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Abstract. The Chinese monoid, related to Knuth’s Plactic monoid, is
of great interest in algebraic combinatorics. Both are ternary monoids,
generated by relations between words of three symbols. The relations
are, for a totally ordered alphabet, cba = cab = bca if a ≤ b ≤ c. In
this note we establish confluence by tiling for the Chinese monoid, with
the consequence that every two words u, v have extensions to a common
word: ∀u, v. ∃x, y. ux = vy.
Our proof is given using decreasing diagrams, a method for obtaining
confluence that is central in abstract rewriting theory. Decreasing dia-
grams may also be applicable to various related monoid presentations.
We conclude with some open questions for the monoids considered.

Dedication. Our paper is dedicated in friendship to Catuscia Palamidessi
for her 60th anniversary, with fond memories of the second author of cooper-
ations during her stays around 1990 at CWI Amsterdam; with admiration for
her work and accomplishments.

1 Introduction

This paper is concerned with the Chinese monoid which is the quotient of the free
monoid over a totally ordered alphabet with respect to the congruence generated
by

cba = cab = bca for every a ≤ b ≤ c .

These relations are equivalent to

aba = baa, bba = bab for every a < b,

cab = cba = bca for every a < b < c .
(1)

The Chinese monoid plays an important role in algebra and combinatorics. It is
closely related to the Plactic monoid of Knuth [16] generated by

aba = baa, bba = bab for every a < b,

cab = acb, bca = bac for every a < b < c .
(2)

For the case of two generators, the Chinese monoid coincides with the Plactic
monoid. Knuth devised the equations (2) in 1970 to analyse Schensted’s algo-
rithm [21] for finding the longest increasing subsequence of a sequence of integers.



The term ‘Plactic monoid’ has been coined by Lascoux & Schützenberger [18,
17]. Their theory of the Plactic monoid became an important tool in various
combinatorial contexts (see further [4, 3, 12]). For an analysis of monoids using
advanced rewriting techniques, see [11, 19]. A quantum perspective on the Plac-
tic monoid has been discovered by Date, Jimbo and Miwa [5], 20 years after the
equations have been suggested by Knuth. In 1995, Leclerc and Thibon [20] have
obtained a quantum characterisation of the Plactic monoid, showing that the
Plactic monoid can be interpreted as a maximal torus for the quantum group
Uq(gl(n,C)). It is likely that the Chinese monoid plays a similar role for another
quantum group (see further [5]).

Our contribution

In this note we use decreasing diagrams, a technique from abstract rewriting
theory, to establish confluence by tiling for the Chinese monoid. So for all words
u, v there exist extensions x, y such that ux = vy.

Abstract rewriting theory is an initial part of term rewriting (see [8]) where
the structure of the objects is disregarded. An abstract reduction system is just
a set equipped with binary ‘reduction’ relations. A seminal result in abstract
rewriting is the classical Newman’s lemma that yields confluence (CR) as a
consequence of termination (SN) together with local confluence (WCR or weak
Church-Rosser).

Decreasing diagrams ([6, 23, 22, 8, 10]) is a method to prove CR that vastly
improves Newman’s Lemma, which is one its many corollaries. The technique
employs a labelling of the steps with labels from a well-founded partial order
in order to conclude confluence of the underlying unlabelled relation. Decreas-
ing diagrams are complete for proving confluence of countable systems.3 The
challenge typically is finding a suitable (decreasing) labelling of the steps.

Somewhat surprisingly, for the Chinese monoid the natural labelling of the
steps turns out to be immediately suitable for the application of decreasing dia-
grams. This is in contrast to the Plactic monoid and the Braid monoid. For n > 2
the usual monoid presentation for the Plactic monoid does not admit a straight-
forward confluence by tiling proof via decreasing diagrams. Yet, confluence by
tiling may also be valid there, analogous to the case of braids. The well-known
braid presentation does also not admit for its ‘canonical’ tiles an application
of decreasing diagrams. Nevertheless confluence by tiling does hold there for its
canonical tiles, and it can be proven using decreasing diagrams employing a more
complex labelling [9].

3 Already two labels suffice for proving confluence using decreasing diagrams of every
countable abstract reduction system [10]. The completeness for uncountable systems
remains a long-standing open problem [23]. For proving commutation (a generalisa-
tion of confluence involving two relations) decreasing diagrams are not complete, as
established in [8].
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Related work

Cassaigne, Espie, Krob, Novelli and Hivert [4] study combinatorial properties
of the Chinese monoid. In particular, they determine the size and structure
of the convertibility classes. Karpuz [14] gives a complete rewriting system for
convertibility, obtained by critical pair completion.

