On Equal p-Terms

Joérg Endrullis, Clemens Grabmayer!, Jan Willem Klop, Vincent van Qostrom

Vrije Unwversiteit Amsterdam, Department of Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Universiteit Utrecht, ZENO Research Institute, Department of Philosophy
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

Abstract

We consider the rewrite system R, with px.M —, M[z:=px.M] as its single
rewrite rule, where the signature consists of the variable binding operator com-
monly designated by pu, first order symbols, in this paper restricted to a binary
function symbol F, and possibly some constant symbols. This kernel system
denoting recursively defined objects occurs in several contexts, e.g. it is the
framework of recursive types, with F as the function type constructor. For gen-
eral signatures this rewriting system is widely used to represent and manipulate
infinite regular trees.

The main concern of this paper is the convertibility relation for p-terms as
given by the p-rule, in particular its decidability. This relation is sometimes
called weak p-equality, in contrast with strong p-equality, which is given by
equality of the possibly infinite tree unwinding of p-terms. While strong equality
has received much attention, the opposite is the case for weak p-equality.

We present three alternative proofs for decidability of weak p-equality. The
first two proofs build upon an ingenious proof method of Cardone and Coppo.
Prior to that, we prepare the way by an analysis of a-conversion. We then give
a decidability proof in an ‘a-free’ way, essentially treating p-terms as first-order
terms, and next a proof in higher-order style, employing a-equivalence classes
and viewing R, as a higher-order rewriting system.

The third decidability proof is again in the a-free way, exploiting the regular
nature of the set of u-reducts, enabling an appeal to the theory of tree automata.

We conclude with additional results concerning decidability of reachability,
and upward joinability of p-reduction, and of convertibility by a-free u-reduction.

IThis author was funded by the NWO-project Realising Optimal Sharing (ROS).
Email addresses: joerg@few.vu.nl (Jorg Endrullis), clemens@phil.uu.nl
(Clemens Grabmayer), jwk@cs.vu.nl (Jan Willem Klop), Vincent.vanQostrom@phil.uu.nl
(Vincent van Oostrom)

Preprint submitted to Theoretical Computer Science September 25, 2019

1. Introduction
Let us consider the infinite wave pattern as follows:

This pattern is actually suggested by the very origin of the Greek letter u
descending from the Egyptian hieroglyph . and the Phoenician symbol [,
meaning water. The question arises whether this pattern has a finite represen-
tation. Indeed it has, namely:

pr.Ux

with the p-rule
px.s = sfx:=px.s]

Then we have:
pr.Uz — NJpz.(Uz — MU Upz.(Uz = MU U Upz. Uz — ...
However, there are other representations of the same pattern, for example:

pux’ .Uz’
Apy. Uy
(Upz.MUz
pw. MU Uw

Now the question arises when two such representations are the same (finitely)?
Thus we arrive at the main endeavour of this paper.

This paper studies a particular orthogonal higher-order rewrite system that
we will call R, containing terms built from constants c, d, ..., variables z, y,
Z, ..., a binary function symbol F, and a higher order symbol p allowing to
construct terms such as pz.F(z,c). Everything in this paper generalizes to a
more general first-order signature X, but for our present purposes, with recursive
types as main application, the specific signature as mentioned will be assumed.
There is a single rewrite rule, the u-rule, which reads px.M — M[z:=px.M]
(in meta-notation using the schematic variable M and meta-substitution). So
we have the rewrite sequence:

px.F(z,x) — F(pz.F(z, x), pe.F(z, x))
— F(F(pz.F(z,z), pr.F(z, x)), pe.F(z,z)) — ...

where we could continue rewriting with as limit result the infinite binary branch-
ing tree of F’s. However, in most of the paper we will only consider finite re-
duction sequences, and for such reduction sequences we have the confluence
property, as a consequence of the general confluence theorem for orthogonal
higher-order rewrite systems. For studies involving the use of u-terms in in-
finitary term rewriting we refer to Inverardi and Zilli [?], and Corradini and
Gadducci [?].

The rewrite system 7, embodies the recursion principle in a most concen-
trated form, replacing the fixed point combinators Y as employed in A-calculus.
In fact, we can consider R, to be a subcalculus of A-calculus, via the translation
replacing p by Y o\ for some fixed point combinator Y; the p-rule then becomes
a derived rule. As we will remark below, this translation preserves unsolvability;
meaningless terms are carried over to unsolvables in the A-calculus.

Just as we can view A-calculus from the finitary or the infinitary perspective,
the latter leading to semantical notions such as Béhm trees, its subsystem R,
can also be viewed finitary or infinitary. The infinitary perspective of R, is
in fact rather well-known, as it pertains to tree unwinding semantics of e.g.
recursive types [? |. The ensuing equality is called ‘strong equality’ in [?],
holding when pu-terms M, N have the same possibly infinite tree unwinding.
There are many proof systems for strong equality, and many algorithms for
deciding strong equality.

However, the finitary aspects of R, are much less known. For instance, the
basic notion of (finitary) convertibility using the p-rule, was first studied in
depth by Cardone and Coppo [? |. They provided a beautiful and ingenious
proof method to show decidability, using standard reductions and a special
purpose proof system, but as it turned out recently, the proof in [? | seems
to be not entirely conclusive. Our proof below of decidability follows their
proof strategy, but adds a crucial ingredient in the form of annotated or virtual
p-binders.

In order to explain the structure of our paper in more detail, we will elaborate
now how we have approached the problem of a-conversion, and whether we
perform p-reduction modulo «, or not. It turns out that the main theme in many
proofs of properties of p-reduction resides in cycle detection, also named loop
checking. In order to guarantee termination of loop checking, finiteness of the
subterm closure SC(M) is exploited, where SC(M) is obtained from a p-term M
by alternating root reduction (unfolding) and subterm taking. Finiteness of the
subterm closure guarantees the appearance of cycles, that is, the reoccurrence
of terms that have been generated earlier. Our decidability proofs of weak
p-equality hinge upon such a concept of loop checking.

However, taking subterms of a term uxz.M is problematic, because a binder
ux is severed, whereafter the previously bound x’s are ‘loosely dangling’. Indeed,
the corresponding higher-order ‘rule’ pz.M(z) — M (x) violates the restriction
on rules that the left-hand side and right-hand side must be be closed (the
right-hand side is not), as found in higher-order rewriting. When we work with
a-equivalence classes, it is not clear at all how to make sense of this situation,
and this is the heart of the problem in the theory of u-terms. To deal with this
problem, various methods have been proposed and used, all depending on the
precise way how a-conversion and a-equivalence classes are handled. Here we
can distinguish three ways to define a-conversion inductively:

(I) The method used by Schroer [?]. This method consists in adopting new
constants for the administration and management of bound variables,
much like the ‘de Bruijn indices’. In our paper this method will be em-

ployed in Section 8, where we treat decidability of weak p-equality in the
higher-order way, based on a-equivalence classes.

(IT) The inductive definition employed by Kahrs [? |. In deciding a-equivalence
M =, N, we successively peel off binders from both sides M, N, keeping
on the way a record, an ordered stack, of equations between the peeled off
variables. Together with the other decomposition rule (F-decomposition),
we then obtain a finite tree of subgoals, and the terminal equations of this
tree can be simply decided by looking up in the stack, whether we have a
success or a failure. These judgments at the leaves of the tree, percolat-
ing upwards, then determine the judgment of the original a-equivalence
question. Interestingly, we will recognize aspects of this simple decision
procedure for a-equivalence later on in the more complicated setting of
deciding weak p-equivalence (in particular the tree search, and the book-
keeping of discarded binders).

e b pry.F(z,y) = pyz.F(y,x)
z =yt pyF(z,y) = px.Fly, z)
r=y, y=xzkFlz,y) =F(y,z)
r=y,y=axkFxr=y r=y,y=axkFy==x
r#y y#Fx z=yta=y

Figure 1: A proof of a-equivalence in the style of Kahrs [?].

(III) The definition of a-equivalence as =, := (+— U —,)*, the convertibility
relation generated by single-step a-renaming —,.

In Hendriks and van Qostrom [? | these three approaches are proved to be
equivalent. This does not mean that their use is interchangeable without more;
depending on the problem context one or more of methods (I)~(III) may be
preferable and the right one to use.

So there are various ways to deal with a-equivalence. But the basic strategic
choice is to commit oneself either to treat matters a-free, and clearly separating
a-renaming and p-reduction; or to work all the way with a-equivalence classes
and a corresponding notion of p-reduction. The advantage of the first com-
mitment is that if we have succeeded in eliminating the concerns to deal with
a-conversion—and below we will show how in detail this can be done—then we
are for all purposes actually in a first-order setting®. This first commitment we
have adopted in our first decidability proof for weak p-equality, extending the
proof method of Cardone and Coppo, see Section 7. It is also adopted in our
third decidability proof, which uses tree automata techniques, made possible by
our ‘first-order rendering’ of u-terms, see Section 9.

3The situation is similar as in the case of weak B-reduction where one does not reduce
under a A-binding: there is no need for a-conversion, and hence one obtains the simplicity of
a first-order setting.

Our second decidability proof, in Section 8, is under the regime of the second
commitment. It still follows the Cardone-Coppo proof strategy, but now in
a pure higher-order setting, so that u-terms are a-equivalence classes. The
advantage is that then we do not have to deal with reduction modulo «; this is
seamlessly integrated in the notion of reduction in higher-order rewriting. Here
a certain disadvantage is that the higher-order setting is less concrete, and also
less well-known.

Summing up, we advocate the adagium that a-freeness entails a first-order
setting. In our paper we have endeavored to put light on the decidability ques-
tion for weak p-equality from both paradigm perspectives, a-free with the ensu-
ing first-order setting, and higher-order, with the ensuing built-in a-equivalence.
This is the rationale for the different proofs that we have developed.

An interesting meta-observation about the inclusion of the core system R,
in the full A-calculus, is that while in the A-calculus ‘every interesting prop-
erty is undecidable’, as validated for many instances by Scott’s theorem, in
the core system R, by contrast ‘every interesting property is decidable’. To
substantiate this informal slogan, we have included proofs of decidability of
reachability —, /., and also of unsolvability, and of upward-joinability 1, /q

In this paper we will sometimes refer to the rewrite system R, as ‘u-calculus’,
in analogy with the A-calculus, to facilitate our way of speaking. As a caveat
we point out that we do not intend to evoke associations with well-known im-
portant and more expressive p-calculi such as the modal p-calculus or Parigot’s
Ap-calculus (see also [?]). It will be clear that our paper concentrates on syn-
tactic aspects of R, rather than semantic studies of fixed point rules such as
by Fiore and Plotkin [? | on FPC.

2. Preliminaries

We start with setting up the notations. We also introduce the notion of
meaningless u-terms, and the Bohm Tree, or infinite tree unwinding, of a p-term.

Definition 1 (u-terms). Ter(u) is the set of y-terms over the first-order sig-
nature ¥ = {c,d, ...} U{F} with constants c, d, ..., and binary function symbol
F, more precisely:

(i) z,y,z,... € Ter(u) (variables),
(i) ¢,d,... € Ter(u) (constants), and
(iii) M,N € Ter(n) = F(M,N) € Ter(u), and
(iv) M € Ter(u) and = a variable = px.M € Ter(u).

Note that the main application of pu-terms is for recursive types, where the
type constructor is usually written as —, as in [?]. To avoid overloading with
our reduction step notation we use the binary F.

By the size size(M) of a u-term M we mean the number of symbols and
bindings in M, or more precisely, the number of generation steps of M according
to Definition 1. The definition of free and bound variables is analogous as in the

A-calculus. By FV(M) (by BV(M)) we denote the set of variables that occur
free (occur bound) in M, that is, we define inductively:

FV(z) = {z} variables BV(z) =0 variables z

FV(c) = {e} constants ¢ BV(c) =0 constants ¢
FV(px. M) =FV(M)\ {z} BV(ux.M) =BV(M) U {z}

FV(F(M,N)) = FV(M) UFV(N) BV(F(M,N)) = BV(M)UBV(N)

We write Pos(M) C N* for the set of positions of a py-term M, defined by:

Pos(x) = Pos(c) = {e} for variables z and constants c
Pos(ux.M) ={e} U{lp|p € Pos(M)}
Pos(F(M,N)) ={e} U{lp|p e Pos(M)}U{2p|p € Pos(N)}
For p € Pos(M), we write M|, for the subterm of M at position p:
Mle =M pz.M|y,=M|, FM,N)p=M|, F(MN)p=DN|,

We write M —P N if there is a step M — N such that p € Pos(M) is the
position of the contracted redex. We write p < ¢ if the sequence of numbers
representing position p is a prefix of that of ¢q. So p is above q.

We use = to denote syntactic equality of p-terms, and =, for equality mod-
ulo a-conversion. We write M[z:=N] for a-converting substitution, which we
denote using double brackets in order to distinguish it from a-free (potentially
variable-capturing) substitution that we denote by M[z:=N]. Formally, for
a-converting substitution M [y:=N] we employ Curry’s definition (see e.g. [?
Definition C.1]) with u for abstraction and F for application:

z[z:==N] = N
yl#:=N] = y (fy#2)
F(My, My)[z:=N] := F(M;[z:=N], My]z:=N])
(px.My)[z:=N] = px.M;
(ny.My)[z:=N] pz.(Miy=z])[z:=N] (ify # x)

where z = yifx ¢ FV(M;) ory ¢ FV(N),
else z is the first variable in the ordered
sequence of variables that does neither
occur in M7 nor in N

Furthermore, a-free substitution M[x:=N] is formally defined by analogous
clauses but with the difference that the last one is replaced by the following
simpler clause:

(py-Mi)[z:=N] = pyMz:=N] (ify+#z)

As stated by the proposition below, a-free substitutions that do not lead to the
capture of variables coincide with a-converting substitutions. Variable-capture
does not occur in a substitution M[z:=N] if and only if N is free for x in M:
there is no free occurrence of x in M below a binding py such that y € FV(V).

