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Abstract

In this paper we revisit an unpublished but influential technical report from
1978 by N.G. de Bruijn, written in the framework of the Automath project.
This report describes a technique for proving confluence of abstract reduction
systems, called the weak diamond property. It paved the way for the powerful
technique developed by Van Oostrom to prove confluence of abstract reduction
systems, called decreasing diagrams.

We first revisit in detail De Bruijn’s old proof, providing a few corrections
and hints for understanding. We find that this original criterion and proof
technique are still worthwhile. Next, we establish that De Bruijn’s confluence
criterion can be used to derive the decreasing diagrams theorem (the reverse
was already known). We also provide a short proof of decreasing diagrams in
the spirit of De Bruijn. We finally address the issue of completeness of this
method.

1. Introduction

In this article we highlight an important contribution of Dick de Bruijn to
the theory of term rewriting systems, as recorded in the technical report ‘A
Note on Weak Diamond Properties’, from 1978. This note was very influential
as we will describe, but it was never published. Yet the original proof of De
Bruijn’s theorem is still worthwhile, and we will render it here in all details but
with some innocent corrections. The proof is worthwhile not only for historical
reasons, but also because the style of the proof, using a complicated induction,
makes it interesting for mechanical verification.

Remarkably, it was precisely the goal of mechanical verification of mathe-
matical theorems that gave rise to the note of de Bruijn that we will treat. As
is well-known, De Bruijn was one of the acknowledged pioneers of mechanical
verification of mathematical theorems, with his ground-breaking project Au-
tomath that ran from 1967 to the early eighties. See Geuvers, Nederpelt, de
Vrijer [13] for an annotated collection of the main papers originated by the
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Automath project. The inheritage of technical reports resulting from the Au-
tomath project can be found at the archive http://www.win.tue.nl/automath/.
For a shorter impression including an appraisal of related endeavours see the
paper by Geuvers and Nederpelt in the present issue of this journal.

De Bruijn and his Automath team developed a considerable body of the-
ory about typed lambda calculi, and De Bruijn is generally acknowledged as
the co-discoverer of the famous Curry-Howard-De Bruijn principle, often called
’Formulas as types’. For the Curry-Howard-De Bruijn principle see the book [14]
by Sørensen and Urzyczyn; for an encompassing up-to-date treatment of typed
lambda calculi we refer to [2] by Barendregt, Dekkers and Statman. The stan-
dard treatise on pure lambda calculi is Barendregt [1]. In the course of this the-
ory development De Bruijn made several fundamental contributions that have
become standard later on. A typical case is how to treat bound variables in
lambda calculus, where the concerns of practical implementation led De Bruijn
to his widely known and applied ’lambda calculus with nameless dummies’.
One of the basic requirements for the various lambda calculi designed in the
Automath project is confluence, defined in the next section. There are several
fundamental abstract lemma’s to prove confluence, of which the most famous is
the Lemma of Newman [12] (M.H.A. Newman was a well-known topologist and
the PhD supervisor of A. Turing). Another well-known lemma is the strong con-
fluence Lemma of Huet [8]. Contemplating such abstract confluence lemma’s,
De Bruijn discovered in 1977 with his great combinatorial insight a very pow-
erful theorem that had many abstract lemma’s about confluence as corollaries,
including the two just mentioned.

In March 1990, the second author gave an introductory talk on term rewrit-
ing in a seminar at Philips Research Laboratories in Waalre, with Dick de Bruijn
present among the audience. A few days afterwards, De Bruijn sent the tech-
nical memorandum 78–08 to which the present paper is devoted, with in the
accompanying letter the question whether this note, which had remained then
dormant for twelve years, possibly contained something of any value. The sec-
ond author was happy to confirm this in strong terms, stating in his answering
letter of March 5, 1990 that this observation was stronger than many of the fa-
miliar abstract confluence lemma’s. De Bruijn’s proof consisted of an ingenious
but complicated nested induction, that at first sight looked somewhat forbid-
ding. An attempt for an alternative proof led Klop and de Vrijer in 1990 to a
geometrical proof, which much later together with Van Oostrom was published
as [11]. The disadvantage of that geometrical proof is the use of analytical and
metrical notions such as condensation points in the euclidean plane, notions
that are not easily formalised and are not of a finitary combinatorial nature.
Another issue of De Bruijn’s theorem was that it had a certain asymmetry, as
we will see below. Van Oostrom responded early nineties in his dissertation
studies ([17, 16]) with a deep analysis of De Bruijn’s idea; he was able to give
a very different proof using a convenient calculus of multisets, together with
establishing as a key notion a certain invariant that he called ‘decreasing dia-
grams’. This not only gave a more elegant symmetrical version of De Bruijn’s
theorem, in fact extending it to partial orders, but also provided the basis for
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several useful related extensions [16, 18, 6].
Recently, Van Oostrom found another elegant proof of his decreasing dia-

gram theorem by means of recursive path orders (RPO) and extended to con-
fluence modulo together with Felgenhauer [6], but that will not be covered in
the present paper. Let it suffice to mention that the interest of that recent
development is that it combines one of the most powerful techniques to prove
termination (also known as ‘strong normalisation’, SN) of first order term rewrit-
ing systems, to wit the RPO technique, with the most powerful method to prove
confluence for abstract reduction systems, to wit the “weak diamond property
annex the decreasing diagram method” of De Bruijn and Van Oostrom, respec-
tively.

Contribution. These historical recollections bring us to formulating the purpose
of the present article, apart from presenting the historical record of events itself.
Figure 1 gives an overview over this paper.

Weak Diamond Property

Decreasing Diagrams

applying De Bruijn’s
proof method (Section 5)

proof using
multisets [16]

geometric
proof [11]

proof using recursive
path orders [6]

proof using trace-decreasing
diagrams [3, 15]

De Bruijns proof
(Section 3)

from partial to total (Section 4.1)

symmetrizing (Section 4.2)

[16] (not part of this paper)

Figure 1: Overview over the paper, and various routes to the De Bruijn’s weak diamond
property and Van Oostrom’s decreasing diagrams. Greyed out parts are not covered in
the current paper.

