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Abstract
We study the complexity of deciding the equality of infinite objects
specified by systems of equations, and of infinite objects specified
by λ-terms. For equational specifications there are several natural
notions of equality: equality in all models, equality of the sets of so-
lutions, and equality of normal forms for productive specifications.
For λ-terms we investigate Böhm-tree equality and various notions
of observational equality. We pinpoint the complexity of each of
these notions in the arithmetical or analytical hierarchy.

We show that the complexity of deciding equality in all models
subsumes the entire analytical hierarchy. This holds already for the
most simple infinite objects, viz. streams over {0, 1}, and stands in
sharp contrast to the low arithmetical Π0

2-completeness of equal-
ity of equationally specified streams derived in [17] employing a
different notion of equality.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics; F.1.3 [Computation by Abstract De-
vices]: Complexity Measures and Classes; F.1.1 [Models of Com-
putation]; F.4 [Mathematical Logic and Formal Languages]

Keywords Infinite objects, equational specifications, lambda terms,
equality, semantics, complexity.

1. Introduction
In the last two decades interest has grown towards infinite data, as
witnessed by the application of type theory to infinite objects [5],
as well as the emergence of coalgebraic techniques for infinite data
types like streams [19], infinitary term rewriting and infinitary
lambda calculus [24]. In functional programming, the use of infinite
data structures dates back to 1976, see [11, 14].

We are concerned with the complexity of deciding the equality
of infinite objects specified by systems of equations, and infinite
objects specified by λ-terms. The equational specification of infi-

0 The technical report supporting this paper can be found on arxiv.org
under the same title.
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nite objects is common practice in coalgebra, term rewriting and
functional programming. Consider an example from [17]:

zeros = 0 : zeros ones = 1 : ones

blink = 0 : 1 : blink zip(x : σ, τ) = x : zip(τ, σ)

}
(1)

This is an equational specification of three infinite lists of bits, and
a binary function over infinite lists.1 Then, a typical question is
whether the following equality holds:

zip(zeros, ones) = blink (2)

The answer depends on the semantics we choose to interpret the
equality; for example (2) is not valid in the hidden models con-
sidered in [17]; for more details we refer to Section 2. In order to
answer such a question, we first need to settle on the precise se-
mantics of equality for equational specifications; the candidates we
consider in this paper are

I. Equality in all models.

II. Equality of the set of solutions.

For λ-terms we are not concerned with equality in the sense
of convertibility (which is known to be Π0

2-complete, see [1]).
Instead, we are interested in behavioral equivalence of λ-terms
in all contexts, because this corresponds to the interchangeability
of expressions in purely functional languages. It is also closely
related to referential transparency, and the notion of Böhm trees as
values of expressions including those without normal form. Thus
we consider the following equivalences for λ-terms:

III. Observational equivalences.

IV. Böhm-tree equality.

The ‘right’ choice of equivalence depends on the intended appli-
cation. The classic semantics mentioned in items I and II above, are
defined by model-theoretic means. From a algebraic perspective I
and II are the most natural semantics to consider for equational
reasoning. On the other hand, III and IV, are defined by means
of evaluation, i.e., rewriting. In functional programming the latter
are of foremost importance, because these take (lazy) evaluation
strategies into account. From an evaluation perspective, two terms
are equal if they have the same observable behavior, independent of
the context they are in. In contrast to the model-theoretic notions,
this equality is invariant under the exchange of meaningless sub-
terms, that is, subterms which cannot be evaluated to a (weak) head

1 In Haskell there is zip :: [a] → [b] → [(a, b)], but we prefer to use ‘zip’
for the interleaving of lists, as defined by the equation in (1), since that is
what a zipper does: it interleaves rows of teeth.



normal form. Another candidate for the semantics of equality is

V. Equality of normal forms for productive specifications.

A rewrite specification is productive [9, 23] if the terms under con-
sideration can be fully evaluated, that is, (outermost-fair) rewriting
yields a (possibly infinite) constructor normal form in the limit. In
such a setting, equality of the normal forms is a suitable semantics
for the equivalence of terms. Deciding the equality of productive
specifications has been shown to be a Π0

1-complete problem in [13];
this semantics is not considered here.

We now briefly describe the concepts I–IV.

Equality in models (I and II). The semantics I (equality in all
models) is useful when the objects under consideration are speci-
fied in the same specification. This semantics interprets the objects
simultaneously in each model satisfying the specification. This al-
lows us to compare objects that depend on a common unknown,
an underspecified object; see (4) below for an illustrating example.
If the objects under consideration are fully specified, that is, have
unique solutions, then semantics I coincides with semantics II.