Proposition 2. If N is free for x in M, then M[x:=N] = M[x:=N].
Definition 3 (u-rewrite relation). The u-rule (or unfolding rule) is:

wr. M — M[z:=px.M] (if pz.M is free for x in M)

This rule induces the a-free p-rewrite relation —, on p-terms (note that, as
usual, the rewrite rule may be applied within contexts). By extending —,-steps
on both sides by a-conversion steps, =,/ := =a © >+ =a, the p-rewrite rela-
tion (modulo a-conversion) on p-terms is obtained.

Definition 4 (Weak p-equality). The relation weak u-equality on u-terms is
defined as =, /o := (4p/aU—p/0)" U =a 4 By =,, we denote the convertibility
relation («—, U —,)* with respect to the a-free p-rewrite relation —,.

Meaningless p-terms. To illustrate some of the preliminary notations and no-
tions we consider ‘meaningless’ u-terms that are analogous to meaningless terms
in A-calculus (see e.g. [? 7]) of a certain kind, namely the ‘root-active’ ones:
such A-terms enable infinite rewrite sequences with infinitely many — g-reduc-
tion steps at the root position. These A-terms are ‘meaningless’ in the sense
that no information can be obtained from them because their root does not
stabilize eventually.
This leads us to the following definition.

Definition 5 (root normal forms, and root-active p-terms). A root re-
duction step is a step in which the redex contracted is situated at the root. (So
a root step does not occur in a non-trivial context.’) A T00t-— /o -StEp 18 a
(=a - = - =a)-step in which the —,-step is a root reduction step.

A root mormal form of a u-term is a normal form with respect to root-
—uja-steps. A p-term M is called root-active if it admits an infinite —, /,-rewrite
sequence that contains infinitely many root-—, /,-steps.

w/oe

Proposition 6. (i) u-terms in root normal form are either variables, or con-
stants, or of the form F(A, B) for some u-terms A, B.

(i) Let M be a u-term. The following four statements are equivalent:

(a) M is root-active.
(b) M admits an infinite =, /o -reduction consisting only of root-—; ,-steps.

(¢) M does not reduce by —
to a root normal form.

u/a-steps (hence neither by root-—, /. -steps)

(d) M =, pxy, ...x1.25 for somen >k > 1 and variables x1, ..., Tp.

4Note that =, /a coincides with the convertibility relation ((7/,1‘/04 U ﬁu/a)* with respect to
—ru/ot this is because every a-renaming step can be mimicked by a <, /,-step that introduces
a vacuous p-binding at the root of the term, followed by a —, /o -step that removes the vacuous
p-binding again and carries out the a-renaming step. Furthermore, =, /, also coincides with
(¢ U=q U —,)*, the convertibility relation with respect to —,, modulo a-equivalence.

5A context is a p-term with one occurrence of a hole O.

Let us denote, for n > k > 1, a root-active p-term of the form pzx,, ...x1.2x
(with some variables x1, ..., ,) by (n, k).

(8,8
O —0
(1,7 (8,7
O—0 O
(6,6 ((8,6
O @) O O
(5,5 (6,5 (7,5 (8,5
O O OF O O
(4,4 (54 (6,4 (7, (8,4
O O% O3
(3.3 (43 3
L Zf Zf Zf
(2,2 (3,2 (4,2
o5 8/> S s U/) u/ Ué

Figure 2: Reduction graph for cyclic u-terms.

Remark 7. The following —,/-steps (provided to us by Felice Cardone, per-
sonal communication) comprise a complete picture of the —,/,-steps that are
possible between root-active p-terms:

<17 1> e <17 1>

(n, k) =/ (n—1,k) ifn>k
(n, k) =0 (n—1,k—1) itk>1
(n, k) =p/a (n+k—1,k)

The ARS (abstract reduction system) constituted by these steps is displayed in
Figure 2. The root reduction steps are colored red in the picture. It is easy
to show that all root-active u-terms are —,/,-convertible to the simplest root-
active p-term (1,1) = pz.z. So, in contrast with the A-calculus, the property
‘root active’ is decidable.

Hence Scott’s theorem for the A-calculus fails for the p-calculus: Scott’s
theorem states that if a non-trivial property P of A-terms is closed under S-
convertibility, then P and —P are undecidable properties. Here ‘non-trivial’
means: P and —P are non-empty.

The following exercise is worth noting: For its formulation, let ® be the
translation from p-terms to A-terms that replaces a u by Y o A (or simply Y A

assuming the terms are written as words using the usual bracket convention),
where Y is an arbitrary fixed point combinator, leaving the other symbols in
the p-terms unchanged.

Exercise 8. Show that: For all u-terms M, M is root-active if and only if
®(M) is root-active. Note that root-active A-terms correspond to ‘unsolvable’
terms in A-calculus, where root-steps are defined as steps at depth 0 with respect
to the depth measure (001) (see [? , 12.10]).

Does also the following hold: for all pu-terms M, M is root-active if and only
if ®(M) is root-active with respect to the depth measure (111)?

Definition 9 (Infinite tree unfolding/Bohm Trees of u-terms). This
definition is entirely analogous to the coinductive definition of Bohm Trees (BT)
in the A-calculus and for term rewriting systems (see further [? , sec. 2, (vii),
and fn. 3] and [?]), except that we replace ‘head reduction’ by ‘root reduction’.
So, for M € Ter(u):

(M =1 if M has no root normal form
= BT, (M[z:=px.M]) if pz.M has a root normal form
=z for a variable z

(1

)
(uw M)
Tu(z)

)= for a constant c

Tule
BTN((M, N)) = F(BTM(M), BTM(N))

Note that the first clause applies for root-active (meaningless) p-terms of the
form (n, k) discussed above. In the last clause we have borrowed term notation
to denote a possibly infinite term tree, in a self-explaining way. In this case we
peel off the root normal context F(O,0) and coinductively append the BT,’s of
M and N. Later on we will define the notion of the set of generators of a BT ;
the present M, N in the last clause are among these generators. But we give
this definition only after introducing the so-called subterm closure.

Definition 10 (Strong p-equality). Strong p-equality =g, is the equivalence
relation on pu-terms that is induced by equality of the Bohm trees (or tree
unfoldings): for pu-terms M, M =gt, N holds if BT, (M) = BT, (N).

We remark that weak p-equality implies strong p-equality. The converse
does not hold, as the following examples illustrate. Both representations

px.(Uz and px.(UUx

represent the same infinite wave pattern (U U U WU ---. Nevertheless, they
are not equal with respect to weak p-equality, that is, they are not convertible
by a finite sequence of folding, unfolding and a-renaming steps.

The following two p-terms can be viewed as encodings into p-terms over the
signature we consider of the two u-terms from the example above:

M = px.F(c,z) and N = px.F(c,F(c,z))

The p-terms M and N are equal with respect to strong p-equality: both unfold
in infinitely steps to the Bohm tree F(c, F(c, F(c,...))). The terms are, however,
not equal with respect to weak p-equality.

3. Avoiding a-conversion in p-calculus

We start with showing that a-conversion can be avoided along p-reduction
from a p-term M by choosing the variables of binders in M to be distinct and
distinct from the free variables. We will call such u-terms simple.

Since the phenomenon of a-conversion plays a role in any higher-order cal-
culus, we set the stage by showing that a-conversion cannot be avoided in the
prototypical higher-order calculus: the A-calculus with S-reduction [?].

Example 11 (a-conversion in A-calculus). We consider the following re-
duction in which a-conversion cannot be avoided, despite all As binding distinct
variables initially:

Az.zz) Ay z.yz = Ay dzyz) \ydzyz =2 ey zyz)z =3 Az 2 22/

In the end the bound variable z must be renamed to z’ in order to avoid cap-
turing the free z by Az. Without such self-capture a-conversion can be avoided.
A particular example where a-conversion can be avoided are developments.

We show that, unlike what is the case in the A-calculus, in the p-calculus a-
conversion can always be avoided. Intuitively, pu-reductions share the property
with [-developments that no new redexes can be created along a reduction.
The latter property was shown in [? | to entail the absence of self-capturing so
that a-conversion can be avoided along B-developments.® Here we adapt, and
instantiate, that proof to p-reduction.

Definition 12 (Self-capture). For a given term M, a position p of a binder
ux binds (captures) a position plg of a variable y, if the occurrence of y at
position ¢ in M|, is free (in M|,1) and z =y (z # y).

A chain is a series of connected links, where a link is a binding or a converse
capturing. More precisely, a chain is a sequence of positions p1, . .., p, such that
for every 1 < ¢ < n we have that p; binds p;41, or p; is captured by p;+1. We
frequently identify the positions p; with the symbol occurrences at position p;.

A chain is self-capturing if it starts with and ends with pz, for some z. A
p-term is self-capture-free (capture-avoiding) if there is no self-capturing chain
(sce).

Example 13. The p-term px.F(y, py.x) contains the chain 11,e,121,12 con-
necting y to py via px and z, which is self-capturing. Indeed, a-conversion is
needed for contracting the outermost p-redex yielding F(y, py'.puz.F(y, py.x)).

6In the terminology of [?] absence of self-capturing is expressed as holding (being con-
nected by a chain in the sense of Definition 12) being parting (never relating two residuals
of the same redex), and established for all combinatory reduction systems [? | (second-order
term rewriting systems).

10

In a chain binding and converse capturing alternate. Chains are finite since
if p binds o which is captured by ¢,” then p < ¢ < o. Links are not self-capturing
and self-capture-freeness is closed under taking subterms.

The following proposition and its proof are illustrated by Figure 4.

Proposition 14. Let px.M contain no scc. Suppose that a free occurrence of
x in M is chained to a binder py. Then y does not occur free in M.

Proof. Otherwise there is a chain y,ux.x,...,uy in px.M, contradicting self-
capture-freeness. O

ux pz ny
0 o o
ANTNS
Yy x z

Legend
—> binds
.-+ is captured by

‘ ey

Figure 3: A self-capturing chain of length 5 for the term pz.F(y, pz.F(z, py.z)).

ZA/‘# , NO scC’s 7, scc’s
z £ ANM

= y not free in M

Figure 4: Assumptions of Proposition 14 (left); Proof of the proposition (right).

"In the terminology of [?], on which [? | was based, p grips q. That is, we decompose
gripping using the more elementary notion of link, as a binding link followed by a converse
capturing link, allowing also to deal uniformly with free variables.

11

Example 15. Consider the following example in Figure 3:

M = px.F(y,N)
N = pz.F(z, P)
P=puy.z

The chain displayed in the right part of that figure shows the alternation of
links and converse capturings. Note however, that the binders pux, pz, uy at the
peaks of this zigzag figure are actually not horizontal, but ‘sliding down’ along a
branch of the term, as one sees in the left part of the figure, and also in Figure 4.
Note that it holds: M —¢, F(y, uz.F(M, P)). The last term contains two p2’s,
the displayed one, and the one in M. Contracting the displayed p-redex without
a-renaming causes y to be captured.

By the following lemma, redexes for which the assumptions of Proposition 14
hold can be contracted by means of a-free substitution.

Lemma 16 (a-free). Suppose that if there is a chain from a free occurrence of
x in M to a binder py, then y is not free in N. Then M[x:=N] = M[z:=N].

Proof. By induction and cases on the formation of the term substituted in, the
only interesting case being when the term is an abstraction py.M with x # y.
Then either = is not free in M or else by the assumption, y is not free in N,
hence

(ny-M)[z:=N] = py.M[y:=y][x:=N]
= py.M[xz:=N]
= py.M[z:=N]
= (puy-M)[az:=N]
where the induction hypotheses is applied in the third equality. O
Having shown that self-capture-freeness entails that a-conversion can be
avoided, we next show that it is preserved by p-reduction.

Lemma 17 (Self-capture-free preservation). Self-capture-freeness is pre-
served by p-reduction.

Proof. The proof is by tracing back positions, paths, links, and chains. The
(dynamic) trace relation [¢)), simply denoted by > if the step ¢ is clear from
the context, cf. [? , Section 8.6.1], between the positions of the source and target
of a reduction step ¢ contracting a p-redex pz.M at position o:

Clpz.M], =° C[M[z:=pz.M]]o
is defined by the following clauses:

(context) p > p ifokp
(body) olp > op if olp not bound by o
(copy) op > ogp if olg bound by o

12

In the remainder of the proof we use primed variables, e.g. p’, to range over
positions in the target of ¢, indicating the unique positions they trace back
to, their origins, by unpriming, e.g. p, and employ that the symbols at these
positions in the respective terms are the same. We claim that for every link
connecting p’, ¢’ there is chain connecting p, ¢ in the same direction. Since the
claim entails that chains trace back to chains, the result follows. To prove the
claim assume w.l.0.g. that p’ is the position of a binder uxz and ¢’ the position
of a variable y, and distinguish cases on the relative positions of p’ < ¢'.

If both p’, ¢’ are in the same component (context, body, or copy) then the
path between them is in the same component as well, and the origin of such a
path is a path between their origins p.q.