First of all, we present De Bruijn’s original proof, in a slightly optimised
version for better readability, thereby correcting a few small points. Also several
hints and elaborations are given for easier understanding of the proof. Second,
we discuss some extensions of De Bruijn’s original formulation, which was given
for a total order on the set of labels or indexes, to partially ordered index sets.
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In fact an extension to partially ordered index sets was already mentioned to
De Bruijn in the afore-mentioned letter by the second author.

Another matter is how to symmetrize the original version of De Bruijn,
thereby obtaining Van Oostrom’s symmetrical decreasing diagram version. We
will show that the symmetrical version can be in a rather straightforward manner
obtained from De Bruijn’s original asymmetrical version. We also will give a
short proof of decreasing diagrams in the spirit of De Bruijn’s proof, but with
considerably less lemma’s and diagrams to be checked.

Summarizing, De Bruijn’s original version as the weak diamond property
and Van Oostrom’s decreasing diagram version are relatively close together,
and can be seen as fairly straightforward consequences of each other. That the
weak diamond property is a consequence of decreasing diagrams was already
shown in [16]. The other direction is expounded in the present paper. It should
be noted that the close proximity of the weak diamond property and decreasing
diagrams does not detract from the value of Van Oostrom’s key notion of de-
creasing diagrams, which employs a powerful invariant that is not at all visible
yet in De Bruijn’s version, nor his proof. This notion has proved to be very suit-
able for various extensions of the original decreasing diagram theorem [20, 19, 7].

We finally devote a closing section to the completeness issue for the present
method by De Bruijn and the decreasing diagram version of Van Oostrom.

2. Weak Diamond Properties

In this section we introduce the various weak diamond properties as discussed
by De Bruijn in his report. First, we will treat abstract reduction systems with
just one reduction relation. In the next subsection, we enrich these structures
with a labeling of steps. There we will state the weak diamond diagrams that
are the subject of De Bruijn’s memorandum, or rather, lead up to his main weak
diamond theorem.

2.1. Unlabeled Reduction

Definition 2.1. An abstract reduction system (ARS) is a set A of objects to-
gether with a reduction relation → ⊆ A×A, called one-step reduction. Such
an ARS is written as (A,→).

For general notions and notations about rewriting we refer to [15] or [10].
Here we mention a few of them: the transitive reflexive closure of → is written
as � (sometimes also as →∗, where ∗ is Kleene’s star, familiar from regular
expressions). The reflexive closure of → is →≡. The converse of → is denoted
by ←, and of � by �. An object a for which there is no rewrite step a → . . .
possible is a normal form (but normal forms will not be an issue in this paper).
Intuitively, → stands for the computation relation; a normal form is a ‘final
answer’.

Definition 2.2. A relation → ⊆ A×A is confluent if � ·� ⊆� ·�.
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Confluence means that every pair of finite, co-initial rewrite sequences can
be joined to a common reduct; see Figure 2. It is one of the most fundamental
notions of (term) rewriting, guaranteeing the uniqueness of normal forms, if
they exist.

Figure 2: Confluence. In these diagrams, the solid arrows stand for universal (∀)
quantification, while the dashed arrows stand for existential (∃) quantification.

Let us now follow De Bruijn’s description in his introduction of memoran-
dum 78-08. We combine the various rewrite properties in Figure 3, together
with their defining diagram, their name as given by De Bruijn, and in some
cases their modern names.

im
plies

confluence

does
not

im
ply

confluence

DP

WDP3

(SC)

WDP2or WDP4

WDP1

(WCR)

CR

Figure 3: Various Confluence Properties.

Diagrams with single steps as initial diverging reductions are called elemen-
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tary reduction diagrams. So except for WDP4 and CR, all diagrams in Figure 3
are elementary diagrams. In the picture,

DP stands for diamond property,

WDP for weak diamond property,

CR for Church-Rosser property,

SC for strong confluence and

WCR for weak Church-Rosser property (or local confluence).

Actually, the defining diagrams in Figure 3 are just a convenient pictorial
rendering of the more explicit definitions of the rewrite properties as mentioned.
These explicit definitions can be most clearly stated in first-order predicate logic:

DP ∀a, b, c. ∃d. b← a→ c =⇒ b→ d← c

WDP1 ∀a, b, c. ∃d. b← a→ c =⇒ b� d� c

WDP2 ∀a, b, c. ∃d. b← a→ c =⇒ b→ d� c ∨ b� d← c

WDP3 ∀a, b, c. ∃d. b← a→ c =⇒ b→ d� c

WDP4 ∀a, b, c. ∃d. b� a� c =⇒ b� d� c

CR ∀a, b. ∃c. a↔∗ b =⇒ a� c� b

Here ↔∗ is the equivalence relation generated by →, that is, its symmetric-
transitive-reflexive closure, also called convertibility. In pictures as in Figure 3
convertibility is pictorially rendered as a zigzag, or mountainscape; involving
some peaks and valleys. A peak consists of two diverging single steps. A con-
vertibility is also called a conversion.

There is also a somewhat more succinct way of defining rewrite properties,
namely by relational calculus. In a self-explaining notation, these definitions are
as follows, involving the usual set-theoretic notions, together with ‘·’ referring
to relational composition:

DP ← · → ⊆ → · ←

WDP1 ← · → ⊆� ·�

WDP2 ← · → ⊆ (→ ·�) ∪ (� · ←)

WDP3 ← · → ⊆ → ·�

WDP4 � ·� ⊆� ·�

CR ↔∗ ⊆� ·�
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...

...
...

Figure 4: Two abstract reduction systems.

The dividing line in Figure 3 indicates which properties imply confluence
and which do not. For the properties that do not imply confluence, this can be
seen by inspection of counterexamples in Figure 4. The properties above the
line in Figure 3 do not hold for the counterexamples. Actually the two ARSs in
Figure 4 are in some sense ‘equivalent’, the one by De Bruijn to the left being
the infinite unwinding of the finite one to the right.

Note the subtle difference between WDP3 (SC) and WDP2. When com-
pleting a confluence diagram, given the initial diverging reductions in order to
arrive at converging reductions, in the former we can choose ourselves in which
direction we have the splitting, see Figure 5. In the latter this choice is made
for us. That WDP3 (SC) implies CR, is easy to see; the reasoning was captured
by De Bruijn by Figure 5 that we have copied from his memorandum.

