edges between nodes of the pattern is not possible
in AGREE and PBPO.

On the other hand, AGREE and PBPO capture some transformations that
cannot be expressed in PGR. First, AGREE and PBPO can express some global
transformations, unlike PGR. Second, the “patch edge filter” in AGREE and
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PBPO can distinguish patch edges depending on their label and the “type” of
the source/target in the context (here the type is given by some type graph).
Both features are not present in PGR as presented in this paper. However, PGR
can be extended with constraints on the patch type edges. (For a discussion on
how to encode constraints in the present framework, see Appendix F.) We leave
the investigation of a suitable constraint language to future work.

Nagl’s Approach. Nagl [21] has defined a very powerful graph transformation
approach. Rather than identifying “gluing points” for the replacement of L by
R in a host graph G (as in the previous approaches), rules are equipped with
expressions that describe how R is to be embedded into the remainder graph
G− = G−L. An expression can, e.g., specify that an edge must be created from
u ∈ G− to v ∈ R if there existed a path (of certain length and containing certain
labels) from u to a w ∈ L. Thus, the embedding context may no longer even be
local.

While not all of these transformations are supported by PGR, the expres-
sions are arguably much less intuitive than our representation, in which both
application conditions and transformations are visualized in a unified manner.

Habel et al.’s Approach. Habel et al. [15] have introduced graph grammars
with rule-dependent application conditions that also admit a very intuitive vi-
sual representation. These conditions are more powerful than PGR’s application
conditions, since they can extend arbitrarily far into the context graph. However,
transformations are not included in the approach, unlike in PGR, in which the
notations for application conditions and transformations are unified.

Drags. To generalize term rewriting techniques to the domain of graphs, Der-
showitz and Jouannaud [6] have recently defined the drag data structure and
framework. A drag is a multigraph in which nodes are labeled by symbols that
have an arity equal to the node’s outdegree. Nodes labeled with nullary variable
symbols are called sprouts, and resemble output ports. In addition, the drag
comes equipped with a finite number of roots, which resemble input ports.

A composition operation ⊗ξ for drags, parameterized by a two-way switch-
board ξ identifying sprouts with roots, gives rise to a rewrite relation W ⊗ξ L→
W ⊗ξR. For this rewrite relation to be well-defined, it is required, among others,
that L and R have the same number of roots and the same multisets of variables.

Since drag rewriting imposes arity restrictions on nodes, it is more restrictive
than patch rewriting concerning the shapes of the graphs that can be rewritten.
As drag rewrite steps are local, we believe that PGR can simulate them, but we
leave this investigation to future work.

6 Conclusion

We have introduced patch graph rewriting, a framework for graph rewriting that
enriches the rewrite rules with a simple, yet powerful language for constraining
and transforming the local embedding—or patch.
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For future work, we plan to investigate various meta-properties central in
graph rewriting [8], in particular confluence [12, 17, 22], termination [2, 5], the
concurrency theorem [10], decomposability and reversibility of rules. We intend
to study these properties both globally, for all graphs, as well as locally [11,13],
for a given language of graphs [23]. Furthermore, we are interested in extending
the framework with constraint labels on patch type edges, and in allowing label
transformations. We believe this could be useful for modeling a larger class
of distributed algorithms [14]. Another interesting direction of research is an
equational perspective on patch rewriting, as similarly investigated by Ariola
and Klop for term graph rewriting [1].
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Appendix

A Depicting Graphs

Consider the graph G = (V,E, s, t, ℓ) defined by:

V = { 1, 2, 3, 4 } s(e) = 1 t(e) = 2 ℓ(e) = a

E = { e1, e2, e3, e4 } s(e) = 2 t(e) = 3 ℓ(e) = b

L = { a, b } s(e) = 2 t(e) = 3 ℓ(e) = b

s(e) = 4 t(e) = 2 ℓ(e) = a

The graph G can be visualized as follows:

1 2

34

a b

ba

The edges are displayed as arrows from the source to the target of the edge,
annotated by the label of the edge. In such a visualization names of the edges
are typically suppressed; so the graph is defined only up to renaming of the
edges.

We also suppress the vertex names if they are irrelevant. Then the graphs
are defined up to isomorphism only. For instance,

a b

ba

is a visualisation of G where edge and vertex names are suppressed. As a con-
vention, nodes with distinct coordinates are always assumed to be distinct.