If p’ is in the context and ¢’ in the body then the origin of the path between
them is the same path with 1 inserted at o, and we conclude using that y # z
by the condition on the body case.

If p’ is in the context and ¢’ in a copy at o’ then ¢’ must be free in 0’1, and
the origin of the path is the same path with the path from o up to o’ removed,
from which we conclude.

If p’ is in the body and ¢’ in a copy at o’ then ¢’ must be free in 0’1, and
we conclude using that there is a chain connecting p to ¢ via first the binder
corresponding to the copy, i.e. o’ with 1 inserted at o, and next o. O

Figure 5: Tracing symbols along a step.

Theorem 18 (a-free). For any u-term M, there is an a-equivalent term
M’ such that any p-reduction from M can be lifted to a p-reduction from M’
contracting redexes using a-free substitution only.

Proof. Let M’ be obtained by renaming the binders on each chain in M so as
to be distinct, and distinct from the free variables, e.g. by choosing all of them
to be distinct. Then M’ is self-capture-free and we conclude by the previous
lemmata. O

The theorem justifies treating u-terms as if they were first-order terms, as
we will do with the exception of Section 8.
We proceed with showing a substitution lemma for a-free substitution.

13

Remark 19. The (p-calculus variant of the) standard Substitution Lemma [?
, Lemma 2.1.16] will not do for our purposes as it implicitly makes use of -
conversion to guarantee a stronger invariant, the so-called variable convention,
than can be guaranteed in this paper. Typically, a single u-step both copies and
nests binders, violating the variable convention.

Lemma 20 (a-free substitution). M[z:=N][y:=L] = M[y:=L][x:=N[y:=L]],
under the condition of Lemma 16, x # y, and x not free in L.

Proof. By induction and cases on the structure of M.

(z) If 2 = z, then both sides of the equality yield N[y:=L], using = # y.
If y = z, then both sides of the equality yield L using = # y, and x not
free in L to establish L[x:=...] = L.

Otherwise, both sides of the equality yield z.

(pz.My) If & = z, then both sides of the equality yield px. M [y:=L], using
T #y.
If y = z, then either z is not free in M; and then both sides of the equality
yield M, or else by the assumption, y is not free in N and both sides yield
wy. My [x:=N].
Otherwise, pz.My[z:=N]|[y:=L] = pz.M[y:=L][x:=N[y:=L]] and we con-
clude by the induction hypothesis for Mj.

(F(My, Ms3)) Then the statement follows again from the induction hypoth-
esis. O

4. The subterm closure and its finiteness

In this section we exhibit a key notion in the theory of u-terms and various
decidability proofs, namely the notion of subterm closure, as well as the corre-
sponding key lemma stating that this subterm closure is finite. Both the notion
and its property were originally conceived by Brandt and Henglein [?].

Note: All terms in this section are assumed to be capture-avoiding, which
implies that —,-rewrite sequences never lead to p-terms in which p-redexes
could only be contracted after suitable renamings of bound variables.

Consider the pm-calculus obtained by adjoining the following root-reduction
rule schemata 7:

F(My, My) — M; forie{1,2} (F-decomposition)
pxr.M — M (u-decomposition)

to the p-calculus restricted to root-reduction:

ur.M — M[z:=px.M] (root p-reduction)

14

These reductions are not allowed in a context, and they pertain to p-terms taken
literally, not modulo «. Since a 7w-step projects onto a subterm, it may only
shorten chains. Hence the above results carry over immediately, i.e. a-conversion
is not needed in the pm-calculus either.

In this section, 5;“7 will be used to denote pm-root-reduction, i.e. pum-reduc-
tion at position ¢, the root.

Warning: The present reduction —E»M should not be confused with —, ., a

sequence of general p-reduction steps, even though both relations overlap; 5 e
may involve some root-y-steps, just as —,, /4.

Definition 21. The subterm closure SC(M) of a u-term M is defined as the
set of reducts of M with respect to —€>M:

SC(M) ={N | M 5, N} .

Example 22. We consider the cyclic p-term M = pzyz.y, i.e. the unsolvable
(3,2) in Figure 1. The subterm closure SC(M) contains 5 elements; see Fig-
ure 6. Note that puryz.y =, pzyz.y, that is, we take p-terms literally without
a-conversion.

M = ' moval

() p-removal

ey] [y

<y, §

Figure 6: The subterm closure of pzyz.y.

Example 23. Let M = ux.F(z, uy.F(x,y)). Then SC(M) has 11 elements, see
Figure 7. The reduction relation -, is not SN (terminating). Nevertheless,
the set of generated terms is always finite. This finiteness will be crucial in the
subsequent sections.

Before giving the detailed proof of finiteness of the subterm closure, let us
give some quick intuition of the finiteness. Let M = px.F(x, py.F(z,y)) as in
Example 23, and consider the following pm-reduction starting from M:

p.F(z, py.Fz,y))

p Flpa.F(z, py.F(2,y)), 1
—r pwy-F(pz.F(z, py.F(z, y)

p Flpa F(z, py.F(z,y)), p
= py-F(pz-F(z, py.F(z, y)

pa.F(z, py.F(z,y)),y))

Qd

~—

)

Q@

F(
Y)
F(pz.F(z, py.F(z,y)),v))
y)

~—

)

15

Figure 7: The subterm closure of ux.F(z, uy.F(z,y)). (For the shaded boxes see the explana-
tion below Proposition 37 in Section 6.)

The underlined subterms® indicate terms that are substitutions created by a
previous p-step at the root. That is, the underlined terms have been encountered
before in the reduction. Now observe that the size of the non-underlined part
is decreasing with every um-step. It decreases until size 0, that is, the whole
term is underlined. To construct the subterm closure we only need to consider
repetition-free pm-reductions. The above argument of the decreasing size of the
non-underlined context can be formalized to a termination proof for repetition-
free pm-reductions. Then since pum-reductions are finitely branching, we conclude
finiteness of the subterm closure by Konigs Lemma.

Remark 24. We can also prove the finiteness of the subterm closure SC(M) by
the following appeal to RPO, recursive path order. This can be seen as a more
refined version of underlining. See Figure 8 where we have shown SC(M) as
in Figure 7, now enhanced with labels yielding the RPO finiteness proof. The
notation M means that the head symbol of M (where M occurred ‘earlier’ in
the figure), has label 0, but the other labels are unchanged. Likewise for N
and P°.

(i) Label each z, y, ..., F, u in M with a natural number n € N, such that
higher occurrences have a higher label. A labeling with that property is
called ‘decreasing’.

(ii) Second, we label the pm-rules. For F-decomposition and u-decomposition
we take the obvious definition, where the subterm resulting after the step
keeps the labels it had before the step.

8Basically, this underlining argument was also suggested in personal correspondence by
Cardone and Coppo.

16

(iii)

However, for the root-p-reduction rule we have the crux of the definition:

pa" LM — M[z:=pa®. M) (1

~—

Note that a 0-labeled p-redex cannot ‘fire’; be contracted. So the label
of the contractum of a p-redex is nullified. But, beware, not the labels of
w’s inside the contractum, they remain ‘what they were’. So a decreasing
labeling will not stay decreasing in general. However, that does not matter.

Show that labeled pm-reduction is SN. So there are only finitely many
labeled reducts. Clearly, after erasure of the labels they are all in SC(M).

Vice versa, show that an unlabeled pm-reduction without repetition can be
‘lifted’ to a labeled one. Here the intuition is that pz"-redexes are ‘old’,
and have used their ‘one-shot firing power’.

Conclude that SC(M) is finite, using that RPO is terminating. For RPO
see e.g. IPO, iterative lexicographic path orders [?].

Figure 8: Finiteness of the subterm closure using a recursive path order.

Substitutions do or do not contribute to a subterm closure reduction. That
the substitution of a p-reduction step can be split off, is a consequence of the
following technical factorization lemma.

Lemma 25. Under the conditions of Lemma 16, if M[x:=N] —E»M K then
either

(i) it is a [x:=N]-instance of a reduction M —E»M L, where the condition of

Lemma 16 holds for L; or

(i) M —E»M K; or

17

(i11) it has a prefiz which is a [x:=N]-instance of a reduction M —E»M x.

Proof. The proof is by induction on the length of the reduction. If the length
is 0, then case (i) holds by setting L = M. Otherwise, M [2:=N] —E»M K —- K
for some term K’ and we have by the induction hypothesis for this reduction
either

(1) it is a [z:=N]-instance of a reduction M —E»,m L’, where the condition of
Lemma 16 holds for L'. We distinguish cases on L':

(y) Then, since variables are normal forms, we must have x = y and
N = K', and we are in case (iii).

(uy.L1) If © =y then K’/ = L' and we are in case (ii).
If x # y then K’ = py.Li[x:=N]. If K’ — Li[z:=N]| = K then
taking L = L; brings us in case (i) using z # y to show that the
condition of Lemma 16 still holds. If K/ — Li[xz:=N][y:=K'] = K
then by the a-free Substitution Lemma K = L;[y:=L'][x:=N] and
setting L = L4 [y:=L’] yields case (i) again, using that chains and free
occurrences of z in L’ trace back to L along the u-step, as established
above, so the condition of Lemma 16 still holds.

(F(L1, Ly)) Then K’ = F(Ly[x:=N], Ly[z:=N]) = L;[z:=N] = K and we
are in case (i) setting L = L;;

(i) M —E»,m K’ hence M —E»,m K'— K;or

(iii) it has a prefix which is a [x:=N]-instance of a reduction M —6»W x. Then
the same holds for the reduction extended by the step K/ — K. O

Remark 26. The above lemma is unsatisfactory in that the second case is
only there to compensate for the standard but problematic concept of M being
considered a subterm of pyx.M. It is problematic since it allows to free bound
variables, here by means of the m-rule, breaking a-conversion. For a proper
higher-order notion of subterm as introduced in Section 8, this case can be
eliminated, see Lemma 55. That holds also for every higher-order recursive
program scheme [?].

Theorem 27. SC(M) is finite.

Proof. The proof is by induction and cases on the structure of M.

(x) SC(z) = {z}.

(px. M) SC(ux.M) C {pz. M }USC(M)USC(M)[z:=pzx.M]. This is obvious
in case a witness px.M j»;ur N of minimal length to N € SC(ux.M) is
empty or starts with pux.M — M. Otherwise, the witness starts with
ux.M — M[x:=px.M] and we conclude by applying the previous lemma

to its suffix, noting that case (iii) cannot occur as it would contradict
minimality. Hence we conclude by the induction hypothesis for M.

18

(F(Ml,M2>) SC(F(Ml,MQ)) = {F(Ml,MQ)} U SC(Ml) U SC(MQ) and we
conclude by the induction hypothesis for the M;. O

Remark 28. It is easy to load the induction in the proof to show that the
cardinality of SC(M) is in fact bounded by 2" — 1 with h the height of M.

Remark 29. In the computation induced by the proof only residuals of p-
redexes in the initial term (no ‘copies’) are contracted. That is, y-developments
suffice to compute the subterm closure.

Let us comment on this interesting analogy between the classical Finite
Developments Theorem in A-calculus on the one hand, and the finiteness of
the subterm closure SC on the other hand. We can formalize this statement
easily by employing again an underlining argument, in a way that is somewhat
dual to the one above, as follows. Underline in the initial term M all p’s. An
underlined p that is copied (by the contraction of another underlined p-redex)
looses its underlining. Now during the generation of SC(M), that is, during
the mu-reduction, only underlined p-redexes may be contracted. So the initially
present underlined p’s have only a ‘one shot firing power’; and a copied pu-
redex cannot fire anymore. This situation coincides with the classical notion of
developments of S-redexes in the A-calculus, where only underlined S-redexes
may be contracted.

5. The subterm closure and standard reductions

The subterm closure will be of fundamental importance in the coming de-
cidability proofs. Also, the notion of standard reduction figures prominently in
these proofs. Remarkably, both notions are intimately related. We will expose
this relationship in the present section.

Definition 30. Let R : My =) M; ="

... be a reduction. Then R is
w/ ple

outside-in if
Vm > n.not p, < pp

Thus, R is outside-in if later redex positions are not above earlier ones. In
other words, a contraction of a redex freezes every redex higher-up, and they
remain frozen. Outside-in reductions according to the definition above coincide
with standard reductions for R, viewed as a HRS [?].

In an infinite p-reduction R : My — M7 — ... there can be infinitely many
different redexes contracted. Remarkably, in an infinite standard reduction this
is not the case. A strengthening of this observation is as follows:

Proposition 31. Let R : My —>57a M, —>5/1a ... be a standard reduction. Then
Vi.Vp € Pos(M;). (—3j < i.p < pj) = M;|, € SC(My)

This proves in particular the observation above, that a standard reduction
R contracts only finitely many redexes, even if R is infinite. Before giving the
easy proof, let us first see what this proposition amounts to, by considering two
examples.

19

Example 32. A standard reduction starting from px.F(z,)

My= B — F —— B —— F
| VAN SRV VAR
F My My F M, FE M,
/ \ / N\ / \
T My My My F
/N
My My

Example 33. We reconsider the term from Figure 7, the computation of the
subterm closure of px.F(z, uy.F(z,y)):

My= HT —»uMlz F — My=F — Ms= F

| RN /N H / A\
F My, MY My F My F
/ A\ | / N\ / A\
xr MY F My Yy My MY
| / \ \ |
F My ¥ F F
/ \ 7\ / \
x Y My y F vy
/7 \
My 1Y
\
F
/ N\
My ¥

Both examples display standard reductions. That means that an increas-
ingly large prefix ‘crystallizes out’, becomes frozen, by the requirement that
everything above a redex contraction will be immutably fixed; no activity is
allowed in that part. In the first example the frozen part only contains F’s, but
the second example freezes a p-redex. Let us call the separation between frozen
prefix and the lower part determined by it, the snow line. Now Proposition 31

states that every subterm having its root below the snow line, is an element of
SC(Mp).