This  example a l s o  shows t h a t  CR n e i t h e r  fo l lows  from WDP2 where WDP 2 
i s  s l i g h t l y  s t r o n g e r  than WDP and says:" if  x  > y  and x  > z then  w e x i s t s  

* * I 
such t h a t  y  > w and z > w and a t  l e a s t  one of y  > w and z > w". Stronger  

aga in  i s  WDP3, expressing:I t i f  x  > y  and x  > z then  w e x i s t s  such t h a t  y  >*  w 

and z > w." This  WDP3 does imply CR. Ac tua l ly  WDP3 impl ies  WDP4, which says: 
* * * * 

" i f  x  > y  and x  > z then  w e x i s t s  such t h a t  bo th  y > w and z > w." This  
* * 

WDP i s  t h e  DP f o r  (S, > ) ,  and t h e r e f o r e  impl ies  CR f o r  (S,> ) ,  and t h a t  4  
i s  t h e  same th ing  a s  CR f o r  (S,  > ) .  The d e r i v a t i o n  of WDP4 from WDP i s  3  
i l l u s t r a t e d  by t h e  fo l lowing  p i c t u r e  ( c f .  C29 p. 59) which speaks f o r  i t s e l f :  

I n  t h i s  no te  we go cons iderably  f u r t h e r .  In s t ead  of having j u s t  one 

r e l a t i o n  > we consider  a  s e t  of r e l a t i o n s  > where m i s  taken from an index m 
s e t  M. The i d e a  behind t h i s  i s  t h a t  i n  t h e  Church-Rosser theorem the  r e l a t i o n s  

r ep re sen t  lambda ca l cu lus  r educ t ions ;  t h e r e  may be r educ t ions  of va r ious  types ,  

and diamond p r o p e r t i e s  may depend on these  types .  It i s  our purpose t o  e s t a b l i s h  
weak diamond p r o p e r t i e s  which guarantee CR (where CR has t o  be  i n t e r p r e t e d  a s  i n  

s e c t i o n  4. 

2 .  The index s e t .  (My<) i s  a  well-ordered s e t .  That i s ,  t h e  o rde r  < i s  t o t a l  

( i . e .  i t  i s  t r a n s i t i v e ,  and f o r  a l l  m ,m we have e x a c t l y  one of m =m 1 2  1 2' m l  < m2' 
m < m and t h e r e  a r e  no i n f i n i t e d e s c e n d i n g  cha ins  m > m 2  1 ' 1 2  > m 3 >  " '  
Note t h a t  i n  M we do no t  have m < m y  i n  c o n s t r a s t  t o  what w i l l  be  assumed i n  S. 

There might be  use  f o r  ca ses  w i th  more genera l  (M; <), l i k e  p a r t i a l  o rde r  
w i th  descending cha in  condi t ion .  We s h a l l  no t  s tudy  such ex tens ions  i n  t h i s  note .  

3. The s e t  S w i th  i t s  o rde r  r e l a t i o n .  S i s  a  s e t ,  and f o r  each T E M  t h e r e  i s  a  

r e l a t i o n  > on S. The only t h i n g  we r e q u i r e  i s  t h a t  x  > x  f o r  a l l  x E  S  and a l l  m m 
m E M .  

For a l l  mcM we now in t roduce  two f u r t h e r  r e l a t i o n s  > and > . We say t h a t  m+ m- 
x  > y  i f  t h e r e  i s  a  f i n i t e  cha in  x=xO,x l ,  ... x  =y (poss ib ly  n=O x=y) and elem- m+ n 
e n t s  k ,  m y  ..., k  < m such t h a t  x  0 'kl x I >k2 . . . > x  And we say t h a t  n  k  n'  n 

Figure 5: De Bruijn’s illustration of diagram completion with WDP3: splitting occurs
only in one direction.

We are now ready to add more expressivity to the somewhat bare notion of
an ARS (A,→) with just one reduction relation →. To do this, we add labels
or indexes α ∈ I to the relations, where I is some index set. De Bruijn himself
suggests in the memorandum 78-08 that “indexed reduction relations may be

7



used to represent reduction relations in the lambda calculus of various types,
and diamond properties may depend on these types”.

2.2. Labeled Reduction

After our introduction of the notions that do not yet involve labels, we now
turn to the notions for labeled reductions. We start with defining an ‘indexed’
or ‘labeled’ abstract rewrite system.

Definition 2.3. An indexed ARSs A = (A, (→α)α∈I) consists of a set of A of
objects, and a family (→α)α∈I of relations →α ⊆ A×A indexed by some set I.

Let (→α)α∈I be a family of relations→α ⊆ A×A indexed by I, and > ⊆ I×I
an order on the index set. We define

→ =
⋃
α∈I
→α →<β =

⋃
α<β

→α →≤β =
⋃
α≤β

→α

for β ∈ I. Moreover, we write →<α or <β as shorthand for →<α ∪ →<β .
We now arrive at the weak diamond property of De Bruijn which is based

on the diagrams depicted in Figure 6. The colored arrows and lines inside the
diagram are only meant as a visual aid in understanding: green lines stand for
weak decrease (that is, ≥), red arrows for strict decrease (that is, >).

a b

c d

α

α ≤ α

< α α or ≡ < α

a b

c d

α

β < α

< β α or ≡ < α

for β < α

Figure 6: The weak diamond property. For peaks c ←α a →β b with α = β the left
diagram is required, and for β < α the right diagram..

Theorem 2.4 (Weak Diamond Property). Let A = (A, (→α)α∈I) be an ARS
with reduction relations indexed by a well-founded total order (I,>).

Assume that for every peak c←β a→α b with α = β or β < α, there exists
an elementary diagram joining this peak of one of the forms shown in Figure 6.
Then → is confluent.

In the present definition of De Bruijn, the weak diamond property requires
a total order >, but this is not essential and in Section 4 we will see how it can
be generalized to partial orders.
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3. De Bruijn’s Original Proof

We revive the truly amazing proof of Theorem 2.4 given by De Bruijn [5].
Large parts of the proof are rendered purely in the form of ‘diagram pasting’.
While each of the diagram completion steps is easy to check, the overall idea is
far from obvious. The basis of the proof is formed by the diagrams shown in
Figure 7; in De Bruijn’s note they looked as in Figure 8. The diagrams D1(m)
and D2(m, k) are those from the weak diamond property in Figure 6.

m

m ≤ m

< m m < m

D1(m)

m

k < m

< k m < m

D2(m, k)

< k m

≤ k < m

< k m < m

D3(m, k)

≤ h m

` < m

< k m < m

D4(m, k, `, h)

< m

< m m < m

< m

< m m < m

D5(m) < m

≤ m

< m

≤ m

D6(m)

≤ k

m

< m

≤ k m < m

≤ m

< m m < m

D7(m, k)

< m

m

< m

< m m < m

≤ m

< m m < m

D8(m)

Figure 7: The diagrams in the proof by De Bruijn; here h < k < m and ` ≤ m.