B Encoding Vertex Labels

Vertex labels can be encoded in at least two different ways:

(i) Choosing a vertex label set LV disjoint from edge label set LE , and adding

an edge v
α
−→ v when v has label α.

(ii) Using a distinguished node r that has precisely one edge r
α
−→ v to every

other node v and α is v’s vertex label. Then r is the only node with no
incoming edges.

In PGR, approach (ii) has an advantage over (i) when one wants to match all
loops of a node with an arbitrary label. Assume that we want to specify a rule
that can drop all loops from an arbitrary node. Using approach (i) we need a
rule of the form
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a

1 2

3

a

1 2

for every node label a. Using approach (ii) a single rule suffices:

4

1 2

3

4

4

1 2

4

Note that the upper node cannot have incoming patch edges, so this is the node
responsible for assigning labels to the other nodes. Thus 4 binds the edge that
carries the node label of the lower node.

C Elementary Graph Operations

The following examples demonstrate that PGR easily supports a number of
elementary graph operations.

Example 24 (Merging Two Nodes). The following rewrite rule can be applied to
any pair of nodes connected by an edge with label a:

a

1

2

3

4

5 6

7

8

1

2

6

7

3

4

8

5

(3)

When the rule is applied, the edge with label a is dropped, and the two nodes
are merged into a single node. All incoming and outgoing edges are redirected
accordingly.

If we want to exclude edges between the nodes of the pattern other than the
edge labeled with a, then the rule can be simplified as follows:

a

1

2

3

4

1

2

3

4
(4)

Now the patch can only contain edges between the context and the pattern of
the rule.
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Example 25 (Copying a Node). The following graph rewrite rule copies including
all its edges (from the context, to the context and loops):

1

2

3 1

2

3 1

2

3 (5)

PGR allows a fine-grained control that enables one to do much more than simply
copying a node. For instance, consider the rule

1

2

3 1

2 2

3 (6)

This rule makes a partial copy of a node. It copies the node including all its
loops. However, the incoming edges (from the context) and outgoing edges (to
the context) are not duplicated, but redistributed between the two copies. All
incoming edges are assigned to the left copy, all outgoing edges are assigned to
the right copy.

Example 26 (Non-deterministically Splitting a Node). In the preceding example
we have seen how to copy including all its incoming and outgoing arrows. We
now want to split a node into two nodes and non-deterministically distribute the
edges between the two nodes. This can be achieved by the following quasi patch
graph rewrite rule:

1

2

3

4

5

6

1

2

3

4

5

6

(7)

The patch type of the left-hand side is not a simple graph. Here

– 1 and 4 form a partitioning of the incoming edges (from the context),

– 3 and 6 form a partitioning of the outgoing edges (into the context).

– 2 and 5 form a partitioning of the loops on the node.

There is no fairness condition imposed here. For instance, the partitions 1 ,

2 , 3 can be empty. Then all edges are assigned to the right node. A fair
distribution of the edges could be achieved by extending the patch types with a
richer constraint language.

D Extended Shorthand Notation

Extending Notation 23, we suggest the following notation to indicate that a
certain implicit edge should not be present:
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n m(x, y)

For instance, rule (5) for copying a node can be written as

x x x

(x, x)

(x, x)

(8)

which is shorthand for

(�, x)

(x,�)

(x, x) (�, x)

(x,�)

(x, x) (�, x)

(x,�)

(x, x)

(9)

Rule (7) for non-deterministically splitting a node can now be written as

x, y

(x, y) (y, x)
x y

(x, y)

(y, x)

(10)

which is an abbreviation for

(�, x)

(x,�)

(�, y)

(y,�)

(x, x) (y, y)

(�, x)

(x,�)

(�, y)

(y,�)

(x, x) (y, y) (11)

Compare the left-hand side of this rule with the right-hand side of the example
given in rule (1).