Proof of Proposition 31. For Mj the proposition is trivially true, as the frozen
prefix then still is empty, and SC(My) is closed under subterms. If we assume
as induction hypothesis (IH) that the proposition holds for M;, it is proved for
M; 1 as follows. The redex R; = M;|,, at p;, contracted in M; —uja Miy, is
situated below the snow line of M;, because the reduction is standard. Thus
by (IH) R; € SC(Mjy). Then the claim follows since the contractum of R; is in
SC(Mpy) by root p-reduction, and SC(Mp) is closed under subterms. O

Remark 34. We said above ‘increasingly large prefix’; this is so if the original
term M, does not contain an unsolvable (circular) subterm.

Corollary 35. Let R : My —>5;’a M, —>5}a ... be a standard reduction.

20

(i) All redexes M;
(i) R employs only finitely many different redexes (even if R is infinite). [

p; contracted in R are in SC(Mp).

If we define standard reduction in an inductive fashion, then the correspon-
dence with the subterm closure becomes obvious:

Definition 36. The (a-free) inductive standard relation —»sq on the set of
capture-avoiding p-terms is defined inductively:

(i) & —sg « for every variable or constant x,

)
(ii) px.M —gq N whenever M[z:=px.M] —gq N,
(iil) pax.M —gq px.M' whenever M —»gq M’ and
(iv) F(M,N) —qq F(M', N’) whenever M —»gq M’ and N —»gq N'.

Observe that (ii) corresponds to p-steps at the root, (iii) to u-removal, and
(iv) to F-decomposition in the definition of the subterm closure. From the
perspective of standard reduction, (iii) and (iv) decrease the height of the snow
line, that is, enlarge the frozen prefix of the term.

It is easy to see that for capture-avoiding p-terms the inductive standard
relation —»gq coincides with the reduction relation generated by a-free standard
reduction, which in turn is extensionally equivalent with the ordinary a-free
reduction relation —,. These observations justify the use of the notion —»yq.

It is instructive to compare this definition with the various proof systems
in this paper by presenting it as the proof system depicted in Figure 9. Here
and later we present these systems flipped upside-down with premises at the
bottom and conclusions on top (cf. the motivation at the start of Section 7).

,LLIZ?M —std N
Mz:=pz. M) g4 N

px. M —»gq px.N
M —gq N

F(My, My) —sq F(N1, Na)
My —gq N1 M3 —sq No

T —Pstd T

Figure 9: Proof system for —gyq.

21

6. Strong p-equality

Although we are not primarily concerned with the infinite tree unfolding BT,
of u-terms and the ensuing strong p-equality, we will briefly discuss regularity of
BT, and decidability of strong u-equality, in order to indicate that the methods
and notions used in this paper are convenient for treating them.

Proposition 37. For all p-terms M, BT (M) is a reqular tree.

Proof. This is an immediate consequence of the finiteness of SC(M). Indeed,
the generators of BT, (M) can be defined as those elements in SC(M) that are
reachable from M by a sequence of root u-steps, followed by an F-decomposition
step. The generators are the ‘determinants’ for BT,. Since they are finite in
number due to Theorem 27, BT, (M) is a regular tree. O

In Example 23, Figure 7, the generators of BT, (M) are thus identified as
{M, N}, indicated by a gray shading of their boxes in Figure 7.

Locally in this section we use the following notion: Given a goal equation
A = B between of capture-avoiding p-terms, the deductive closure of the set
{A = B} is the set of all equations between u-terms that can be produced start-
ing on the set {A = B} by repeated application of the following two generation
rules from equations to equations: F-decomposition (see Section 4) simultane-
ously on either side of an equation, and root-p-reduction (root-unfolding, see
Section 4) simultaneously on either side of an equation.

Theorem 38. Strong p-equality =gt is decidable.

Proof Sketch. It suffices to show decidability of strong p-equality between cap-
ture-avoiding pu-terms A and B. If these terms are not capture-avoiding, then
we step over to capture-avoiding a-variants, using that BT,, and hence also
=gT,, is invariant under a-equivalence.

Given a goal equation A = B between of capture-avoiding u-terms, we com-
pute the deductive closure of the set {A = B}. We find that this closure is finite,
and hence can be constructed effectively: by induction on the generation of the
deductive closure it can be proved that all equations P = @ in it are contained
in SC(A) x SC(B), which is a finite set, as a consequence of Theorem 27.

In the deductive closure of {A = B} we only have to inspect whether it con-
tains an ‘inconsistency’ or not (an inconsistency is either an equation between a
variable and a constant, or an equation between different variables or constants,
or an equation between a variable or a constant and a p-term starting with F).
In the latter case we conclude: A =g, B; and in the former: A #gt, B. O

Example 39. Consider A = pz.F(z,z) and B = pxy.F(x,y). Abbreviate C =
py.F(B,y). Then the deductive closure is {A = B, A = C'}. No inconsistency
has appeared, and hence: A =7, B.

Remark 40. The deductive closure is intimately connected with the notion of
bisimulation; in fact the equations are pairs in what can be called a bisimulation

22

between the u-terms A and B. Instead of the deductive closure sketched in the
proof above, one can use the presentation of a downward growing search tree,
branching at an F-decomposition, and equipped with loop checks at repeated
occurrences of equations. This loop checked tree is in fact the mirror image of
a proof of A = B in the proof system of Brandt—Henglein [?], as elaborated in
Grabmayer [? 7 |.

7. A proof system for p-convertibility

In this section we will present our first proof of decidability of u-convertibility.
It is based on a method, including a proof system, devised by Cardone and
Coppo, as we will discuss.

Usually, proofs in a deductive system are rendered with the axioms on top,
working downwards to the goal equation. We prefer to flip over these proof
figures, as in tableau proof systems, with the goal equation as the root on top,
then have unary—binary branching towards the bottom layer, the axioms, which
hence are ‘terminals’ of the proof tree; see Figure 10. In this way it is easier to
connect derivations in the system with the (for rewrite sequences quite intuitive)
downwards-direction of standard reductions that are formalized by derivations.

axiom

Figure 10: Proof rendered top-down.

7.1. The proof system of Cardone and Coppo

We first recall the original proof system of Cardone and Coppo, see Figure 11.
Again, we present the system flipped upside-down with premises at the bottom
and conclusions on top.

Note that for the proof system to work, terms have to be considered modulo
a-equivalence. For example, consider the equation

px.pz.F(z, 2) =40 py-Fy, pz.F(y, 2))

Then to prove the equation, we would like to employ p-removal followed by a
p-step in the left-hand side, and finally an axiom. However, uz-removal requires

23

u-step in lhs

M = py.N(y) w-step in rhs
M = N(uy-N(y))
M = px.N
et = 'L;]x w-removal

F(Mi, M) = F(Ny, Na)
My = Ny My = Ny

F-decomposition

M=M azxiom

Figure 11: Original proof system of Cardone and Coppo.

the binders on the left-hand side and on the right-hand side of the equation to
be equal. For this reason we need to consider all terms in this system modulo
a-conversion.

Since the set of variables is infinite, a-equivalence classes are a priori infinite
too, and we need additional arguments to make the search space finite. A
possibility to make the system from Figure 11 finite would be to a-convert
the terms in the starting equation such that they are capture-avoiding (see
Section 3), and restrict a-conversion throughout the derivation to terms over
the set of (the union of the) initially used binders. However, the latter requires
a proof that completeness of the system is not lost.

For this reason, we strive for a proof system where the u-terms are taken
literally, without a-conversion. To this end we extend the system of Cardone
and Coppo with annotations, similar in spirit to the context in Kahrs’s proof
system for deciding a-equivalence [?].

7.2. A proof system with annotations

An important notation is the use of annotated u-bindings, written as (ux),
(ny), or as vectors (pzryz) or (u@). So if M € Ter(u), then (pz)M is an
annotated p-term. We only employ the annotation vectors (u&) at the root of
a term.

Definition 41. An annotated u-term is an expression of the form ()M, or
(pxy ...)M where M € Ter(u), and x1, ..., x, are variables. (Here ()M
and (pxy ...x,)M are the annotations of a u-term M by an empty p-binding
prefix, and by the p-binding prefix uxy ...x,, respectively.) By AnnTer(u) we
denote the set of all annotated p-terms.

Example 42. (i) (uz)F(puy.y,c) is an annotated p-term.

24

(ii) For every u-term M, (uZy)M is an annotated u-term.

We employ the annotation vectors (©2) to keep a record of the p-bindings
that have been removed (u-removal), or in another view, that we have passed in
selecting the redex to be contracted in the standard reduction which is implicit
in the proof. For the annotated proof system S, see Figure 12.

A priori, the annotations would grow unboundedly. In order to obtain a
finite proof system, we introduce a compression rule that removes ‘two-sided
vacuous’ p-binders from the annotations. To enforce compression, we restrict
application of the other inference rules to fully compressed formulas.

Definition 43. An occurrence of a binder pz in a term M € Ter(u) at position
p is called active if & € FV(M]|,1), the set of free variables of M|,1. A non-active
occurrence of a binder pux we will also call vacuous.

For annotated terms (ux; . ..x,)M we say that x; is active or vacuous if the
respective property holds for px; at position 1°~1 in pxy ... z,.M.

Let M = (pxq ... x,)M and N = (uy; . .. yn)N’, and consider the annotated
equation e : M = N. Then an index 1 < ¢ < n is called two-sided vacuous in e
if the displayed occurrence of x; is vacuous in M, and y; is vacuous in N. The
equation e is called compressed if it has no two-sided vacuous indexes.

Example 44. All p-unsolvables are weakly p-equivalent to Q = uy.y; for ex-
ample M = pux3xoxy.To w—% UTX] . T gu Uxe.xo =4 . See Figure 13 for a
systematic proof search for the equation M = in the proof system S. We stop
the proof search when encountering a repetition along a branch.

Example 45. For a proof employing the compression rule, we consider the
equation:

pryz. Fluu.x, z) = px'y' F(z', uz’ .F(2',2"))

The successful part of the proof search is displayed in Figure 14. Note that the
graph contains two different edge types. The dashed edges ‘- --" represent the
non-deterministic choices in the proof search, while the solid edges ‘— stand
for splits due to F-decomposition. A node in a search tree is successful if:

(i) An inner node with outgoing ‘- --" edges is successful if at least one of its
children is successful.

(ii) An inner node with outgoing ‘— edges is successful if all its children are
successful (such nodes have exactly two children).

(iii) A leaf (that is, a node without outgoing edges) is successful if and only if
it is an axiom.

A proof search is successful if the root node of the proof search tree is successful.
We mark the successful nodes with T, and the unsuccessful nodes with L.

Lemma 46 (Standard reductions represented by S-derivations). The
following statements are equivalent for capture-avoiding u-terms M and N :

25

The compression rule:

e:(pxy...xn)M = (py1 ... yn)N
(,uxl e L1 TG4 - l‘n)M = (/,Lyl o Yi—1Yi1 - - yn)N

whenever 7 is a two-sided vacuous index in e.

The following inference rules are restricted to such instances in which the
conclusion (the formula on top) is a compressed equation:

(p2)pa.M(z) = (pu) N
(p2)M (px.M(2)) = (pi) N

(nZ)M = (pii)py-N (y)
(n2)M = (pui) N (uy-N()

(pZ)pa.M = (pii) py.N
(nZx)M = (piy) N
(p2)F(My, Ma) = (pi)F(Ny, N2)
(uz)My = (pi)N1 (p2) Mz = (p)Na

annotated p-step in lhs

annotated p-step in rhs

annotated p-removal

annotated F-decomposition

(z)z = (ny)y
azioms (end points, matches)

Figure 12: Proof system S with annotations.

(i) Fs (@)M = (py)N .
(ii) There exist a-free standard reductions M —gg M’ and N —gq N’ such
that for variable vectors & and § with |Z| = |g| it holds: pZ.M' =, puy.N’'.

Let us first comment on the intuition behind the lemma. A proof A: M = N
can be seen as the result of an interleaving of two standard reductions for M
and N, respectively. Actually, the interleaving also contains at some points a
synchronization between the two ‘processes’ that are the respective standard
reductions of M and N. Namely, note that the proof system requires the simul-
taneous removal of p-binders, px and py, respectively. Indeed, the definition
of standard reduction ‘freezes’ the p’s that are passed; thereby they are turned
into fixed, immutable constructors. Also F is a constructor, this one binary; and
also F’s are peeled off simultaneously in lhs and rhs, that is, the removal (which
can be seen as an observation) is simultaneous, synchronized.