For large parts, we use the same wording and diagrams as De Bruijn. We
have corrected a few typos concerning indices in Figure 11 and Lemma 3.6. We
have slightly extended the proof Lemma 3.8 with an extra diagram in Figure 14
providing more details on the completion of the central part of the diagram.
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6. Some a u x i l i a r y  diamond p r o p e r t i e s .  We in t end  t o  show t h a t  Dl(m) and 

D,(m,k) ( f o r  a l l  m,k wi th  k  <m)  lead  t o  CR. In  order  t o  achieve t h i s  
L 

we formulate  a  number of diamond p r o p e r t i e s  t h a t  w i l l  p lay  a  r81e i n  t he  

The diagrams D and D w i l l  p l ay  t h e i r  r81e only i f  k  < m, and D only i f  3 7 4 
h < k' < m ,  1 r m. 

x > y i f  t h e r e  i s  a  cha in  x=x 0 >kl  x I >k2 ... > x = y wi th  k  e m y  
m- k  n  n  1 

k < m .  Again t h i s  inc ludes  t h e  case  t h a t  n=O, x=y, even i n  t h e  case  t h a t  n  
m i s  t h e  minimal element of M and no k  w i t h  k '  < m  e x i s t .  Note t h a t  i f  x  > m- y  

then  (x=y) v 3 
~ E M ~ I C  < m  'k+ 

4. The p r o p e r t i e s  CR(m). We w r i t e  x  - y if k c M  e x i s t s  wi th  k  < m and m 
x  > y o r  y  >k x.  We w r i t e  x  - y  i f  mcM e x i s t s  w i th  x  - y. I n  o t h e r  k  m 
words, x  - y  means t h a t  k c M  e x i s t s  such t h a t  x  >k y  o r  y  >k x. 

Let  mcM. We say  t h a t  CR(m) holds  i f  f o r  every f i n i t e  sequence 

x  x  - . . . - x t h e r e  e x i s t s  z  such t h a t  bo th  x  >m+ z  and x > z. 1 m  2 m  m n  1 n  m+ 
We say  t h a t  CR holds  i f  f o r  every f i n i t e  sequence x l U x 2  ...- x n  

t h e r e  e x i s t s  z  such t h a t  both x l  >m+ z a n d x  > Z f o r s o m e m .  n  m+ 
Obviously CR i s  equ iva l en t  t o  V CR(m) . meM 

5. The b a s i c  diamond p r o p e r t i e s .  I f   EM, the  diamond proper ty  D 1 (m) i s  
def ined  by t h e  fol lowing diagram. 

D l  (m) : 

m+ 9;- 
m- 

This has  t o  be  read  a s  fo l lows  (and f u r t h e r  diagrams have t o  be i n t e r -  

p re ted  analogously: I f  x , y , z  a r e  such t h a t  x  >m y ,  x  > z ,  then  u,v,w e x i s t  m 
such t h a t  

( so  on t h e  l e f t  we have a  cha in  from y  t o  w w i th  a l l  l i n k s  5 m; on the  r i g h t  

we have a  cha in  from z  t o  w wi th  a l l  l i n k s  I m bu t  w i th  a t  most one = m). 
Note t h a t  Dl(m) i s  a  g e n e r a l i z a t i o n  of WDP and not  of WDP ( s e e  s e c t i o n  3 - 2 

1 ) .  We g e t  WDP a s  a  s p e c i a l  case  of D (m) i f  m i s  t h e  minimal element of M 3 1 
and i f  > i s  j u s t  w r i t t e n  a s  > . m 

The second diamond proper ty  t o  be considered depends on two elements m,k 

of M ,  w i t h  k < m. I t s  diagram i s  

6. Some a u x i l i a r y  diamond p r o p e r t i e s .  We in t end  t o  show t h a t  Dl(m) and 

D,(m,k) ( f o r  a l l  m,k wi th  k  <m)  lead  t o  CR. In  order  t o  achieve t h i s  
L 

we formulate  a  number of diamond p r o p e r t i e s  t h a t  w i l l  p lay  a  r81e i n  t he  

The diagrams D and D w i l l  p l ay  t h e i r  r81e only i f  k  < m, and D only i f  3 7 4 
h < k' < m ,  1 r m. 

Figure 8: An excerpt from De Bruijn’s original note.
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The proof of De Bruijn [5] employs Huet’s strong confluence lemma [8], see
Figure 9, called WDP3 or SC in Figure 3.

Lemma 3.1. The property ← · → ⊆� · ← implies confluence of →.

Figure 9: Strong Confluence.

Assumption. Throughout this section we assume that D1(m) holds for all
m and D2(m, k) for all m, k with k < m.

Definition 3.2. For m ∈ I we define

CR(m) = �≤m ·�≤m ⊆�≤m ·�≤m
CR∗(m) = ∀k < m. CR(m)

Then the following lemma is immediate.

Lemma 3.3. If for all m ∈ I we have CR(m), then we have CR.

In his note, De Bruijn erroneously states the equivalence of CR with ∀m.CR(m),
but equivalence does not hold as is easily seen. His proof remains correct, as it
only requires the implication ⇐.

Lemma 3.4. Let m, k, `, h ∈ I with h < k < m and ` ≤ k. Assume D3(m, τ)
for all τ ∈ I with τ < k, and D3(σ, τ) for all σ, τ ∈ I with τ < σ < m.
Furthermore assume CR∗(m). Then we have D4(m, k, `, h).

Proof. For ` ≤ h, the argument is shown in Figure 10. For h < ` we use
induction with respect to h by means of the diagram in Figure 11. Here IH
stands for ‘induction hypothesis’.