2 Reduction diagrams for monoids

In the theory of abstract rewriting systems (ARSs) we often apply the technique
of constructing reduction diagrams by gluing together ‘elementary diagrams’
(e.d.’s) or ‘tiles’ to obtain a finite, completed reduction diagram of which the
convergent sides yield the desired confluent reductions. Also in the theory of
braids and Garside monoids this is an important tool, there called ‘word revers-
ing’, see Dehornoy [7].

As a preparation for the main section of this note where we prove confluence
for the Chinese monoid Cn on n generators, we introduce this method, somewhat
informally, guided by a few examples of monoids. More complete expositions of
reduction diagram construction can be found in [22, 1, 9]. In the latter paper the
exposition is for positive braid words.

Example 1. Consider the monoid with two generators 1, 2 and relations

121 = 211 221 = 212

This is actually the Chinese monoid C2 on two generators, which coincides with
the Plactic monoid P2 on two generators. In Sections 4 and 5 we will consider
these monoids Cn and Pn in the general case with n generators.

Suppose we are interested in the confluence question for this monoid:

∀u, v. ∃x, y. ux = vy ?

where u, v, x, y are elements of C2, and ‘=’ is the monoid equality. Actually, we
work with u, v, x, y as words in { 1, 2 }∗, subject to the equality generated by the
two relations above. In this way we are dealing with string rewriting, see Book
& Otto [2]. To address the confluence question, we now invoke the technique of
constructing reduction diagrams.

1

2
2

1

1 1

2

2
2

1

1 2

Fig. 1. Tiles for C2 and P2.
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The relations 121 = 211 and 221 = 212 can be rendered as the elementary
diagrams (e.d.’s) shown in Figure 1. Of these two basic tiles we have an infinite
supply of copies, which moreover are scalable, horizontally and vertically.

We can now address the question for common extensions x, y for e.g. u = 12
and v = 222 by constructing the diagram D0 in Figure 2.

D0 2 2 2

1

2

2 1

1

1

2 1

1

1

2 1

1

1

2 1

1

1 1

2 1

1

1

γ
2 1

η

1

2 1

1

1

γ

1 1

1 2

2

1

α 1 1

2

1

β
1

2 1
1 γ

2 1

η

γ

1

η η

2 1

η

Fig. 2. Completed reduction diagram in C2. Proper tiles are blue, trivial tiles involving
empty steps are grey.

The result of this diagram construction is

12 12121 = 222 1111

In fact, the completed diagram contains also the actual conversion between
1212121 and 2221111:

2221111 =

2212111 =

2211211 =

2211121 =

2121121 =

2112121 =

1212121
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This can be seen by traversing the diagram from the right-upper corner and
flipping repeatedly an elementary tile. We suppressed the conversion steps cor-
responding to the trivial tiles with their empty sides; these steps would involve
the unit element ε of the monoid and equations such as 1ε = ε1 and εε = εε.

This example diagram evokes some clarifying comments:

(i) Note that for every ‘open corner’ or ‘peak’ in a stage of the construction we
have a matching tile, for 1-against-1, 1-against-2, 2-against-2, 1-against-ε,
2-against-ε and ε-against-ε. Such a set of tiles is called full.

(ii) Tiles γ, of 1-against-1, are called absorption tiles. Also tile β, 2-against-2, is
an absorption tile.

(iii) The set of tiles is non-deterministic: for an open corner 2-against-2 there are
two choices to glue, the absorption tile β, or the tile α. Both are used in the
construction of the diagram D0.

(iv) Note the role of the ‘degenerate’ or ‘trivial’ tiles η, involving 2 or 4 empty
steps ε. They serve to propagate steps to the right and downwards, and to
keep the diagram in orthogonal shape.

(v) D0 is a completed reduction diagram; no open corners i-against-j are left
open.

The next example exhibits an infinite, cyclic reduction diagram.

Example 2. Consider the monoid

〈a, b | ab = bba〉

Here we have the single elementary diagram, apart from the trivial ones, as
follows (see Figure 3). This gives rise to the infinite cyclic reduction diagram,
which is a well-known counterexample in abstract rewriting. It shows that in
Newman’s Lemma, mentioned above, see also [13], the condition SN cannot be
missed.

b

a

b

a

b

D1 b

a

b

a

b

a

b a

b

D1

Fig. 3. Cyclic reduction diagram.

Example 3. A similar cyclic diagram construction (see Figure 4) is exhibited by
the monoid

〈a, b | aba = bba〉
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b

a

b
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b a

D2 b

a

b

a

b a

a

b a

b

a

D2

Fig. 4. Another cyclic reduction diagram.