Proof of Lemma 46. For showing ‘(ii) = (i)', we first argue that it suffices to
show this implication only in situations in which a compressed equation has

26

[a=qa]’

uxg _ ‘ ~._ p-removal
i L/ly S~l

A=a]t [(uea)umaoias = (] -

>~ _ repetition L

|
Kx2 -~ |y S~ |
e ! Sl H—removal w
S — a 1 . T
’umlxgxl.xg = Q‘ ’,uxgacl.xg = Q‘ ’ (pxo)pxy .20 = (uy)y‘ |
JIEA] ’, \\\\\\ . repetition L V} 11 | HT2
l‘ \\ \\\ T :
. Ly | (p2)ws = (uy)y | |
; N axiom: success T |
repetition L .~ . p-removal v 1
—1L - 1| (ug)paaswra = (ny)y |
’,u:z:lxgxl.xg =Q ‘ ’ (nx1)prezr.ze = (py)y ‘ o
1
repetition | }v,uacz v

‘L ’(M%)Mzwl-@ = (1y)y ‘L

X L1X2XL1.X2 =
’(H Dpazave = (Hy)y repetition L

|
LB

1
’ (px1)paemy.ze = (uy)y‘
repetition L

Figure 13: A proof of przraxi.za = puy.y.

to derived in S: For this, suppose that that (ii) holds for some Z, ¢, M,
and N such that the equation (uZ)M = (uy)N is not compressed. Then
the equation (u@)M = (uy)N contains a two-sided vacuous index i. Now
an application of the compression rule yields the equation (uz')M = (ug’)N
where @ = x1... 212112, and ¥ = T1...Yi—1Yit1Yn- And furthermore,
uT.M =, py.N implies puz’.M' =, py’.N'. By assumption (ii) we still have
a-free standard reductions M —»gg M’ and N —gq N'. If (u@)M = (uy')N
is compressed, then the restricted version of (ii) = (i)’ can be applied to ob-
tain a derivation D in § with conclusion (uz')M = (uy’)N, and, by extend-
ing D by an application of the compression rule, a derivation with conclusion
()M = (py)N. If ()M = (uy’)N is not compressed, then this argument
can be repeated until, after finitely many steps, the restricted version of ‘(ii) =
(i)’ can be applied.

Now we proceed to show ‘(ii) = (i)’ by induction on the inductive definition
of the inductive standard reductions ¢ : M —gg M’ and 7: N —4q N’ (induc-
tion on the lexicographic order on (o, 7)) with respect to Definition 36. By the
argument above, we may assume that #, ¢, M, and N in (ii) are such that the
equation (u&@)M = (uy)N is compressed.

27

/

’/w:yz.F(uu.a:, 2) = px'y' F(x', u2' .F(z', 2")) ‘T
g — ‘ N
e T 1 p-removal s

’ (na)pyz.Fpu.z, z) = (pa)py' F(a', pz' F2', 2')) \T
I ‘ — uy
LT 1 p-removal -5

/

] (nay)pz.Fpu.z, z) = (pa'y")F(2', p2' F(a', 2')) \ !

| . . .
,compression with index 2

’ (ux)pz Flpu.x, z) = (pa’)F(2', pz' . F(a', 2")) ‘T
LHz

’ (px)F(pu.z, uz.Flpu.z, 2)) = (ua’)F(x', uz’.F(a', 2")) ‘T

N—decomposition
[y = (ua)a' | [(uaype Fuua, 2) = (u')pz Fa')|
pz——— — 2
S

| - |
L s 1 p-removal

[(ua)e = ()’ | | [(ua2)F e, =) = (a2 F(a,)]
axiom: success | / \F—decomposition

[(w22)s = (u'z)z']

’ (pxz)pu.x = (ua'z")a’ T

L compression ¢ = 2 , compression i = 1
T T
(s = (ua')a’ |- | (u2)2 = (u2')
lv,uu axiom: success T

[(pa)a = ()]

axiom: success |

Figure 14: A proof of uxyz.F(pu.z, z) = pa'y’ .F(a/, p2’ .F(a', 2')).

— The base case: ¢ and 7 are with respect to case (i) in Definition 36. Then
M = M’ and N = N’ are variables or constants. Since (uZ)M = (ug)N
is compressed, the assumption leaves room for only the following three
cases: (i) M = M’ = N = N’ is a constant, and both of ¥ and ¢ are
empty; (ii) M = M = N = N’ = 2 for a variable z, and both of & and ¥
are empty; (iii) M = M = z and N = N’ = u for a variables z and u, and
Z =z and § = u. In all three cases (u@)M = (ug)N is an axiom, which
demonstrates Fs (uZ)M = (uy)N .

— Assume that o or 7 starts with a p-step at the root (that is, case (ii)
in Definition 36). By symmetry let it be o. Then M = pz.M" and
M"[z:=M] =4 M’. Then a p-step in the left-hand side of the compressed
equation (pZ)M = (uy)N yields (u@)M"[z:=M] = (pg)N to which the
induction hypothesis is applicable.

28

— If o and 7 are with respect to case (iii) in Definition 36, then M = pz.Ms
and M’ = pz. M} with My —qq M}, and N = pu.No, N' = pu.NS with
Ny —gq Ni. Then a p-removal in (u@)M = (ug)N, which is compressed,
yields (u@z)Ms = (ugyu)Na; again the induction hypothesis is applicable.

— If 0 and 7 are with respect to case (iv) in Definition 36, then M =
F(My, M3), M' = F(M{,M}), N = F(N1,N3), and N’ = F(Ny, N}) with
M1 —std M{, MQ —std Mé, N1 —std N{, and N2 —std Né Now ob-
serve that the assumption pzZ. M’ =, pg.N' implies u@.M| =, py.Nj,
and pZ. .M, =, py.Nj. Then the induction hypothesis can be applied to
obtain derivations of (uZ)M; = (ug)N; and (uZ)Ms = (uy)Na, respec-
tively, from which a derivation with as conclusion the compressed equation
(uZ)M = (ugy)N can be constructed by applying the F-decomposition rule.

This concludes the proof of direction ‘(ii) = (i)’.

The proof of the direction direction ‘(i) = (ii)’ works by straightforward
induction on the proof of an equation in S, employing the following key observa-
tion: if uZ. .My =, py.N1 and puZ. My =, py.No then it follows puz.F(My, Ms) =,
/J]jF(Nl,NQ) O

Proposition 47. Provability in S is decidable.

Proof. By induction on the depth of derivations it can be shown that if the
formula (uZ)M' = (p@) N’ occurs in a derivation D in S with (uZ)M = (uy) N
as its conclusion, then:

(i) M' € SC(M) and N’ € SC(N) (for this the rewrite relation 5, in the
definition of SC can be used);

(ii) 2 = UZ and 4 = Wy for some vectors ¥ and W of variables, which are
contained among the bound variables of M, and of N, respectively;

(i) FV(M’) CFV(M)UBV(M), and FV(N’) C FV(N) UBV(N).
and furthermore, as a consequence of ((iii)):

(iv) For the lengths |Z] and |u| of the annotation vectors Z and @ it holds:
|2] < max{|Z|,np +ny + 1} and |d| < max{|y],ny + ny + 1}, where
ny € N (ny € N) is the sum of the number of free variables of M (of
N) and the number of bound variables in M (in N). (Due to ((iii)) there
cannot be more than nys (more than ny) non-vacuous p-bindings among
the visible p-bindings of puz.M’ (of pw.N'), which implies that whenever
|21, |d| > nar+nn+1, then the equation (u2)M’ = (p@) N’ contains a two-
sided vacuous index, which can be removed, and together with all other
two-sided vacuous indices has to be removed, by the compression rule of
S if the D extends below the considered occurrence of (u2)M' = (u@)N'.)

The facts (i), (ii), and (iv) imply that for every given conclusion there can be,
due to Theorem 27, only a finite number of irredundant derivations, that is,

29

derivations without formula repetitions. Now observe that every proof D in &
can be transformed into an irredundant one by a finite number of size-decreasing
steps in which, respectively, some subderivation Dy that contains a proper sub-
derivation Df, with the same conclusion is replaced by Dj. It follows that the
problem of deciding whether a given equation between annotated p-terms is
provable in § can be reduced to the problem of finding an irredundant proof for
this equation, and that the latter problem is decidable because the search space

for it is always finite. O
simple M/ = N/ simple
FS l = \/ ? 28

®
=i 12
=N} g
£ a.
=g 1z
g1 L&
B g
g1l le
= ® L] \.5
Zs y
17 i J./ Q

M//]\7//

Figure 15: Structure of the proof of the Theorem 48 in this section.

Theorem 48. Weak p-equality is decidable.

Proof. In view of Lemma 46 and Proposition 47 it suffices to prove that, for all
p-terms M and N, M =/, N holds if and only if there exist a-variants M " and
N’ of M and N, respectively, such that there are a-free standard reductions
M’ —4q M"” and N’ —4q N” with M" =, N”. We proceed to show this.

“<” follows from M =, M’ -, M" =, N” «, N’ =, N. For showing
“=7, we suppose that M =,,, N, and argue in three steps that are illustrated
in Figure 15 to obtain the desired a-free standard reductions:

(i) Since —, /o has the Church-Rosser property, there exists a p-term P and
apair M — /o P « /o N of joining —,/,-rewrite sequences.

(ii) By standardization of these rewrite sequences (which is possible as a con-
sequence of the fact that standardization holds for all local (linear and
fully extended) HRSs (higher-order rewriting systems), see [? , Ch.5]),
one obtains standard reductions M —»gq P and N —gg P that join M
and N.

(iii) Let M’ and N’ be capture-avoiding a-variants of M and N, respectively.
Since a-conversion can be postponed over —,-steps, it follows that there
exist a-free rewrite sequences M’ —, M"” and N’ —, N" that are step-
wisely linked via a-conversion to the standard reductions M —gq P

30

and N —gqq P, contracting redexes at corresponding positions. Hence

these rewrite sequences are a-free standard reductions M’ —»gq M and
N’ —4q N”, and it holds: M" =, P=, N, M' =, M, and N' =, N.

O

7.3. More efficient proof search

We can improve the efficiency of the decision procedure for provability in S
by devising (efficient) criteria for non-provability of equations. In this subsection
we consider such a criterion that discerns whether a binder px is vacuous (not
binding an actual occurrence of z) or not.

Definition 49. Let M = (pxy...x,)M’' and N = (uy1 ...yn)N’. The anno-
tated equation M = N is said to have a binder mismatch if there exists an index
1 <4 < n such that either

— x; is vacuous in M, and y; is non-vacuous in N, or

— x; is non-vacuous in M, and y; is vacuous in V.
Note that p-reduction preserves the set of free variables:

Proposition 50. Let M —»,), N. Then FV(M) = FV(N). O

Note that if e has a binder mismatch, then it cannot be proved in the an-
notated proof system. This follows immediately from Lemma 46 and Proposi-
tion 50.

Proposition 51. Annotated equations M = N with binder mismatch cannot
be proven in S. O

So when we encounter an annotated equation e with binder mismatch, in the
‘meta-search tree’ in which we try to find a proof of M = N, we can stop that
branch in the meta-search tree with failure. For example, in Figure 13 we could
have stopped at the equations (pxs)uzezi.ze = (uy)y and (uzi)ursri.ze =
(11y)y, pruning the search tree by 4 nodes.

8. Deciding p-convertibility by higher-order means

Thus far we treated p-terms as far as possible as first-order terms. In this
section we show that p-convertibility is decidable by higher-order means. That
means that here we will, unlike what is the case in the rest of the paper, always
consider terms as a-equivalence classes. Higher-order syntax has the disadvan-
tage of being less concrete than first-order syntax, but the advantage of not
having to care about binding and renaming issues, and also of enabling the use
of the extant body of theory on higher-order term rewriting ([? , Chapter 11]
and [?]). In the higher-order setting p-convertibility is simply the convertibility
relation of the HRS p

pur.M(x) — M(px.M(z))

31

with the signature of u comprising the binding symbol p:(0—0)— o, the function
symbol F:0 — 0 — o, and constants c,d, ... and numerals n, for each natural
number n, all of type o.

Remark 52. Note that the HRS has a single rule, whereas in the first-order
rendering p-convertibility is generated from an infinity of rules.

We write FM = N to indicate that M = N can be derived using the
higher-order version of the proof system of Cardone and Coppo, as displayed in
Figure 16.

ur.M(zx)=N
M(pz.M(x)) =N

M = py.N(y)
M = N(py-N(y))

w-step in lhs

w-step in rhs

n least not in M, N w-removal

o
=
5
I
p
B
5

F-decomposition

n=n c=c .
E— azxiom

Figure 16: Higher-order Cardone and Coppo system.

px. M = pr.N

as employed by Cardone and Coppo turns bound occurrences of x into free
ones, we have chosen here to substitute a (fresh) numeral for it (preserving
closedness). This is a common technique; one may think of De Bruijn indices
or of Schroer’s technique for formalizing a-equivalence by substituting a fresh
symbol, cf. [?].

Furthermore note that in the py-removal rule the numeral n is chosen such
that, apart from n being fresh for M and N, the natural number n is also the
least one among all those numbers m with the property that m does not occur
in M nor in N. The reason is that, for showing decidability of p-convertibility,
we will use the statement that, for every term M, only finitely many numerals
occur in the ‘subterm closure’ SC(M) of M (cf. the definition of SC(M) based
on pm-root-reduction below, and ultimately, Lemma 55).

Remark 53. To overcome the problem that the inference rule

Figure 17 displays an example of a proof in the system of Figure 16. The
system of Figure 16 is sound and complete for deciding p-convertibility.

To highlight the difference with the preceding part of the paper, and that we
now work with a-equivalence classes, we will denote the convertibility relation
with respect to — by <*.

32

pryz F(pu.x, z) = pa'y' F(a', uz’ F(a', 2"))
pyz-F(pu.0, 2) = py' .F(0, p2'.F(0,2))
wz.F(pu.0,z) = F(0, uz' .F(0, 2'))
F(puw.0, pz.F(uu.0, 2)) = F(0, uz’.F(0, 2"))
pu.0 =0 pz.F((uu.0), z) = pz'.F(0, ")

0=20 F(pu.0,1) = F(0,1)
w0=0 1=1
0=0

Figure 17: A higher-order proof of puzyz.F(uu.z, z) = pz'y’ .F(z', pz’ .F(z',y")).