≤ h

m

`

≤ h

< k

m

< m

< m

≤ h

CR(h)

D3(m,h)

Figure 10: Proof of Lemma 3.4 for the case ` ≤ h.
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≤ h

m

`

< h ` < `

< `

< `

< `

m

< m

< m

< m < m

< h

m

< m

< `

m

< m
< m

< `

< m

D3(`, h)

D3(m,h)

(IH) if �<h

on the left
is non-empty

D2(m, `)
otherwise

CR∗(`)

CR∗(m)

D3(m,< `)

Figure 11: Proof of Lemma 3.4 for the case ` > h.

Lemma 3.5. Let m, k ∈ I with k < m. Then we have

( CR∗(m) ∧ ∀` ≤ k, h < k. D4(m, k, `, h) ) =⇒ D3(m, k)

Proof. The proof uses induction on the length of the reduction �≤k in the
diagram D3(m, k). For length 0 there is nothing to be shown. For length n+ 1
we have →n+1

≤k =→` · →n
≤k for some ` ≤ k. Then the peak of D3(m, k) can be

completed as in Figure 12.

< k

m

` ≤ k

< m < m

< k

m

< m

< m

< k

m

< m

< m

D4(m, k, `, h)
or D2(m, `)

(IH)

CR∗(m)

Figure 12: Proof of Lemma 3.5 where h is the maximum index of the rewrite sequence
�<k on the left; if empty, use D2(m, `).

Lemma 3.6. Let m ∈ I. Assume CR∗(m) and assume that for all h ∈ I with
h < m, we have D3(m,h). Then D5(m).

Proof. It suffices to prove the diagram in Figure 13 (left) for all h < m. (Note
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≤ h

≤ h

m

< m

< m

< m

m

< m

≤ h

≤ h

m

< m

< m

≤ h

< h

m

< m

< m

≤ h

< m

CR(h)

CR∗(m)

D3(m,h)

Figure 13: Proof of Lemma 3.6; diagram to be proven (left), and the proof (right).

that if m is the minimal element of I then the branches labeled with < m or ≤ h
are empty, and there is nothing to be proved.) The proof is given by Figure 13
(right).

Lemma 3.7. For all m ∈ I, D5(m) implies D6(m).

Proof. We have �≤m = (�<m · →m ·�<m)∗. By induction on n and using
D5(m) it follows that (�<m · ←m ·�<m)n·�<m ⊆ �<m ·�≤m for all
n ∈ N.

Lemma 3.8. Let m, k ∈ I with k < m. Assume CR∗(m), D5(m), D6(m) and
D3(m,h) for all h < m. Then we have D7(m, k).

Proof. We apply induction with respect to k, assuming D7(m,h) for all h < k.
Then the proof is displayed in Figure 14.

Lemma 3.9. Let m ∈ I and assume D7(m, k) for all k < m. Then we have
CR(m).

Proof. Since D7(m, k) for all k < m, we have the diagram D8(m) (if there are no
k < m, we apply D1(m)). Define =�<m · →m ·�<m We have�≤m = ∗,
and by D8(m) we get  · ⊆  ∗ ·  . Thus  is confluent by Lemma 3.1,
and hence we have CR(m).

Theorem 3.10. For all m ∈ I we have CR(m).

Proof. Assume that the theorem is false. Then we have an m such that CR∗(m)
is true, but CR(m) false. We cannot have D3(m,h) for all h < m, for then we
would have D5(m) by Lemma 3.6, D6(m) by Lemma 3.7, and then Lemmas 3.8
and 3.9 would lead to CR(m). So there is some k < m such that D3(m, k) is
false. Let n be the smallest element of I for which j ∈ I exists with j < n and
D3(n, j) false. Next let i be the smallest element such that D3(n, i) is false.
Note that n ≤ m and i < n. By Lemma 3.5 we have ` and h such that ` ≤ i,
h < i. and D4(n, i, `, h) is false. Now Lemma 3.4 leads to a contradiction.
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≤ k m < m

≤ k

m

< m

≤ m < m

< m

m

< m

≤ k
≤ k

< k

m

< m

< m

< k m < m

< m

< m

m

< m

< m

≤ m

CR(k)

D3(m, k)

D3(m, k)

D6(m)

D5(m)
(IH) or

diagram in
Figure 15

Figure 14: The proof of Lemma 3.8. The application of induction hypothesis (IH)
takes h as the maximum label of the adjoining �<k · �<k, and if this conversion is
empty, we apply the diagram in Figure 15.

m < m

m

< m

< m

m

< m≤ m

< m

m

< m

≤ m < m

< m

D1(m)

D6(m)

D5(m)

Figure 15: The proof of Lemma 3.8: the case of an empty peak �<k ·�<k.

4. Extending the Weak Diamond Property to Decreasing Diagrams

We will now show in two steps how De Bruijn’s weak diamond property the-
orem (WDP) can be ‘upgraded’ to Van Oostrom’s decreasing diagrams theorem
(DD). The first step is relaxing the totality (or linearity) requirement on the
order >. The second step symmetrizes the diagram so that we arrive at the
proper form of an elementary decreasing diagram in Figure 20.

4.1. From Total to Partial Orders

As a first step, we perform a trivial adaptation of the weak diamond property
which is vacuous for total orders, but yields a generalization after the switch
to partial orders. As the diagram on the right in Figure 6 is only required
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for β < α, we may replace ‘< α’ by ‘< α or ≤ β’. The result is depicted in
Figure 16 (adaptations are highlighted using a yellow marker).

a b

c d

α

α ≤ α

< α α or ≡ < α

a b

c d

α

β < α or ≤ β

< β α or ≡ < α
or ≤ β

for β < α

Figure 16: The weak diamond property with a, for total orders, vacuous adaptation.

In order to make the weak diamond property applicable for partial orders
it suffices to replace the condition β < α by ¬(α ≤ β). The result is shown in
Figure 17. The idea is that any well-founded partial order > can be extended
to a well-founded total order �, and then β ≺ α can hold only if not α ≤ β. We
provide a more elaborate discussion of the extension in Remark 4.2 below.

a b

c d

α

α ≤ α

< α α or ≡ < α

a b

c d

α

β < α or ≤ β

< β α or ≡ < α
or ≤ β

for α 6≤ β

Figure 17: The weak diamond property for partial orders (I,>); the changes with
respect to the weak diamond property have been highlighted using a yellow marker.