Example 4. An interesting cyclic diagram construction (see Figure 5) is found
in the Artin-Tits monoid, as mentioned in [7]:

〈1, 2, 3 | 121 = 212, 232 = 323, 131, 313〉

In fact, this monoid describes braids on three strands that are placed on a
cylinder.

D3 2

1

1

2

2 1

3

3 1

1

3

D4

D4 3

2

2

3

3 2

1

1 2

2

1

D5

D5 1

3

3

1

1 3

2

2 3

3

2

D3

Fig. 5. Cyclic diagram in the Artin-Tits monoid.

Example 5. Consider the monoid

〈1, 2 | 121 = 211, 121 = 221〉
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This presentation with its two elementary diagrams (in addition to the trivial
ones) exhibits the phenomenon that already a proper part of the set of elemen-
tary diagrams may be sufficient for successful reduction diagram completion,
while the whole set may admit an unsuccessful, diverging diagram construction,
by yielding a cyclic diagram or an otherwise infinite diagram.

For the present example the left e.d., together with the two absorption e.d.’s
for a-against-a and b-against-b is sufficient; as we will see later this is so because
it is a decreasing diagram. But the e.d. on the right may lead to infinite, cyclic
diagrams as witnessed by Example 3.

This leads us to define:

Definition 6. Let T be a set of elementary diagrams:

1. T is called sufficient for confluence by tiling, for short sufficient, if for every
pair of finite reductions σ set against τ , some gluing sequence leads to a
completed reduction diagram D(σ, τ) using tiles from T .

2. T is called strongly sufficient for confluence by tiling, for short strongly suf-
ficient, if for every pair of finite reductions σ set against τ , every glueing
sequence leads eventually to a completed reduction diagram D(σ, τ) using
tiles from T .

3 Decreasing diagrams

In the preceding section we have seen that, when we are lucky, confluence can
be obtained by tiling, that is, the construction of completed reduction diagrams
by repeatedly gluing a tile to a partially completed reduction diagram. However,
sometimes this procedure fails. The process of tiling can be infinite without ever
completing the reduction diagram, as the cyclic diagrams showed.

The decreasing diagrams technique ([6, 23, 22, 8, 10]) is one of the strongest
techniques for guaranteeing that tiling will succeed (terminate and yield a com-
pleted reduction diagram). To guarantee termination of tiling, the technique
employs a labelling on the steps (together with a well-founded ordering < on
the label set I), and it restricts the choice of tiles for gluing to ‘decreasing ele-
mentary diagrams’ as shown in Figure 6.

Definition 7 (Indexed abstract reduction system). An indexed abstract
reduction system (ARS) A = 〈A, {→i}i∈I〉 consists of a set of objects A, an
index set I, and a binary relation →i ⊆ A×A for every i ∈ I. We write → for
the union

⋃
i∈I →i of all the reduction relations.

Notation 8 For < ⊆ I × I, we define →<α =
⋃
β<α →β and moreover

→<α∪<β =→<α ∪ →<β.
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a

cb

αβ

< α

β or =

< α ∪ < β

< β

α or =

< α ∪ < β

Fig. 6. The red arrows and green lines inside the diagram are intended as a visual
aid. The red arrows stand for a strict decrease of the labels (multiple incoming arrows
signify choice) while the green lines indicate a label carrying over unchanged. The
double-headed arrows � are the transitive-reflexive closure of the one-step reduction
relation →.

Definition 9 (Decreasing elementary diagrams). Let A = 〈A, {→i}i∈I〉 be
an ARS and < ⊆ I × I a well-founded partial order. A reduction diagram of the
form shown in Figure 6 is called a decreasing elementary diagram for the peak
c←β a→α b.

Theorem 10 (Decreasing diagrams [6, 23]). Let A = 〈A, {→i}i∈I〉 be an
ARS and < ⊆ I × I a well-founded partial order. Let T be a set of decreasing
elementary diagrams that contains at least one elementary diagram for each peak
in A. Then T is strongly sufficient for confluence by tiling of A.

Example 11. The following is a list of the relations between ternary words over
the alphabet { 1, 2 } whose corresponding elementary diagrams are decreasing,
with respect to the ordering 1 < 2:

211 = 111 121 = 211 212 = 212

212 = 211 221 = 211 221 = 221

221 = 212 212 = 112

Note the last two symmetrical equations with identical sides; in a presentation
they would be useless, but they do give rise to decreasing tiles.

Also note the sensitivity with respect to the chosen ordering: for the ordering
2 < 1 none of the tiles corresponding to the equations as listed below would be
decreasing.