Lemma 54. M <* N if and only if =M = N, for closed terms M ,N.

Proof. The proof of this lemma is analogous to that of Lemma 25, employing
the higher-order equivalents of the notions and results used there.

(only if) Suppose M <«»* N. Since the higher-order rewrite system is
orthogonal, its rewrite relation is confluent [? , Chapter 11], hence pu-
convertibility coincides with u-joinability, and by the standardization the-
orem [? |, we may assume that the witnessing rewrite sequences are stan-
dard. Hence it suffices to show WM = N for any pair M =" L, N =™ L
of standard reductions. This we prove by induction on n + m.

In case n = 0 = m, then M = L = N and the result follows since
derivability of a pair of equal (a-equivalent) closed terms is easily inferred
by induction on the size.

In case either of the reductions starts with a root step, say w.l.o.g. yx.M’ iw
M'[z:=pz.M'] — L, then we have FM'[z:=pxz.M'] = N by the induc-
tion hypothesis, from which we conclude by either of the first two rules of
Figure 16.

In case neither of the reductions starts with a root step, then by standard-
ness none of the steps in either reduction is a root step. Hence M and N
must have the same root symbol.

In case the root symbol is p, then M = px.M' — px.L’ = L and
N = pz.N' — px. L’ = L, and we have FM'[z:=n] = N'[z:=n] by the
induction hypothesis and closure of standard reductions under projection
and substitution of terms of base type, from which we conclude by the
p-congruence rule of Figure 16.

In case the root symbol is F, then M = F(My, M) — F(L1,L2) = L
and N = F(Ny,N2) — F(Ly,Ls) = L, and we have FM; = N; and
FM; = N by the induction hypothesis and closure of standard reductions
under projection, from which we conclude by the last rule of Figure 16.

(if) By induction on the derivation of FM = N and by cases on the infer-
ence rules.

33

Suppose Fupz. M (z) = N because M (pxz.M(x)) = N. Then by the induc-
tion hypothesis M (ux.M(x)) «<* N and we conclude from px.M(z) —
M (pz.M(z)). For the symmetric inference rule, the reasoning is analo-
gous.

Suppose Fuz.M(z) = py.N(y) because FM (n) = N(n) with n least not
in M, N. By the induction hypothesis M (n) <»* N(n), hence, by proper-
ties of a-equivalence [? |, M(z) <+* N(z) for a fresh variable z, and by
freshness px.M(z) = pz.M(z) <* uz.N(z) = py.N(y).

The case for F follows straightforwardly from the induction hypothesis
(twice), closure of convertibility under contexts, and transitivity.

Of course, n <™ n and ¢ +* ¢ follow from reflexivity of <>*. O

To show decidability of the proof system of Figure 16, we show that there
are only finitely many distinct terms along a path while searching for a proof of
M = N. To that end, we consider the set of terms reachable from M and N by
means of root-reduction in the HRS pm, comprising besides the p-rule also the
7 (projection) rules px.M(z) — M (n) with n not in M and F(M;, My) — M;.
Clearly, all terms in a proof search of M = N are reachable by pmr-root-reduction
from either M or N° and we will show that although pm-root-reduction need
not be terminating (e.g. px.x reduces to itself), any infinite such reduction must
contain a cycle.

First, observe that after a u-step pz.M — M[z:=px.M] the substitution
part [z:=pxz.M] only plays a ‘passive’ role: any reduct of M[z:=px.M] is a
[x:=pzx.M]-instance of a reduct of M. The only way the substitution can be
‘activated’ is when the reduction ‘collapses’ the term M to the single vari-
able z, which would then give rise to a cycle uz.M =, M[z:=pz.M] —E»,M
xfz:=px. M) = px.M.

This leads to the higher-order version of Lemma 25 (note that the problem-
atic second case of the lemma can be dispensed with here).

Lemma 55 (p-finiteness). If M[z:=N] j’;m K is a pm-root-reduction, then
the reduction either
(i) has a prefiz which is a [x:=N]-instance of a root-reduction M j»m x; or
(i) is a [r:=N]-instance of a root-reduction M —E»,m L.
Proof. The proof is by induction on the length of the reduction. If the length is
0, then case (ii) holds by setting L = M. Otherwise, M[z:=N] —E»W K S, K

for some term K’ and we have by the induction hypothesis for the reduction
without its final step, either

9This would even hold when n were required to be least in the p-projection rule, as in
Figure 16. For technical reasons which will become clear in the proof of Lemma 55, we do not
require that just yet.

34

(i) it has a prefix which is a [z:=N]-instance of a reduction M —E»M x. Then
the same holds for the reduction extended by the step K’ ﬁmr K; or

(ii) it is a [z:=NJ-instance of a root-reduction M —E»,m L’. Distinguish cases
on L' (which cannot be a constant or numeral since these are irreducible):

(y) Then, since variables are normal forms, we must have z = y and
N = K’, and we are in case (i);

(1y.L1) By the variable convention we may assume z # y and y not free
in N, so K’ = py.Ly[z:=N].
If K' 5,, Li[:=N][y:=n] = K with n not in L;[z:=N] then
K = L1[y:=n][x:=N] by the assumption that y not free in N, and
taking L = L; brings us in case (i) as uy.L1 —>,» L1[y:=n] since n
not in L;.10
If K" =, Li[z:=N][y:=K'] = K then by the substitution lemma
K = Li[y:=L'][x:=N] and setting L = L,[y:=L’] yields case (ii)

again;
(F(L1, L)) Then K' = F(Li[z:=N], Lo[z:=N]) S.r Li[z:=N] = K
and we are in case (ii) setting L = L;. O

Remark 56. It is easy to see that this factorization lemma for root-reduction
holds in fact for all (higher-order) recursive program schemes [?], i.e. higher-
order rewrite systems such that each left-hand side of a rule consists of a single
(higher-order) function symbol applied to (higher-order) variables, of which um
is an example.

Next, observe that although each m-step uz.M — M (n) introduces a nu-
meral n which is fresh for M, only a bounded number of such is ever needed.

Lemma 57 (w-finiteness). For every closed p-term there is a bound on the
number of numerals in its pmw-reducts.

Proof. First, note that if M ja,m N, then M —, L —, N where the first
reduction is arbitrary p-reduction and the second a w-root-reduction. This
holds since in any HRS, projection onto subterms can be postponed until after
ordinary (here: p) reduction steps. The condition on n for the projection of a
pu-binder is preserved since ordinary reduction steps do not introduce numerals
(nor erase them for that matter).

Next, note that any L as above is a closed u-term again, as p-reduct of the
closed p-term M. Hence each numeral n in the term N is either already present
in M or generated by some projection step from pz,.M(x,) onto M(n) along
L —. N, and these projections give rise to a chain puxn,,Tn,, ..., 4Tn,; Tn,
in L. Since the length of the chains in M is bounded and by (the proof of)
Lemma 17 the length of chains does not increase along the p-reduction to L, we
conclude. O

107f n were least not in Lq[z:=N], then it would not need to be least not in L.

35

Theorem 58. «, is decidable, for closed p-terms.

Proof. By Lemma 54 it suffices to show that we can decide whether FM = N
for closed p-terms M, N. We claim that the sets of ym-root-reducts of M and
N, where n is required to be least in the condition on the p-projection rule, are
finite, from which the result follows by performing an exhaustive search through
these sets in the proof system of Figure 16.

We will prove the more general claim that the set of pm-root-reducts of a
closed term M, denoted by SC(M), is finite, where n is required to be below
k in the condition on the p-projection rule, with k& the bound obtained from
Lemma 57. This claim is more general indeed as k is an upper bound on the
number of distinct numerals in pm-root-reducts of M, so an upper bound on the
least numeral not in any such given reduct. The proof is by induction on the
size of M and cases on its shape.

(n) SC(n) = {n}.

(ux.M) SC(ux.M) C {ux.M}USC(M)[z:=px.M])USC(M[z:=n]) with n
below k and not occurring in M. To see this consider a pm-root-reduction
of minimal length pz.M —5»,” N witnessing N € SC(px.M).

If the reduction is empty, then clearly its final term is an element of the
first disjunct.

If the reduction starts with a p-step pz.M >, M[r:=pz.M], then we
conclude from applying Lemma 55 to its suffix, that all reducts are in the
second disjunct. Note that case (i) of the lemma cannot occur as it would
give rise to a cycle on px.M, contradicting minimality of the witnessing
reduction.

If the reduction starts with a w-step, pz.M —€>,M M[z:=n] with n below
k and not in M, then all reducts are in the third disjunct.

In each case we conclude by the induction hypothesis for M.

(F(Ml,Mg)) SC(F(Ml,MQ)) = {F(Ml,Mg)} U SC(M1) U SC(MQ) and we
conclude by the induction hypothesis for the M;. O

Decidability on open pu-terms is obtained as an easy corollary, closing the
terms first by substituting suitable fresh numerals for the free variables.

Remark 59. This higher-order proof of decidability of p-convertibility is again
(only) based on the notion of chain (Lemma 57 relies on Lemma 17), underscor-
ing the importance of the latter notion. Its connexion to the notions of paths in
A-calculus and games in semantics seems worthwhile to investigate.

9. Deciding p-convertibility using regular languages

We now present an alternative proof of the decidability of weak u-equality,
based on a totally different intuition, namely, the regular nature of the set of
reducts of a u-term. The proof proceeds in the following steps:

36

(i) For every capture-avoiding u-term M we construct a regular tree grammar
G generating the set of reducts of M (with respect to standard reduction
without a-conversion).

(ii) Given a regular tree grammar G generating a set of py-terms T' C Ter(u)
over a finite set of binders B, we construct a regular tree grammar G
generating the closure of 7" under a-equivalence over the binders B.

(iii) Then weak u-equality of two p-terms M and N boils down to the question:
L(G5%)NL(GSY) # @ 7 This problem is known to be decidable [?]. Actu-
ally it suffices to apply a-conversion to one of the terms: £(G3,)NL(GN) #
a?

We begin with a definition of regular tree grammars.
Definition 60. A regular tree grammar G is a quadruple G = (V, %, S, R) where

— V is a set of nonterminals,

— XY is a finite ranked alphabet (disjoint form N),

— S €V is the start symbol, and

— R is a set of rules of the form v — t with v € V and ¢t € Ter(X UV, @).

Here Ter(X UV,) is the set of ground terms over ¥ UV, see further [?].
The language L(G) of G is the set of terms L(G) C Ter(X U V) defined by:

L(G) = {t|te Ter(D,2), S —%t},

that is, the set of nonterminal-free reducts of S. Here — g is standard term
rewriting with respect to the TRS (X, R), that is, we may replace left-hand
sides of rules with the corresponding right-hand sides within arbitrary contexts.

We use regular tree grammars only for languages of pu-terms. For this reason,
for the remainder of this section, we fix 3 to be the signature of u-terms as
defined in Definition 1 with the difference, that we here regard u-term variables
Z, ¥, ...as constant symbols in 3. Moreover, we extend Y with the nonterminal
symbols V. Since we consider only term languages, and no word languages, we
will speak of (regular) languages and grammars as shorthand for (regular) tree
languages and tree grammars, respectively.

Step (i): a regular grammar for p-reducts

For capture-avoiding terms M € Ter(u), we construct a regular grammar Gy
that generates the language of p-reducts of M (with respect to a-free standard
reduction):

Definition 61. Let M € Ter(u) be a capture-avoiding p-term. We define the
regular grammar Gy, = (V, X, S, R) as follows. For every N € SC(M), let Vi

37

be a fresh constant symbol. Let V' be the set of symbols Vy with N € SC(M),
S = Vs the start symbol, and let R consist of the following rules:

Viz.N = VN[z:=pa.N] whenever px.N € SC(M) (2)
Vye.N — pa.Vy whenever px.N € SC(M) (3)
Vev,nry — F(Vn, Vnr) whenever F(N, N') € SC(M) (4)
V, > x for variables and constants x € SC(M) (5)

Observe that the rules model standard reduction: rule (2) allows for p-steps
at the current position, (3) and (4) move the rewriting activity (or snow line)
downwards, that is, extending the frozen prefix. The rules 5 generate u-term
constants or variables (which are both regarded as constants from the first-order
point of view of tree grammars).