In contrast to I, semantics II is more suitable for comparing ob-
jects specified by different specifications, as we explain below. The
objects are compared via the set of their solutions (in their respec-
tive specifications). This semantics is well-known from equations
over real (or complex) numbers, where two equations, like

(x− 1)2 − 1 = 0 and x2 − 2x = 0 ,

are equivalent if they have the same solutions for x, here {0, 2}.
A Σ-algebraA consists of a carrier setA (the domain ofA) and

an interpretation [[·]] of the symbols Σ occurring in the equational
specification as functions over A. Then A is called a model of an
equational specification E, which we denote by A |= E, if all
equations ofE respect the interpretation; that is, for every equation
of E both sides have the same interpretation for every assignment
of the variables. As the domain we will typically choose (a subset
of) the final coalgebra [21] describing the class of objects we are
specifying. The final coalgebra ensures that the model is continu-
ous, that is, if we have a converging sequence of terms t1, t2, . . .
with limit tω , then the sequence of interpretations [[t1]], [[t2]], . . .
converges towards [[tω]]. For example, in a specification like

ones = 1 : ones ones′ = 1 : ones′ (3)

the symbols ones and ones′ are guaranteed to have the same inter-
pretation. Continuity is crucial to conclude the validity of equations
such as ones = ones′ which are not satisfied in non-continuous
models like the initial algebra of the specification.

Let E be a specification of M and N . Then M is considered
equal to N with respect to semantics I if every model of E is also
a model of M = N : ∀A. A |= E ⇒ A |= M = N . This
notion is especially of interest if M and N depend on a common
unknown and consequently have to be interpreted simultaneously
in the same model. For example in

M = zip(X,X) zip(x : σ, τ) = x : zip(τ, σ)

N = dup(X) dup(x : σ) = x : x : dup(σ)

}
(4)

the streams M and N are both specified in terms of an unspecified
streamX . Whatever interpretationX has,M andN are equal, and
so they are equal in the sense of semantics I.

On the other hand, semantics I has the effect that an underspec-
ified constant is not equivalent to its renamed copy. This is illus-
trated by the following specification:

M = 0 : tail(M) N = 0 : tail(N) (5)

Here M and N are not equal in every model; for example, let
[[M ]] = 0 : 0 : . . . and [[N ]] = 0 : 1 : 1 : . . .. Nevertheless, M and
N are equal in the sense that they exhibit the same behaviors. That

is, they have the same set of solutions: every stream starting with a
zero is a solution forM as well as forN . Thus,M andN are equal
with respect to the semantics II. This paves the way for comparing
objects M and N that are given by separate specifications EM
and EN , respectively. Note that it is not always suitable to apply
semantics I to the union EM ∪ EN even if the specifications have
disjoint signatures (using renaming), see further Remark 2.

Two objects M and N are equal with respect to semantics II if
the set of solutions of M in EM coincides with the set of solutions
of N in EN : { [[M ]]A | A |= EM } = { [[N ]]A | A |= EN } .
Here the set of solutions of a constant X in a specification EX is
the set of interpretations of X in all models of EX .

Observational equivalence (III and IV). In purely functional
languages based on the λ-calculus [1], the evaluation of expres-
sions is free of side effects. As a consequence, an expression (or
subexpression) can always be replaced by its normal form, the so-
called value of the expression. This principle is known as referen-
tial transparency. This also implies that expressions can be substi-
tuted for each other if they have the same normal form.

For specifications of coinductive objects, such as infinite lists
(called streams) or infinite trees, the value typically is an infinite
term. For example in ones = 1 : ones, the term ones has as value
(or infinite normal form) the infinite term 1 : 1 : 1 : . . .. However,
it is not always guaranteed that a term can be fully evaluated.
During the evaluation to the (possibly infinite) normal form, we
may encounter subterms that cannot be evaluated because these
subterms do not have a head normal form. In λ-calculus, such terms
are known as meaningless terms. For example, consider:

natsx(n) = n : g(0) : natsx(n+ 1) g(n) = g(n)

natsx′(n) = n : g(n) : natsx′(n+ 1)

Here g(n) is meaningless for every n. Consequently, natsx(0)
evaluates to a stream in which every second element is meaningless,
and therefore, undefined. An infinite value containing undefined
parts can be represented by means of Böhm trees [1] introduced in
1975 by Corrado Böhm. In particular, the Böhm tree of natsx(0) is:
0 : ⊥ : 1 : ⊥ : 2 : ⊥ : 3 : ⊥ : 4 : ⊥ : . . ., where ⊥ is a special
symbol representing an undefined element.