We arrive at the following theorem:

Theorem 4.1 (Weak Diamond Property for Partial Orders). Let A be an in-
dexed ARS (A, (→α)α∈I) with reduction relations indexed by a well-founded par-
tial order (I,>). If for every peak of the form c←α a→α b can be joined as in
Figure 17 (left), and every peak c ←β a →α b such that α 6< β and α 6= β can
be joined as in Figure 17 (right), then → is confluent.

Remark 4.2. While this upgrade to allow for partial orders is in essence el-
ementary, at the same time there is some subtlety involved, and therefore we
provide some more details of the reasoning. So we have a (well-founded) partial
order > on the labels α, β, γ, . . ., extended to a (well-founded) total or linear
order �. We thus have the following facts:

(i) α < β =⇒ α ≺ β
(ii) α = β ∨ β ≺ α ∨ α ≺ β (trichotomy for ≺)
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(iii) α = β ∨ α 6≤ β ∨ β 6≤ α (trichotomy for ≤)

(iv) β ≺ α =⇒ α 6≤ β

Here (i)–(iii) are immediate from the definitions, and (iv) follows simply: Sup-
pose β ≺ α and α ≤ β. Then β 6= α by irreflexivity of ≺, so α < β, and hence
α ≺ β, contradiction.

Now the key of the present argument is in the analogy between (ii) and
(iii), together with (iv). Suppose that we have diagrams as in Figure 17 at our
disposal to be used for pasting or tiling by inserting them in peaks. There are
three types of tiles: the one with α versus α, the one with β versus α under the
condition α 6≤ β, and the symmetric one with β versus α under the condition
β 6≤ α. This corresponds to the trichotomy (iii) above, so we have enough tiles,
all cases are covered. We are still in the framework with the partial order <, but
now we extend < to the total order ≺, for which we have the trichotomy (ii).
Now we observe that in the process of extending < to ≺, the requirements on
the labels γ at the converging sides of the tiles, are translated neatly into the
requirements for the tiles figuring in De Bruijn’s weak diamond theorem. Let us
check this. The left tile in Figure 17 is easy: γ < α becomes γ ≺ α, and γ ≤ α
becomes γ � α. The subtlety is in translating the rightmost tile in Figure 17
into a De Bruijn tile with the total order ≺. Consider a peak with labels α, β.
If α = β we use the leftmost tile in Figure 17, which we recognized already to
be a De Bruijn tile. Otherwise, by trichotomy for ≺, we have either β ≺ α or
α ≺ β. In the first case, we have by (iv): α 6≤ β. Then we take accordingly
the rightmost tile in Figure 17, which had the condition α 6≤ β. Now we can
‘transpose’ the requirements: γ < β becomes γ ≺ β, and γ < α ∨ γ ≤ β
becomes first γ ≺ α ∨ γ � β, and this literally boils down to just γ ≺ α
because β ≺ α so that γ � β is superfluous (γ � β and β ≺ α imply γ ≺ α).
In the other case, α ≺ β, we perform symmetrically. The result is in both cases
the rightmost De Bruijn tile in the framework of ≺, so that CR is implied.

Remark 4.3. In general, extending partial to total orders typically requires the
Axiom of Choice (or equivalently Zorn’s lemma). For the present situation, the
extension of the weak diamond property to partial orders, we do not need this
axiom or lemma. Namely, the order (I,>) can be turned into a total order by
replacing each α ∈ I by its order type (the ordinal corresponding to the height
of α in the order >).

Remark 4.4. As a historical remark pertaining to the issue of upgrading from
total to partial order, we mention that the second author included in his letter of
March 5, 1990 to De Bruijn the diagrams as in Figure 18 where the order is now
allowed to be partial. The assertion was stated that these diagrams also yield CR
and indeed constitute a generalization of De Bruijn’s weak diamond property.
CR is implied if every peak can be closed by diagram 1, or diagram 2, or both
diagrams 3 and 4, see below. For joining two converging reductions by pasting
elementary diagrams this means: when confronted with a peak ←m · →k, we
have either a ‘tile’ of the form 1 available, or one of the form 2, or we are given
both a tile 3 and a tile 4 together. In that third case we have ourselves a choice
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to use tile 3 or 4. That De Bruijn’s weak diamond property is a corollary of
these diagrams is straightforward. We note that the present diagrams have an
aspect also present in WDP3 (SC), strong confluence; namely in the conjunction
3 ∧ 4.

a b

c d

k

m < k

< m k
or ≡

< k

1 a

c

b

d

m

k

< m

< k

m or ≡

< m

2

a b

c d

k

m ≤ k

< m k
or ≡

< k

3 a

c

b

d

m

k

≤ m

< k

m or ≡

< m

4

Figure 18: These diagrams entail CR as follows: 1∨2∨(3∧4) =⇒ CR. The diagrams
1 and 2 correspond with the right diagram in Figure 6 (single green line), while 3 and
4 correspond with the left diagram in Figure 6 (double green line, double red arrow).

4.2. A Symmetric Diagram

We perform two transformation steps in order to obtain a symmetric version.
First, we fuse the two diagrams in Figure 17 to a single diagram. Allowing α = β
in the diagram on the right, we obtain the diagram on the left, except that ≤ β
in the bottom reduction must be replaced by the stricter condition < β. In
doing so, we obtain the diagram shown in Figure 19.

Finally, we obtain a symmetric diagram by noting that

< α

β or ≡

< β or < α

⊆ < α or ≤ β
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a b

c d

α

β < α or ≤ β

< β α or ≡ < α
or < β

for α 6< β

Figure 19: A single diagram version of the weak diamond property for partial orders.

which allows us to change the right-hand side of the diagram in Figure 19. Due
to the symmetry we can also drop the condition α 6< β. The resulting diagram in
Figure 20 is known as Van Oostrom’s decreasing elementary diagram introduced
in Van Oostrom [16, 17].

a b

c d

α

β

< α

β or ≡

< α or < β

< β α
or ≡

< α
or < β

Figure 20: Decreasing elementary diagram.

Theorem 4.5 (Decreasing Diagrams). Let A = (A, (→α)α∈I) be an ARS with
reduction relations indexed by a well-founded partial order (I,>).