Example 62. Let M = px.uy.F(x,y), then Gy consists of the rules:

Viiz. iy Fay) = 2) Viy Fua.uy.Flz,y).) Viy.Flz,y) = @) VF(@.uy.Fla,y)
iz uy Fla.y) = (3) 18-V F(a.y) Viay.F(a,) = 3) HY-Vi(a,y)
Vi Flue.py Fey)y) —3) HY-VF(ue.py.Fey).y) VE(ay) =) F(Ve, Vy)
VE (uapy Fe).w) = (4) F(Vawpy Flag)s Vo) Vo =) @
VE (. F () = () F(Var Vg Fam) Vy =) Y

Vuy-F(ﬂr»uy-F(z,y)yy) —(2) VF(ur-uy-F(m,y),uy-F(#r-#y-F(%y)yy))

VF(u:c-uyAF(x,y)7uy~F(uw-uy-F(ﬂc7y)) T(4) F(Vu:c-uyAF(x,y)) Vuy-F(u:c-uyAF(w,y) \Y))

where the start symbol of Gas i8S Vyz .y Fa,y)-

Then consider the following standard reduction:

papy.F(z,y) = py.Flpa.py F(z,y),y) — py.F(pe.F(z, py.F(z,y)), y)
We can generate the reduct using the grammar Gy, as follows:

Via.uy.F(ey) = Vi Fluzpy.F(ey)y) = PY-VE(ue.uy Fa,y).v)

= py-F (V. My Fe.w)s Vo) = 1Y-F(ur.Vuy Fey), Vy)

— py. F (., F(r,y) Y) = 1y-F (12 Ve, iy F2,9))» Y)
(ux F(Ve, iy Fa))s ¥) = py-F(pz.F(z, Vi), Y)
— py.F(pz. F(SC 1Y-Ve(ey)y) = py-F(pe.F(z, py.F(Ve, V), y)
— py-Fpz.F(z, py.F(z,9)),y) = py.-Fpz.F(z, py.F(z,y)), v)

— py.F

Note that the derivation simulates the standard reduction, and makes the steps
for freezing the prefix (pushing the snow line down) explicit.

Proposition 63. For every capture-avoiding p-term M € Ter(u), the language
L(Gnr) coincides with the set of all p-reducts of M modulo a-equivalence.

38

Proof. We define an interpretation [-], mapping grammar terms to u-terms:

Vn] =N for all N € SC(M)
[nz.N] = p.[N]
[F(N, N')] = F(IN, [N)
[z] =2 for variables and constants x

A position p in a p-term [N] is called active if N|ps is a nonterminal symbol.
We show that the grammar rules exactly simulate standard reduction on
the interpretation. Note that the grammar rules of form 3 and 4 preserve the
interpretation while moving the activity (snow line) downwards. In particular,
we have Vy —* N for every N € SC(M) using the rules of the form (3), (4), and
(5). The rules of shape 2 enable u-steps at an active position. That is, assume
we have a grammar term N such that N|, = V. p, (then [N]|, = pz.P).
An application of rule 2 at position p in N yields a term N’ with [N']|, =
Plz:=pzx.P]; exactly modeling the (a-free) p-unfolding in [N] at position p. O

Step (ii): a regular grammar for a-conversion

We show that the closure of a regular language of u-terms, under a-conversion
over a finite set of binder names B, is a regular language again. The idea of the
construction is as follows. Let L be a regular language of u-terms over a finite
set of binder names B given in form of a regular tree grammar Gr. Then we
construct a regular grammar G for the closure of L under a-conversion. For
this purpose we label the grammar variables with a map o : B — B representing
the renaming, and a set 1 C B of ‘forbidden’ variables whose occurrence would
cause a name clash (capturing by a wrong binder).

Without loss of generality we may assume that regular grammars are nor-
malized, that is, all rules are of the form V — f(Vq,...,V,); see [? , Prop 2.1.4].

Definition 64. Let G = (V, X, S, R) be a normalized regular tree grammar for a
language of p-terms over a finite set of binder B. We define the regular grammar
G* = (Vo, 2, Sa, Ra) as follows. For every symbol V € V, map o : B — B, and
set C B, let V,+ be a fresh symbol. Let V,, be the set of these symbols. We
choose S, = Si4,& as the start symbol of G, and let R, consist of the rules:

(i) Vo1 = o(z) (renaming) whenever V— 2 € R and x € t,
(ii) Vo3 — F(V.

o7
(iii) Vot — py(Ves) (picking) whenever V. — px(V') € R, and y € B, where
o'(z) =o(z) forall z £z, o'(z) =y, and ¥/ = (fUo 1(y)) \ {z}.

Vg 1) (propagation) whenever V — F(V', V") € R, and

Example 65. Let G consist of the rules:
Vi — /,L.T.VQ Vo — /Ly.Vg, V3 — F(V47V5) Vy >z Vs — Yy

with start variable Vi. Note that G generates the term pz.uy.F(z,y).

39

Let B = {z,y} be the set of binders. Then the reachable rules of G* are:

Vl,{w'—mj,yr—)y},z - :U'x'VQ,{;C'—Mc,yHy},G
Vifeseysy)e = BY-V2, (amyysy) {u}
V2,{zn—>x,y>—>y},® — ,uy-V:s,{sz,yHy},z
Vo (eoszyosy}.e = HENV3 (2o yoa}, {o)
Va {amsyumyh vy = HY-V3 (o) {2}
Vo femyyoyt {yy = BTV (omsyyoat.o
V364 = F(Vaot,V5.0,4) for the above o and

V4,{xb—>x,y>—>y},@ — V5,{acb—>x,y»—>y},® —Y
Vs {zz e} {z) = T
Vs, {zmsy,yoy}fat = Y

Vi ooy yato =Y Vs (eoyyoat,o = T

Note that the grammar G* can generate both valid a-conversions pz.uy.F(z, y)
and py.ux.F(y,z). However, if we map both variables z and y to the same value,
then we obtain a term that contains either the nonterminal V4 (40 yrso}, {2} OF
V4 {arsy,y—sy},{«} for which there exist no production rules.

Proposition 66. L£(G%) is exactly the closure of L(G) under a-conversion over
the finite set of binders B.

Proof. Whenever V is start variable of G, then V;4 & is start variable of G*.
Here, id expresses that the free variables should not be renamed, and @ that
there are initially no name clashes.

The rule (ii) simply propagates the a-conversion down. The interesting case
is rule (iii), the case of uz. We pick the renaming y for z (G* contains one
rule for every y € B), and accordingly update the renaming function o for the
subterm. In case there are other variables mapped to y, then we need to make
sure that these variables do not occur free in the subterm (since otherwise they
would be captured by the wrong binder). We update the set of ‘forbidden’
variables 1 to include all variables mapped to y, that is, 1 U o~ *(y); from this
set we remove x since it is bound by the currently innermost binder (and may
occur free). The rule (ii) executes the renaming. Note that the renaming rules

require that & & §, that is, there are no production rules in case of a name clash.
O

Step (iii): deciding weak p-equality

Combining the Propositions 63 and 66, we can reduce weak p-equality to
the emptiness problem of the intersection of regular tree languages. In this way
we obtain a decision procedure for weak p-equality:

Theorem 67. The following problem is decidable:

40

— Input: two p-terms M and N.

— Answer: are M and N convertible?
Proof. The decision procedure proceeds in the following steps:

(i) use a-conversion to obtain capture-avoiding u-terms M’ =, M, N' =, N,

(ii) construct the grammars Gy and G+ generating the language of p-reducts
of M’ and N’, respectively,

(ili) comstruct the grammar G¢;, over the set of binders of M’ and N’, and

(iv) answer yes if £(G%,) N L(Gn+) # &, and no, otherwise.

Thus, we have reduced the problem of deciding whether two u-terms are con-
vertible to a problem on regular tree languages. For regular tree languages,
the intersection is regular (a regular tree grammar can be computed), and the
emptiness is decidable (given a regular tree grammar), see [?]. Note that we
also use that p-unfolding is an orthogonal higher-order term rewrite system, and
thereby is confluent. That is, for deciding whether two terms are convertible it
suffices to check whether they have a common reduct, see [? |. O

10. Further Results

The following result states that reachability of u-reduction with a-conversion
is decidable:

Theorem 68. Reachability with respect to —,/ is decidable, that is, on the
input of two p-terms M and N it is decidable whether M —» /o N.

Proof. Choose a capture-avoiding term M’ =, M. Then M —»,,, N if and
only if N € L(G$}/), the set of reducts of M’, which is a decidable property. [

We remark that the theorem can also be proven using an easy adaptation
of the proof system from Figure 12 by starting from the equation M = N and
restricting the proof system by disallowing p-steps in the right-hand side of the
equations.

We also obtain decidability of a-free p-convertibility, that is, convertibility
with respect to —,. We briefly sketch the proof. Not every occurrence of the
symbol p corresponds to a —,-redex position since —,-steps are forbidden if a
variable would be captured by the substitution. The following example shows
that u-steps may ‘activate’ redex positions:

Example 69. We consider M = px.F(z, uz.x). The term M does not allow for
a —,-step at the root as the variable z would be captured. However, the inner
rewrite step px.F(z, pz.x) —, px.F(z,x) ‘enables’ the redex at the root. As a
consequence, the following rewrite sequence:

px.F(z, pz.x) =, pae.F(z,x) =, F(z, po.F(z,)

cannot be transformed into a standard reduction.

41

However, redex ‘activation’ is not arbitrary. The following lemma states that
redexes can be ‘activated’ but not ‘deactivated’, that is, whenever a p-position
is a redex occurrence, then all its residuals are redex occurrences as well:

Lemma 70. Let M, N be pu-terms with a step o : M —, N and R a redex
occurrence in M. Then all residuals of R in N after o are —,-redex occurrences.

O

As a consequence —, can be viewed as conditional higher order rewriting
system with stable conditions (redexes stay redexes unless reduced). Then con-
fluence of —, follows from known results on higher order rewriting [? J:

Proposition 71. The a-conversion-free pi-reduction —,, is confluent. O

Remark 72. We remark that since the system —, is orthogonal and residuals
of redex occurrences are redex occurrences again, we can alternatively establish
the diamond property for multi-steps (developments). The diamond property
then immediately implies confluence of —,.

To apply the proof system from Sections 7, or the decision procedure based
on regular languages from Section 9, we need the property that reductions can
be turned into standard reductions. As we have seen in Example 69, for —,
this is in general not possible. However, we can recover the property using the
following lemma:

Lemma 73. Let M be a p-term, and let T be the occurrence in M of a subterm
with root p that is not a redex. Moreover, leto : M —,, N be a step at position p.
If a descendant of T after o is a redex, then M|, = px. M’ withx ¢ FV(M'). O

Roughly speaking, the lemma states that only steps of the form pz. M’ —,
M’ (that is, with = ¢ FV(M’)), that is, the removal of vacuous p-binders can
activate redex positions. The proof of the lemma is a simple exercise. Then we
can recover standardization for those terms that do not contain such redexes:

Proposition 74. Let M be a p-term not containing subterms of the from px.N
with x € FV(N). Then for every reduction M —,* M' there exists a standard
reduction M —,* M'.

Proof. As M does not contain subterms of the form pz.N with ¢ FV(N)
the same property holds also for all reducts of M. Hence all ancestors and
descendants of redexes are redexes. Therefore standardization can be proved
with the customary argument of swapping steps [? |, [? , Sect. 8.5.3, p.371]. O

Finally, we obtain decidability of —,-conversion as follows. Let M and N
be given. Let the terms M’ and N’ be obtained from M and N by removing
vacuous p-binders. Then M «7 N if and only if M’ <+, N'. Now we can decide
M’ <7 N’ by using slightly adapted systems from Section 7 or Section 9. That
is, we need to restrict the p-unfolding rule in these systems to —,-unfoldings,
and hence in particular, without variable capture. Consequently we obtain:

42

Theorem 75. Convertibility with respect to —,-reduction is decidable. O

We remark that the above results (decidability of —, /,-reachability as well
as —,-convertibility) do not immediately imply decidability of — ,-reachability.
The reason is that for reachability M —,* N we cannot simply drop all vacuous
p-binders from M and N.

10.1. Upward joinability for p-reduction

In this subsection we establish decidability for the problem of upward-join-
ability with respect to —,,/o: Given two p-terms M and N, does there exist a
p-term P such that M « /o, P — /o, N7

Upward-joinability with respect to —,/, is equivalent to joinability with
respect t0 —o1d/, the converse rewrite relation of —,/,. Note that —¢4/q =
=, - —fold - =a Where —¢o1q is induced by the conditional rewrite rule:

Mz:=pz. M) — px.M (if px.M is free for x in M).

We show that joinability with respect to this rewrite relation is decidable, while
it is not confluent. (Note that convertibility with respect to —¢1q /o coincides
with convertibility with respect to —,/, and that therefore decidability of this
relation between p-terms follows from the results in Sections 7, 8, and 9.)

Let — be a rewrite relation. We write M 1 N (and respectively, M | N) for
the statement that M and N are upward-joinable (M and N are joinable) with
respect to —: there exists P such that M « P — N (such that M — P « N).

Both of the rewrite relations —,/, and —g14/ can be split into a ‘proper’
part, steps in which actual unfoldings or, respectively, foldings take place, and
into an ‘improper’ part, steps in which vacuous bindings are eliminated or in-
troduced, respectively. For this we first split the rewrite relations —, and —1q
according to:

_>;L = _>H-p W —vbE —?fold = ~7fold-p W —r bl (6)

into proper p-reduction and ‘vacuous-binder elimination’ relations, and respec-
tively, into proper folding reduction and ‘vacuous-binder introduction’ relations,
which are induced by the following conditional rewrite rules:

pr.M =, Mx=px.M] Mlz:=px.M] —tap pa.M (if 2 € FV(M))
ur.M —gpg M M —g1 px.M (if z ¢ FV(M))

(In the rules for —,,_, and —fo1a.p furthermore pa.M has to be free for in M.)
Note that —fo1d-p and —1,1 are the converses of —,,_, and —ypE, respectively.
The splittings (6) also induce splittings of —, /o into =,/ and =g/, and of
—fold/a 1IN0 —>fold-p/a AN —p1/q, the extensions of the rewrite relations — .,
—rvbE, —*fold-p, and —+yp1 by a-conversion steps on both sides.