In λ-calculus (or orthogonal higher-order rewriting), terms with
equal Böhm trees can be exchanged (for each other) without chang-
ing the meaning of the whole expression. In the specification above,
natsx(0) and natsx′(0) have the same Böhm tree, and hence are
interchangeable. In contrast, from the model-theoretic perspective
natsx(0) and natsx′(0) are different. In every model of natsx(0) all
elements at odd indexes coincide, whereas natsx′(0) admits mod-
els that assign different interpretations to these elements. From a
rewriting as well as functional programming perspective, these dif-
ferences are irrelevant as they concern undefined subterms.

There are several notions of infinite values, depending on what
terms are considered meaningless, including Böhm trees, Lévy-
Longo trees, Berarducci trees, η-Böhm trees, η∞-Böhm trees; see
further [6]. The terms λx.xx and λx.x(λz.xz), for instance, have
distinct Böhm trees, but we may want to consider the terms be-
haviorally, or observationally equivalent as they are η-convertible.
There are several natural concepts of observational equivalence for
λ-calculus, where terms are considered equivalent if they yield the
same observations in every context. To that end, we consider three
forms of observations: normal forms (nf), head normal forms (hnf),
and weak head normal forms (whnf). A head normal form is a
λ-term of the form λx1. . . . λxn.yN1 . . . Nm with n,m ≥ 0. A
weak head normal form is an hnf or an abstraction, i.e., a whnf is a
term of the form xM1 . . .Mm or λx.M . Each of the observations
gives rise to an equivalence =nf , =hnf or =whnf , defined by

M =nf N iff (∀C. C[M ] has a nf iff C[N ] has a nf )



M =hnf N iff (∀C. C[M ] has a hnf iff C[N ] has a hnf )

M =whnf N iff (∀C. C[M ] has a whnf iff C[N ] has a whnf )

In fact, the equivalence =nf corresponds to η-Böhm trees, and
=hnf to η∞-Böhm trees. For more details we refer to [6], where
it is argued that =whnf corresponds to evaluation strategies used by
lazy functional languages. If two expressions behave the same in
every context, then no functional program can distinguish them.

Contribution. We characterize for each of the semantics I–IV the
complexity of deciding the equality of terms. For I and II we will
focus on equational specifications of bitstreams, and for III and IV
on behavioral equivalences of λ-terms and Böhm tree equality.

Each of these equivalences is undecidable, therefore we charac-
terize their complexity by means of the arithmetical and analytical
hierarchies, see Figure 1. The arithmetical hierarchy classifies the
complexity of a problem P by the minimum number of quantifier
alternations in first-order formulas that characterize P . The analyti-
cal hierarchy extends this classification to second-order arithmetic,
then counting the alternations of set quantifiers.

A It turns out that the complexities of deciding the equality
in all models as well as the equality of the set of solutions subsume
the entire arithmetical and analytical hierarchy when the domain
of the models is the set of all streams, so-called full models, see
Theorems 3 and 5. The idea of the proof is as follows. We translate
formulas of the analytical hierarchy into stream specifications by
representing ∀ set quantifiers by equations with variables. This sim-
ulates a quantification over all streams as the models are full, and
the equations have to hold for all assignments of the variables. The
∃ set quantifiers are eliminated in favor of Skolem functions (here
stream functions). The interpretation of the functions is determined
by the model, and the question whether there exists a model corre-
sponds to an existential quantification over all Skolem functions.

B & C If we admit models whose domain does not contain
all streams, then the complexity of deciding equality drops to the
level Π1

1 of the analytical hierarchy for semantics I, and to Π1
2 for II,

see Theorems 1, and 7. The reason is that equations with variables
no longer have to hold for all streams, but only for the streams that
exist in the model. By the Löwenheim-Skolem theorem we obtain
that if there exists a model, then there exists a countable model:
from an uncountable model we construct a countable one, by taking
the finitely many streams “of interest” and closing them under all
functions in the model. Thus, it suffices to quantify over countable
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Figure 1. Arithmetical (bottom) and analytical hierarchy (top).

models for which one single set quantifier is enough.
The aforementioned results already hold for bitstreams, one of

the simplest coinductive objects, and thereby can serve as a lower
bound on the hardness of the equality problem for other coinductive
objects. We also study the behavioral semantics from [17]. We find
that if behavioral equivalence ≡ is required to be a congruence,
like for example in [2], then the complexity of deciding behavioral
equivalence is catapulted out of the arithmetical hierarchy, to the
level Π1

1 of the analytical hierarchy, see Theorem 8. Likewise so for
the behavioural equivalence for specifications of streams of natural
numbers, relaxing the congruence requirement, see Theorem 9.