Assume that for every peak c←β a→α b there exists an elementary diagram
joining this peak of the form shown in Figure 20. Then → is confluent.

Remark 4.6. Both the weak diamond property and decreasing diagrams treated
in this paper rely on a labeling of the edges in a reduction graph (rewrite steps).
Mirna Bognar remarked that it is also possible to label the points a ∈ A of the
ARS (A,→) rather than the steps a → a′. Such a point-labeled version of the
decreasing diagram theorem was given by her in the technical report [4].

4.3. Proving Decreasing Diagrams using the Weak Diamond Property

In Sections 4.1 and 4.2 we have seen how to derive the elementary decreasing
diagram from the weak diamond property. If we are only interested in a proof,
then the following shorter argument suffices.
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Roughly speaking, when switching from a partial to a total order, the struc-
ture on one of the sides of the decreasing diagram disappears, and the decreasing
diagram becomes a witness of the weak diamond property.

Proof of Theorem 4.5. Let (A, (→α)α∈I) and (I,>) fulfill the conditions of The-
orem 4.5. Let � ⊆ I × I be a total well-founded such that > ⊆ �. Consider a
peak c ←β a →α b together with a decreasing diagram joining this peak. For
β = α we obtain

lower side: �<β ◦ →≡α ◦�<α or <β ⊆ �≺α ◦ →≡α ◦�≺α
right side: �<α ◦ →≡β ◦�<α or <β ⊆ ��α

If β 6= α, we have β ≺ α or β � α. By symmetry we assume that β ≺ α. Then

lower side: �<β ◦ →≡α ◦�<α or <β ⊆ �≺β ◦ →≡α ◦�≺α
right side: �<α ◦ →≡β ◦�<α or <β ⊆ �≺α

Thus, in each case, the elementary decreasing diagram for c ←β a →α b with
respect to > is a witness of the weak diamond property with respect to �.

Remark 4.7. Let us mention a related remark of Hans Zantema (personal com-
munication during the PhD promotion of Van Oostrom in 1994). Hans Zantema
observed that a(n elementary) decreasing diagram stays valid when the order >
on the labels is extended. Thus the decreasing diagrams theorem only becomes
stronger when extending the well-founded order. Since every well-founded or-
der can be extended to a well-founded total order (using the Axiom of Choice),
it suffices to prove the decreasing diagrams theorem for well-founded total or-
ders. Hans Zantema posed the question whether totality could be exploited to
simplify the proof?

In some sense, we give a positive answer to this question. We observe that
when switching to a total order, the elementary decreasing diagrams become the
diagrams of the weak diamond property. Thus the decreasing diagrams theorem
can be obtained as a direct consequence of the weak diamond property (see the
proof above).

Again, as in Remark 4.3, for embedding the partial order into a total order,
we can do without the Axiom of Choice (or the lemma of Zorn).

5. A Proof of Decreasing Diagrams à la De Bruijn

In this section, we give a short proof that decreasing diagrams implies con-
fluence1. Similar to De Bruijn’s original proof, we employ a nested induction
and diagram pasting. However, our proof uses significantly less lemmas and
diagrams.

1We note that the proof can easily be adapted for the weak diamond property, yielding an
alternative proof for the weak diamond property, but still in the spirit of De Bruijn’s method.
We leave the adaptation to the reader.
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Proof of Confluence by Decreasing Diagrams. Let A = (A, (→α)α∈I) with a
well-founded order (I,>), and assume that (∗) for every peak c←β a→α b we
have a decreasing diagram. Without loss of generality we may assume that >
is total, idA ⊆ →α for all α ∈ I, and we have a bottom element ⊥ ∈ I and a
top element > ∈ I with→⊥ =→> = idA. The assumptions help to reduce case
distinctions in the proof. For α ∈ I, we define  α =�<α · →α ·�<α.

For α, β ∈ I, we let X(α, β) be the following diagram:

α < α

≤ β < α
or ≤ β

< β α < α

X(α, β)

For every α ∈ I we have that X(α, α) implies �≤α · →≤α ⊆ �≤α ·�≤α, and
thus confluence of→≤α. Hence, for confluence of→ it suffices to prove X(>,>).

We show X(α, β) for all α, β with β ≤ α by well-founded induction on (α, β)
in the lexicographic order with respect to >. Thus we may assume X(α′, β′) for
all β′ ≤ α′ ≤ α such that either α′ < α or β′ < β. Then we have:

(§1) The relation →≤γ is confluent for all γ < α.

We prove the following auxiliary claim:

(§2) �<β · n
β ⊆ n

β ·�<β for all n ∈ N.

By induction on n, we only need to consider the case n = 1. The proof is given
by the following diagram:

< β β < β

< β < β

< β < β β < β

< β(§1) X(β,<β)

This proves claim (§2).
Note that �≤β = ∗β . To prove X(α, β), we use induction on the length n

of the rewrite sequence σ : n
β on the left of X(α, β).

• For the base case n = 1, we have that σ is of the form σ :�≤β′ · →β ·�<β

with β′ < β. We use induction on β′. For an empty reduction �≤β′ (and
equivalently β′ = ⊥) the proof is given on the left, for β′ > ⊥ on the right:
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α < α

β

< β

< β α

< α

β

<
α < α

or ≤ β

< β

< β

< α

< β α < α < α

(∗)

(§1)

X(α,<β)

(§1)
if β < α

(§2)
if β = α

α < α

≤ β′

β

< β

< β′ α < α

< β′

β

< β

< α

< β < β α < α

< α
or
≤ β

X(α, β′)

X
(β
,β
′ )

(IH β′)

• The induction step n 7→ n+ 1 is as follows:

α < α

β

β

n

< α
or ≤ β

< β α < α < α

β

n

< α
or ≤ β

< β < β α < α

< α
or ≤ β

n = 1

(§2) (IH n)

(§1) for β < α,
(§2) for β = α

This concludes the proof of confluence by decreasing diagrams.

6. Completeness

6.1. Completeness for Confluence

The weak diamond property and the decreasing diagram theorem have many
applications. Newman’s Lemma [12], stating that WCR ∧ SN =⇒ CR where
SN (strong normalization) is the property that there are no infinite reductions
sequences a0 → a1 → a2 . . . in (A,→) is a corollary, and so is Huet’s SC (strong
confluence) lemma. Several other well-known abstract confluence lemma’s are
also corollaries [16, 15]. Thus the question arises how far this method to prove
CR reaches. To consider this question we define:

Definition 6.1. Let A = (A,→) be an unlabeled ARS, and A′ = (A, (→α)α∈I)
be a labeled ARS with the same objects and labeled reduction relations→α such
that → =

⋃
α∈I →α. Then A′ is called labeled version of A.