Finally, note that equations 211 = 112 and 121 = 221, obtained from the
listed ones by transitivity, are not decreasing (for 1 < 2).

Example 12. Earlier we considered the presentation of the monoid

〈a, b | ab = bba〉
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called in [7, p.73, Example 4.28], the Baumslag-Solitar monoid, having a cyclic
diverging diagram for its canonical tiles, which is in different notation also in-
cluded there. The corresponding tile, left in Figure 4, is therefore not decreasing,
for no order on { a, b }.

A caveat may be in order here: at other places in the literature Baumslag-
Solitar monoids are said to have the presentation

〈a, b | ab = bak〉

Note that the latter presentations for all k, do not have a diverging reduction
diagram, as the canonical tiles are examples of decreasing diagrams, for b > a.
(For a > b they are not decreasing, for k > 1.)

4 Confluence of the Chinese monoid

Let Σ be an alphabet equipped with a total order <. Let = ⊆ Σ∗ ×Σ∗ be the
congruence generated by

aba = baa, bba = bab

for every a < b, and

cab = cba = bca

for every a < b < c.
So, ‘=’ is an equivalence relation (reflexive, symmetric and transitive) and

lxr = lyr whenever x = y is one of the equations above and l, r ∈ Σ∗.

Notation 13 For a word x ∈ Σ∗, we write x= for { y ∈ Σ∗ | x = y }, the
equivalence class of x. For a set X ⊆ Σ∗ of words, let X= = {x= | x ∈ X }.

The (right) word extension in the Chinese monoid can be viewed as an ab-
stract reduction system as follows.

Definition 14. The (right) word extension ARS C for the Chinese monoid over
〈Σ,<〉 is

C = 〈Σ∗=, {→i}i∈Σ〉

where, for every i ∈ Σ, the relation →i is defined by

w= →i (wi)=

for every w ∈ Σ∗.

The ARS C has elementary diagrams as given in Definition 15. These dia-
grams arise naturally from the defining equations above of the Chinese monoid.

9



Definition 15 (Elementary diagrams for the Chinese monoid). For the
Chinese monoid over a totally ordered alphabet, we have the following elementary
diagrams

b

a
a

a

b a

b

b
a

b

b a

for every a < b, and

c

b
b

a

c a

c

b
a

b

c a

c

c
a

b

b a

for every a < b < c, and trivial elementary diagrams

a

a a a

a

a

for every a. Here the dotted lines without arrowhead stand for empty steps.

The application of decreasing diagrams for proving confluence typically re-
quires

(a) a careful choice of the labelling of the steps, and
(b) a careful choice of the elementary diagrams (if there are multiple ways to

join a peak).

Somewhat surprisingly, for the Chinese monoid, neither of these steps is nec-
essary. It turns out that the natural labelling of the steps with letters from Σ
suffices to make all elementary diagrams in Definition 15 decreasing.

Proposition 16. All elementary diagrams in Definition 15 are decreasing ele-
mentary diagrams with respect to the order < on Σ.

Proof. The trivial elementary diagrams are decreasing for every ordering on the
labels. So it suffices to consider the non-trivial elementary diagrams. These are:

b

a
a

a

b a

b

b
a

b

b a
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for every a < b, and

c

b
b

a

c a

c

b
a

b

c a

c

c
a

b

b a

for every a < b < c.
All five of these configurations are allowed by the shape of decreasing ele-

mentary diagrams shown in Figure 6. Just like in Figure 6 we have used red
arrows and green lines inside the elementary diagrams as a visual aid. The red
arrows indicate a strict decrease of the label, while the green lines signify a label
carrying over unchanged.

Theorem 17. The set of elementary diagrams in Definition 15 is strongly suf-
ficient for confluence by tiling for C (i.e., for confluence of right word extension
in the Chinese monoid).

Proof. By Proposition 16 all elementary diagrams in Definition 15 are decreasing.
Moreover, this set of elementary diagrams is exhaustive in the sense that, for
every peak in C, there exists a matching elementary diagram: it is a full set of
tiles. Thus Theorem 10 is applicable.

Actually, the two diagrams for a < b in Figure 7 would suffice for establishing
confluence. However, the two corresponding equations are not suitable for the
intended monoid presentation, as they do not generate the whole equality.

b

a
a

a

b a

a

a

Fig. 7. Subset of tiles sufficient for confluence by tiling for Cn.

The point of Theorem 17 is not merely the confluence property. The crucial
observation is that tiling of reduction diagrams always succeeds with the tiles
from Definition 15 independent of the gluing strategy. As all these diagrams are
decreasing, tiling is always guaranteed to terminate.