D For the equivalences on λ-terms, we show that deciding
the Böhm tree and Lévy–Longo tree equality, as well as the ob-
servational equivalences =nf , =hnf and =whnf are Π0

2-complete
problems, see Theorem 11. (It is clear that when an object is given
by a rewrite system, like the λ-calculus, then the complexity re-
sides in the arithmetical hierarchy, since it suffices to quantify over
a number steps to evaluate parts of the object.)

E Finally, we consider the complexity of unique solutions. A
term s has a unique solution within a specification E if there exists
models of E, and in all models of E, s has the same interpretation.
The problem of deciding unique solvability in all full models again
subsumes the analytical hierarchy, see Theorem 4. When also con-
sidering the non-full models, we find that the problem is Π1

1- and
Σ1

1-hard, but is strictly contained in ∆1
2, see Theorem 2.

Outline. We first discuss related work. We formally introduce bit-
stream specifications and stream models in Section 3, and Turing
machines with oracles in Section 4. We recall the basic complexity-
related notions in Section 5. We use these concepts in Section 6 to
derive the complexity results for the model-theoretic notions. In
Section 7 we consider a different notion of models, namely the be-
havioural semantics as in [17]. Finally, we investigate the observa-
tional equivalences of λ-terms in Section 8.

2. Related Work
The complexity of the equality of streams specified by systems of
equations has been investigated in the ICFP paper [17, Corollary
1]; we cite: Proving equality on streams defined equationally is a
Π0

2-complete problem. This result is based on a behavioral notion of
stream models [16]. We briefly summarize the main characteristics
of these models:

(i) Every stream σ ∈ {0, 1}ω can have multiple representatives in
the model (known as confusion).

(ii) For every equation ` = r it is required that the interpretations
[[`]] and [[r]] are behaviorally equivalent, denoted by ≡, that is,
equality under all [[head]]([[tail]]n(2)) experiments. In particu-
lar, it is not required that [[`]] = [[r]].

(iii) Behavioral equivalence ≡ is not required to be a congruence.

Behavioral models have a wide range of applications, for example
for modeling computations with hidden states, or capturing certain
forms of nondeterminism. For these applications it is often intended
that the semantics is not preserved under equational reasoning. For
example, consider the following specification from [17]

tail(push(σ)) = σ ,

specifying a function push that prefixes an element to the argument
stream, while leaving unspecified which element. In the behavioral
models we obtain a restricted form of nondeterminism [25], for
example, the following is not behaviorally satisfied:

push(tail(push(σ))) = push(σ) , (6)

although derivable by pure equational reasoning. For a nondeter-
ministic operation, it is of course desirable that (6) does not hold.



However, for function definitions employing pattern matching,
behavioral models sometimes yield unexpected results; consider:

ones = 1 : ones f(x : σ) = σ (7)

Now, there are models that satisfy the specification (7), but not (8):

f(ones) = ones (8)

In these models we have that [[ones]] 6= [[1 : ones]] and, at the same
time, that [[ones]] cannot be constructed by the stream construc-
tor [[:]], that is, [[ones]] 6= [[:]](x, s) for all x ∈ {0, 1} and s ∈ AS .
Consequently, the interpretation [[f]]([[ones]]) can be arbitrary.

Thus, behavioral reasoning is typically not sound for behavioral
models, and therefore the corresponding specifications are usually
referred to as behavioral specifications. In this paper we are inter-
ested in specifications where equational reasoning is sound.

Remark 1. We construct a behavioral model 〈A, [[·]]〉 in the sense
of [17] where specification (1) is behaviorally satisfied but the goal
equation zip(zeros, ones) = blink is not. The model thereby forms
a counterexample to [17, Example 2].