We state the following definition for decreasing diagrams, but it generalizes
in the obvious way to the weak diamond property.

Definition 6.2. An ARS A has the property DCR, decreasing Church-Rosser,
if there is a labeled version A′ of A for which we have decreasing elementary
diagrams (that is, every peak c ←β a →α b can be closed in the form of a
decreasing elementary diagram).
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So the decreasing diagrams technique can now be stated as

DCR =⇒ CR

And this raises the question whether also the reverse CR =⇒ DCR holds,
in other words, whether the decreasing diagram method, or the weak diamond
property, is complete: DCR ⇐⇒ CR.

Van Oostrom [17] has shown that this equivalence holds for countable A.
For general A this question is still open. The completeness for countable ARSs
A is a corollary of the decreasing diagram theorem together with the theorem
in [10] stating that for countable ARSs A we have CR ⇐⇒ CP where CP
(cofinality property) asserts for all a ∈ A, the existence of a cofinal reduction
sequence a = a0 → a1 → a2 . . . that overtakes every finite reduction of a in the
following sense: if a� a′, then there exists n ∈ N such that a′ � an.

It is easy to see that CP =⇒ CR always holds. And if A is countable,
it is not hard to use CR to construct for every a ∈ A a cofinal reduction.
For uncountable A this is not always possible: [9] gives the counterexample
A = (ℵ1,→) where ℵ1 is the first uncountable cardinal number, which is by
definition the set of countable ordinals, and where the reduction relation → is
defined by α→ β ⇐⇒ α < β. This A is CR, but CP fails, due to elementary
properties of ordinals (ℵ1 does not have cofinality character ω). Note that
(ℵ1, <) does satisfy DCR, since we have DP (diamond property).

In fact we have for every ARS CP =⇒ DCR. For the proof we refer to [15,
Prop. 14.2.30]. So, summarizing the above, we have for countable ARSs:

CP ⇐⇒ DCR ⇐⇒ CR

The completeness of DCR for countable ARSs is a pleasant state of affairs, since
most ‘relevant’ ARSs will be countable, among them ARSs obtained from term
rewriting systems over a countable signature, such as various lambda calculi,
the original concern of De Bruijn.

a b

c d

α

β < α or < β

< α or < β

Figure 21: Strictly decreasing diagram: a simple, complete elementary diagram.

Actually, when we are looking for a method to prove CR that is complete for
countable ARSs, we can adopt a slightly simpler form of decreasing diagrams,
that we call a strictly decreasing diagram depicted in Figure 21. We write SDCR
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(strictly decreasing Church-Rosser) if we have DCR on the basis of strictly de-
creasing diagrams (which also are decreasing diagrams, trivially). An inspection
of the proof of [15, Prop. 14.2.30], to which we just referred, shows that we can
upgrade our completeness statement above as follows: For all countable ARSs,

CP ⇐⇒ SDCR ⇐⇒ DCR ⇐⇒ CR

As mentioned above, the following remains an open problem:

Open Problem 6.3. Is the decreasing diagram method complete:

DCR ⇐⇒ CR ?

Following Van Oostrom, we conjecture that the answer is no. As a step
towards a counterexample for completeness it may be fruitful to first show that
the simpler strictly decreasing diagrams technique is not complete in general:

Question 6.4. Is the strictly decreasing diagram method complete:

SDCR ⇐⇒ CR ?

6.2. Incompleteness for Commutation

In this subsection we will mention an observation about commuting reduc-
tion relations. We define:

Definition 6.5. Let→, ⊆ A×A be relations on a set A. Then→ commutes
with  if ←∗ · ∗ ⊆ ∗ · ←∗.

Again following Van Oostrom, given a situation with reduction relations
→, , it is natural to attempt to prove commutation in a similar fashion as in
this paper, by elementary commutation diagrams involving the relations →, ,
and pasting of such diagrams. Elementary diagrams for commutation consist of
peaks of the form ← · with joining reductions  ∗ ·�.

The decreasing diagram technique can also be used for proving commutation,
see [16]; the elementary decreasing diagram for commutation looks as shown in
Figure 22.

As we have seen, the decreasing diagrams technique is complete for countable
systems. For the more general commutation, the situation is more involved. We
will see that any method that tries to complete diverging reductions ←∗ ·  ∗
using only local commutation diagrams is bound to be incomplete, even for
finite abstract rewrite systems. In particular, no such method can complete the
diverging reductions a′ ← a b b′ in the rewrite system shown in Figure 23.

An infinite counterexample was found at the International School on Rewrit-
ing 2008 (ISR) in Obergurgl, Austria by the first author and Clemens Grab-
mayer; it was subsequently simplified by Vincent van Oostrom to the finite
one shown in Figure 23. Note the resemblance for the case of single reduction
relations (not labeled) with the ARS in Figure 4.
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a b

c d

α

β

< α

β or ≡

< α or < β

< β α
or ≡

< α
or < β

Figure 22: Decreasing elementary diagram for proving commutation.

a ba′ b′

c

Figure 23: Incompleteness for commutation.

Theorem 6.6. Any method for proving commutation, that is based on joining
coinitial reductions by pasting elementary commutation diagrams, is incomplete
(even for finite abstract reduction systems).

Proof. We consider the ARS in Figure 23, that is a  b  b′ → c and b →
a → a′  c. It is easy to check that → commutes with →. Nevertheless,
the coinitial reductions a′ ← a  b  b′ cannot be joined by pasting local
commutation diagrams.

a b b′

a′

The only way to join the peak a′ ← a b using reductions of the form  ∗ ·�
is a′ ← a← b. Thus we obtain a′ ← a← b b′:

a b b′

a′ a′

a

≡

Now the peak a← b b′ can only be joined by a b b′:
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a b b′

a′ a′

a

≡

b′b
≡

Now we are exactly where we started from: a′ ← a b b′. Thus there is
no way to join this reduction using local commutation diagrams.
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