E Termination Detection: Dijkstra–Scholten

The Dijkstra–Scholten algorithm [14] detects the termination of a centralized
basic algorithm. It is assumed that the basic algorithm is executed on a loop-
free undirected network, and that there is a distinguished initiator process. The
Dijkstra–Scholten algorithm builds a tree alongside the execution of the basic
algorithm, where processes that are active in the basic algorithm are part of
the Dijkstra–Scholten tree. Each process maintains a counter, originally 0. A
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counter represents a conservative estimate of how many of the process’s children
are active. When the initiator’s counter is 0, it can quit the tree, by which it
correctly announces that the algorithm has terminated (i.e., there are no more
basic messages in transit, and all processes have quit the tree).

The algorithm can be described as follows:

– The initiator starts as the root of the Dijkstra–Scholten tree T .

– A process p ∈ T can send a basic message to a neighbour process. When it
does, it increments its own counter.

– When a p ∈ T receives a basic message from a p′, it sends p′ a control
message to indicate that it is already in the tree.

– When a p /∈ T receives a basic message from a p′, it joins the tree, and stores
p′ as its parent.

– A non-initiator with a counter of 0 can quit the tree. When it does, it informs
its parent that it is no longer its child via a control message.

– When a process receives a control message, it decrements its counter.

– An initiator with a counter of 0 can quit the tree, by which it announces
that the basic algorithm has terminated.

In our graph representation modeling the state of a Dijkstra–Scholten tree,
we use the following labels on directed edges (assume u 6= v):

– An edge u
e
−→ v denotes a network connection between u and v.

– An edge u
b
−→ v denotes a basic message in transit between u and v.

– An edge u
c
−→ v denotes a control message in transit between u and v.

– An edge u
p
−→ v denotes that v has stored u as its parent.

– A loop u
i
−→ u denotes that u is the initiator.

– A loop u
t
−→ u denotes that u is in the Dijkstra–Scholten tree.

– A loop u
s
−→ u denotes an increment of the implicit counter at u, which

should be interpreted to be 0 if there are no s-loops.

The starting undirected network is encoded as the smallest multigraph con-
taining:

– u
e
−→ v iff there is an undirected edge between u and v, and

– u
i
−→ u and u

t
−→ u iff u is the initiator of the basic algorithm.

Notation 27 (Black Node Shorthand). As an abbreviation, we use black nodes in
rules. For the black nodes and the context node we induce the largest patch type
edge subgraph possible (i.e., the most permissive subgraph of patch type edges).
The patch type edges are simply copied over to the right-hand side, where nodes
that are in the same relative position on the left and on the right are identified.

The notation is best explained through an example.
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Example 28. The rule

a

b

1

1

1

abbreviates the rule

a

b

1
2

3
4

5

6
7

8
9

1

1
2

3
4

5

6
7

8
9

Observe that Notation 27 provides a simpler alternative to Notation 23 for
use cases where node deletion and merging do not take place. We believe it to
be generally useful for modeling distributed algorithms, where it is often only
the relations between processes that change.

An execution of the Dijkstra–Scholten algorithm can now be modeled using
the following rules:

– Sending a basic message:

t

e

t

s

e

b

(snd b)

– Receiving a basic message while in the tree:

t

b

t

c (rec b-1)

– Receiving a basic message while not in the tree:

b

1

2

3

4

p

1

2

3

4

t (rec b-2)
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– Receiving a control message:

cs (rec c)

– A non-initiator quits:

p

1

2

3

4

t c

1

2

3

4

(quit)

– The initiator quits/announces:

1 2

i

t

1 2

i

(announce)

F Modeling Constraints

Instead of using unlabeled type edges, one could label the type edges with ex-
pressions from some suitable constraint language and strengthen the definition of
adherence. Constraints that immediately suggest themselves include those that
restrict the permitted number of adherent edges or their labels.

For many application scenarios, however, the number of edges is either un-
bounded, or there is only a small number of permitted choices. The latter case
can in principle be handled with unlabeled type edges as follows. Consider the
following left-hand side of some rule:

1

which allows 1 to have any number of incoming edges from nodes other than itself
(and no outgoing edges are allowed). Assume instead that we want to express
that node 1 has either one or two incoming edges labeled with b from nodes other
than itself. Then we can replace the scheme with three schemes that together
capture precisely this constraint:

12
b

12
b

b
12 3

b b

Clearly, this transformation quickly leads to a prohibitive large number of rules.
We have chosen to keep things simple as this suffices for many application sce-
narios.
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