5 Confluence of the Plactic monoid

In the last section we have established confluence for the Chinese monoid Cn.
We have as a corollary also the confluence of the Plactic monoid Pn, somewhat
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trivially. We show this for the case n = 3; the general case then follows easily.
Consider the table in Figure 8. For the Chinese monoid C3 we have the 8 relations
in the left column which gives (together with the trivial tiles involving 2 or 4
empty sides) a nondeterministic, full set of tiles, all of which are decreasing
(blue). The grouping shows the nondeterministic choices that are possible when
gluing the tiles together towards a completed diagram.

211 = 121 211 = 121 (?)

231 = 213

221 = 212 221 = 212

321 = 231

312 = 231

322 = 232 322 = 232 (?)

233 = 323

311 = 131 311 = 131 (?)

132 = 312

332 = 323 332 = 323

331 = 313 331 = 313

Fig. 8. Relations of C3 (left) and P3 (right). Blue is decreasing for the natural order-
ing, red non-decreasing. Common relations are underlined. The three starred ones are
already sufficient for confluence of P3, they correspond to the two tiles in Figure 7, but
do not generate the whole equality of P3.

For the Plactic monoid P3 we have the 9 relations as in the second column
of Figure 8, where blue is decreasing and red non-decreasing.

The 6 underlined equations in both columns are the intersection between the
ones of C3 and P3. This intersection corresponds to a full set of decreasing tiles,
also nondeterministic. It follows that this set is also for P3 a sufficient set of tiles.
Hence also P3 is confluent.

The same remark as above for Cn applies: already the three (?) equations
shared with Cn together with the two absorption tiles for 1-against-1 and 2-
against-2 are sufficient for confluence. But note that this trio of equations does
not generate the whole equality in C3, nor in P3.

An interesting question is whether the set of tiles for P3 is also strongly
sufficient. We have not been able to find a diverging reduction diagram for P3;
we conjecture that it does not exist, so that the set of tiles is strongly sufficient.
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6 Conclusions and further questions

1. We have applied the technique of constructing reduction diagrams, conflu-
ence by tiling, and decreasing diagrams to the important Chinese and Plactic
monoid, obtaining confluence in the sense of having common extensions of
elements of these monoids, in analogy to the braids monoid. For braids there
is moreover an equivalence between convertibility of braid words and Lévy’s
projection equivalence. For Cn and Pn this is more complicated because their
sets of tiles are nondeterministic, admitting choices in the diagram comple-
tion. Therefore the notion of ‘projection’ is not defined unequivocally.

2. A question is whether the full set of tiles for the Plactic monoid is also
strongly sufficient, as is the case for the Chinese monoid.

3. An important question is how the various notions such as confluence, con-
fluence by tiling are dependent on the actual presentation of monoids. These
presentations can be varied by applying Tietze moves. Some notions are
known to be ‘absolute’ in this respect, they hold for every presentation, and
thus are properties of the monoid and not merely of the monoid presenta-
tion. Having finite derivation type is such an important absolute property
(see [15].) We expect that confluence is also an absolute property. For con-
fluence by tiling the absoluteness is also an interesting question.

4. For the braids monoid an interesting fact is that the usual presentation can be
via Tietze moves transformed to consist of short relations, sometimes called
Ore-conditions. These are of the form a = bc or ab = cd. The corresponding
tiles are then non-splitting, i.e. have converging sides consisting of a single
step or an empty step ε. Confluence by tiling is then trivial, as all tiles are
simple squares.
We wonder whether also the Chinese and Plactic monoid possess such a
presentation with only short relations.

5. Another question is whether the confluence property for monoid presenta-
tions is decidable; and the same for the stronger property of confluence by
tiling.

6. The infinite diagrams arising from some monoid presentations such as the
Baumslag-Solitar monoid in Figure 3 and the Artin-Tits monoid in Figure 5
are intriguing objects themselves. The examples of infinite reduction dia-
grams seen above are all cyclic, involving a proper copy of themselves. Two
questions arise: are there also non-cyclic infinite reduction diagrams arising
from the tiles of monoids?
A second question concerns the finite and infinite traces that arise in infinite
diagrams starting at the root of the diagram, the left-upper corner. Are the
sets of infinite traces arising from infinite diagrams for monoid presentations,
as seems to be the case in the examples considered above, always ω-regular
languages? We offer this puzzle happily to Catuscia!

Applications of confluence by tiling, possibly combined with an application of
decreasing diagrams, certainly does not stop with the Chinese monoid. Various
other monoids can be subjected to an analysis with these two tools, confluence
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by tiling and decreasing diagrams. We hope to demonstrate this in subsequent
work.
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