While we are interested in a property of the rewrite relations —,/, and
—fold/a here, the results in this subsection lend themselves better to formula-
tions for rewrite relations on a-equivalence classes, which have smoother prop-
erties. For example, — g/, is not confluent, because of reduction forks like

43

WT.T {—\bE/a MY-UT-T —>ybE/o pz.2 that lead to a-equivalent terms, but that
cannot be joined by —,p/n-steps; but a version of — g/, on a-equivalence
classes turns out to be confluent. Furthermore, —o14.p/q is non-confluent for
the simple reason that there are ‘trivial’ reduction forks such as M <—to14.p/a
F(M, M) —ld-pja M’ leading to the a-equivalent —o14.p/q-normal forms M =
pa.F(x,z) and M’ = py.F(y,y) that cannot be joined by —1q.p/a-rewrite steps.
Such a trivial reason for non-confluence disappears for a version of —fg1dp/a
on a-equivalence classes. These examples may serve as indication why we
will use auxiliary results on versions of the rewrite relations above defined for
a~-equivalence classes.

For every p-term M, we denote by [M]:={N | N =, M} the a-equivalence
class of M. The rewrite relations —, /o, —up/as —vbE/a S Well as —rlq/a,
—fold-p/a a0d —yp1/e induce rewrite relations —v(,), —[u-p), —[vbE] as well as
—[fold]» —[fold-p] ad —>[yp1) ON a-equivalence classes: for example, —, /. induces
the rewrite relation —,; by:

H/e

[M] = [N] :<= M —,,o N (forall M, N).

Note that —pg is strictly size-decreasing, and therefore terminating, which
implies the same properties for — g/, and —ypg)- Steps in the rewrite rela-
tion —go1d-p/a turn out to be either strictly size-decreasing or to have the same
source and target. This observation leads to the following proposition. (For its
formulation, note that, for a rewrite relation —, by —1 we mean the transitive
closure of —.)

Proposition 76. If [M] —

(fold-p] [N], then either size(M) > size(N) holds, or
M=, N.

Proof. 1t suffices to prove that, for all p-terms M and N, M —14.p IV implies
size(M) > size(N) or M =, N, because this makes it possible to show the
statement of the proposition by induction on —(g,14.-p-rewrite sequences.

Since —fo1q-p-steps are of the form ClA[x:=px.A]] —folap Cluz.A] with x €
FV(A), it remains to show that size(A[x:=px.A]) > size(uz.A) or Alx:=px.A] =,
px.A whenever x € FV(A). To show the latter, let A and x be arbitrary, but such
that € FV(A). Note that size(A[x:=px.A]) = 2 - size(A), and size(pz.A) =
1+ size(A). Now if size(A) > 1, then clearly size(A[x:=px.A]) > size(pz.A)
holds; and if size(A) = 1, then puz.A = px.x because x has to occur in A, and
hence A[z:=px. Al = A=, A. O

Lemma 77. Upward-joinability 1,5 w.r.t. —,.p) is decidable.

Proof. In order to decide, for given p-terms M and N, whether [M] 1, [V]
holds, it suffices to decide whether the sets A and B of reducts of, respectively,
[M] and [N] under —14.p) = ¢[u-p] have a non-empty intersection. Since,
due to Proposition 76, A and B are finite, and for each member of A and B a
term representative can be chosen, this decision can be taken by comparing the
representatives of A with those of B modulo a-equivalence. O

44

Proposition 78. —(g14.p) is not locally confluent, and hence, not confluent.

Proof. Let M = uy.F(e, px.F(y,F(c,2))) and N = F(M, F(c, pz.F(M,F(c, x)))).
Then:
F(M, M) %fold_p N —)fold_p MI.F(M, F(C, .23)) s

and both of F(M, M) and px.F(M,F(c,z)) are —g1q.p/o-normal forms, which
are not a-equivalent. Consequently we obtain:

[F(Mv M)] < [fold-p] [N] —7[fold-p] [[Ll‘.F(M, F(C7 I))] s

and the a-equivalence classes left and right are different —¢,1q.p)-normal forms.
O

Proposition 79. |y = Tpby, and hence: e = bl = Tivbl = dvbE]-
Furthermore, — [y and —ypE] are confluent.

Proof. Since —(ypy and —[ypg) are each other’s converse relations, it suffices to
show |[ypbyy = Tvby to establish the first sentence.

Note that, for every rewrite relation — it holds that 1 C | if and only if — is
confluent; consequently, 1= holds if and only if both — and < are confluent.
Hence it remains to show that —ypy and <[ypy) = —>[vbE) are confluent. But
is easy to establish that both of these rewrite relations are sub-commutative!?,
and hence confluent. O

For every p-term M, we denote by M i the normal form of M with respect
to —ypE-steps, that is, the result of removing all vacuous binders from M. Note
that a p-term M is a —pg-normal form if and only if M is a —pp/-normal
form, and hence also, if and only if [M] is a —[ypg-normal form.

Lemma 80. For all pu-terms M, N :
[M] T IN] = [M 5] Tpep) [Nybel - (7)
Proof. Since —(o1q) = <—[u] and —[o1d-p] = [u-p], (7) is equivalent to:
[M] Jiroa) [N] = [My5] Hgold-p) [Nybz] - (8)
it suffices to show (8).

“=": This direction can be shown by projecting a pair of joining — t1q)-reduc-
tions [M] —(g1q) [P] “[folq) [V] down to a pair of joining —(g14.p)-reduc-
tions [M pg] —(fold-p] [Pvbr] “[iold-p] [Nype] on a-equivalence classes of
—ypE-normal forms.

1A rewrite relation — is called ‘sub-commutative’ if every pair of branching —-steps can
be joined by steps or empty steps: for all M, N, P, if N < M — P, then there exists @ such
that N -~ @Q <~ P, where -~ := — U = is the reflexive closure of —.

45

“«<": This direction can be shown by lifting, for given u-terms M and N, an
assumed pair of joining —f1q.p-reductions [M x| —old-p] [P] “[fold-p]
[N pg] 0N = bE/e-normal forms up to a pair of reductions, [M] —(g1q] [P1]
and [N] —[go1q) [PQ] with [&vi] = [&vi] = [P], which by using
confluence of — by = < [vbr) (see Proposition 79) can be extended to
a joining pair [M] —oq) [P1] —(rola) [P “frola] [P1] “[folq) [IV] of
—fold)-Teductions between [M] and [N].

O
Proposition 81. —(s,q) s not locally confluent, and hence, not confluent.

Proof. In view of Lemma 80, the counterexample to local confluence of —(f;14.p)
given in the proof of Proposition 78 can be used here as well. O

Theorem 82. Upward-joinability 1, w.r.t. —,) is decidable.

Proof. In order to decide, for given u-terms M, N, whether [M] 1, [N] holds,
it suffices, due to Lemma 80, to decide whether [M 1g] Tj-p) [Nypg] holds.
Since —ypg is terminating, M g and N5 can be produced effectively, and
hence this decision can be to obtained by applying a decision algorithm for
Pu-p)> Which exists due to Lemma 77. U

Corollary 83. Upward-joinability 1,/ with respect to =, is decidable.

Proof. The corollary follows from the theorem observing that there is a cor-
respondence via projection and lifting between —f51q/- and —>(go1q-rewrite se-
quences, and the fact that a-equivalent u-terms are upward-joinable with respect
to =00 if My =4 M, then we have My —p1/q px.M1 <—yp1/a M2 for some
x ¢ FV(M;) = FV(My). O

Remark 84. Note that Proposition 81 blocks the way to a quick proof of
weak p-equality =/, that would be facilitated by Theorem 82 if —g1q) Were
confluent.

Let us, for the sake of the argument, assume that —(g1q) is confluent. Let
=[u) be the convertibility relation with respect to —,j, or equivalently, with
respect t0 —(go1q]- Since —(g1q) is confluent, it follows that it is also Church—
Rosser, which means that =, C |[f1q) holds, and implies =) = |[so1q). Since
difola] = Ty is decidable by Theorem 82, it follows that =, is decidable as well.
Since for all pu-terms M and N, M =,,, N holds if and only if [M] =, [V]
holds, decidability of =, , follows.

But since the assumption used is actually wrong, this proof approach fails.

w/a

46

Acknowledgment. The raison d’étre of this paper is found in an extended dis-
cussion and correspondence with Henk Barendregt, Wil Dekkers, Felice Cardone
and Mario Coppo, in particular during the last two years. Two of our decid-
ability proofs for weak p-equality are essentially based on the idea worked out
by Cardone and Coppo in [? |. We thank all four for many stimulating per-
sonal communications and questions prompting us to our a-analysis and to the
addition of virtual binders as annotations to the original proof system of Car-
done and Coppo. Felice Cardone provided us with the ARS-rules underlying
the picture of the p-unsolvables.

References

[1] A. Arnold and D. Niwiniski. Rudiments of p-Calculus, volume 146 of Studies
in Logic and the Foundations of Mathematics. North-Holland, 2001.

[2] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of SLFM. Elsevier, 2nd edition, 1984.

[3] H.P. Barendregt, W. J. M. Dekkers, and R. Statman. Lambda Calculus
with Types. Perspectives in Logic. Cambridge University Press, 2011.

[4] Michael Brandt and Fritz Henglein. Coinductive Axiomatization of
Recursive Type Equality and Subtyping. In Philippe de Groote and
J. Roger Hindley, editors, Typed Lambda Calculi and Applications, volume
1210 of Lecture Notes in Computer Science, pages 63-81. Springer, 1997.

[5] H.J. Sander Bruggink. Equivalence of Reductions in Higher-Order Rewrit-
ing. PhD thesis, Utrecht University, 2008.

[6] Felice Cardone and Mario Coppo. Decidability Properties of Recursive
Types. In C. Blundo and C. Laneve, editors, ICTCS 2003, volume 2841 of
LNCS, pages 242-255. Springer, 2003.

[7] H. Comon, M. Dauchet, R. Gilleron, C. Léding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
http://www.grappa.univ-1ille3.fr/tata, 2007.

[8] A. Corradini and F. Gadducci. Rational Term Rewriting. In Maurice Nivat,
editor, Foundations of Software Science and Computation Structures, vol-
ume 1378 of Lecture Notes in Computer Science, pages 156-171. Springer,
1998.

[9] Marcelo P. Fiore and Gordon D. Plotkin. An Axiomatisation of Compu-
tationally Adequate Domain Theoretic Models of FPC. In Proceedings of
the Ninth Annual IEEE Symposium on Logic in Computer Science, page
92-102. IEEE Computer Society Press, Los Alamitos, 1994.

[10] Clemens Grabmayer. Relating Proof Systems for Recursive Types. PhD
thesis, Vrije Universiteit Amsterdam, 2005.

47

[11]

[12]

[13]

[14]

[15]

[20]

[21]

22]

23]

[24]

Clemens Grabmayer. A Duality between Proof Systems for Cyclic Term
Graphs. Mathematical Structures in Computer Science, 17:439-484, 2007.

Dimitri Hendriks and Vincent van Oostrom. KA. In Franz Baader, edi-
tor, Proceedings of CADE 19, volume 2741 of Lecture Notes in Artificial
Intelligence, pages 136-150. Springer, 2003.

Paola Inverardi and Marisa Zilli. Rational Rewriting. In Igor Privara,
Branislav Rovan, and Peter Ruzicka, editors, Mathematical Foundations of
Computer Science 1994, volume 841 of Lecture Notes in Computer Science,
pages 433—442. Springer, 1994.

B. Jacobs and J. J. M. M. Rutten. A Tutorial on (Co)Algebras and
(Co)Induction. EATCS Bulletin, 62:62-222, 1997.

S. Kahrs. Context Rewriting. In M. Rusinowitch and J.-L.. Rémy, editors,
CTRS’92, volume 656 of LNCS, pages 21-35. Springer, 1993.

Richard Kennaway, Vincent van Oostrom, and Fer-Jan de Vries. Mean-
ingless terms in rewriting. Journal of Functional and Logic Programming,

1999(1), February 1999.

Jeroen Ketema. Béhm-like Trees for Rewriting. PhD thesis, Vrije Univer-
siteit Amsterdam, 2006.

Z. Khasidashvili. On Higher-Order Recursive Program Schemes. In Sophie
Tison, editor, Proceedings of the 19th International Colloquium on Trees in
Algebra and Programming, CAAP 199/, volume 787 of Incs, pages 172-186.
Springer, 1994.

Jan Willem Klop, Vincent van Oostrom, and Roel C. de Vrijer. Iterative
Lexicographic Path Orders. In Kokichi Futatsugi, Jean-Pierre Jouannaud,
and José Meseguer, editors, Algebra, Meaning, and Computation, Essays
Dedicated to Joseph A. Goguen on the Occasion of His 65th Birthday, vol-
ume 4060 of LNCS, pages 541-554. Springer, 2006.

J.W. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht Univer-
sity, 1980.

P.-A. Mellies. Description Abstraite des Systémes de Réécriture. PhD
thesis, Université Paris VII, December 1996.

V. van Oostrom. FD a la Mellies, February 1997. VU University Amster-
dam.

D.E. Schroer. The Church—Rosser Theorem. PhD thesis, Cornell University,
1965.

Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2003.

48

	Introduction
	Preliminaries
	Avoiding -conversion in -calculus
	The subterm closure and its finiteness
	The subterm closure and standard reductions
	Strong -equality
	A proof system for -convertibility
	The proof system of Cardone and Coppo
	A proof system with annotations
	More efficient proof search

	Deciding -convertibility by higher-order means
	Deciding -convertibility using regular languages
	Further Results
	Upward joinability for -reduction