We define the domain by AB = {0, 1} and

AS = {zw | w ∈ {0, 1}∗} ∪ {ow | w ∈ {0, 1}∗} ∪ {0, 1}ω

Here zε and oε are alternative representations of 0ω and 1ω , respec-
tively, and zw and ow have an additional finite prefix w ∈ {0, 1}∗.
We define the interpretations [[·]] for every a ∈ {0, 1}, σ ∈ {0, 1}ω ,
w, v ∈ {0, 1}∗ and x, y ∈ AS . For [[head]] and [[tail]] we define:

[[head]](zε) = 0 [[head]](oε) = 1 [[head]](aσ) = a

[[tail]](zε) = zε [[tail]](oε) = oε [[tail]](aσ) = σ

[[head]](zaw) = a [[head]](oaw) = a

[[tail]](zaw) = zw [[tail]](oaw) = ow

We define the interpretation [[:]] of the stream constructor by:

[[:]](a, zw) = zaw [[:]](a, ow) = oaw [[:]](a, σ) = aσ

Note that the elements zε and oε cannot be constructed by [[:]].
We interpret [[zeros]], [[ones]] and [[blink]] as follows:

[[zeros]] = zε [[ones]] = oε [[blink]] = (01)ω

We define an auxiliary function 1 that (similar to zip) interleaves
the elements of finite or infinite words; for u1, u2 ∈ {0, 1}≤ω =
{0, 1}∗ ∪ {0, 1}ω , let au1 1 u2 = a(u2 1 u1) and ε 1 u2 = u2.
We now define the interpretation [[zip]] of the symbol zip as follows:

[[zip]](zw, ov) =

{
(w 1 v)0ω for |w| = |v|
(w 0ω) 1 (v 1ω) otherwise

[[zip]](ow, zv) =

{
(w 1 v)0ω for |w| = |v|+ 1

(w 1ω) 1 (v 0ω) otherwise

and in all other cases, we define [[zip]](x, y) = emb(x) 1 emb(y)
where emb(zw) = w0ω , emb(ow) = w1ω , and emb(σ) = σ.

It is straightforward to check that specification 1 is behaviorally
satisfied, whereas [[zip(zeros, ones)]] = 0ω 6≡ (01)ω = [[blink]].

The counterexample in Remark 1 employs the fact that the
behavioral models of [17] do not require that every stream can be
constructed by the (interpretation of the) stream constructor [[:]]. As
a consequence, the equation zip(x : σ, τ) = x : zip(τ, σ) does not
fully define [[zip]]; it defines [[zip]](σ, τ) only for those arguments σ
that can be constructed by [[:]].

The example illustrates that the behavioral models of [17] do
not go along with function definitions using pattern matching. To
fully define [[zip]], we can specify it using the stream destructors:
head(zip(σ, τ)) = head(σ), and tail(zip(σ, τ)) = zip(τ, tail(σ)).
This change of the specification format resolves the problem.

Alternatively, keeping the specification format, we can adapt the
notion of models. To reestablish soundness of equational reasoning
one can (i) exclude confusion or (ii) require that≡ is a congruence.
Note that the common models of streams are free of confusion:
final coalgebras [20], one-sided infinite wordsAω , and the function
space N → A. In hidden algebras [15], confusion is often allowed
but its negative effects are prevented by restricting to behavioral
models [2], in which behavioral equivalence is a congruence: s ≡
t⇒ f(. . . , s, . . .) ≡ f(. . . , t, . . .).

Our results show that when ≡ is required to be a congruence
(or confusion is eliminated), then the complexity of the equality of
bitstreams that are specified equationally jumps from the low level
Π0

2 of the arithmetical hierarchy to the level Π1
1 of the analytical

hierarchy, thereby exceeding the arithmetical hierarchy. Moreover,
we show that even for behavioral specifications with confusion (as
in [17]), equality of streams of natural numbers is Π1

1-complete.
Consequently, the results of [17] are valid only for bitstreams in
combination with the behavioral equality discussed above. For gen-
eral behavioral specifications (not the special case of stream speci-
fications), the Π1

1-completeness has been shown in [3].
Term rewriting systems are closely related to equational specifi-

cations. The complexity of deciding various standard properties of
term rewriting systems, such as productivity, termination and con-
fluence (Church–Rosser), has been investigated in [8, 10].

3. Bitstream Specifications
We will focus mainly on streams, one-sided infinite sequences of
symbols, the prime example of coinductive structures. There are
various ways of introducing streams: as functions N→ Amapping
an index n to the n-th element of the stream, as final coalgebras
over the functor X 7→ A × X , using coinductive types [12], or
observational models [2]. All these definitions are equivalent in the
sense that the resulting coalgebras are isomorphic.

For the model-theoretic semantics of equality, we will focus on
specifications of bitstreams, streams over the alphabet {0, 1}. Due
to their simplicity, bitstreams can be embedded in almost every
non-trivial coinductive structure. Specifications of bitstreams are
inherently sorted, with a sort B for bits, and a sort S for bitstreams.
To this end, we introduce sorted terms. Let S be a set of sorts; an
S-sorted set C is a family of sets {Cs}s∈S . Let C and D be S-
sorted sets. Then an S-sorted function (or map) from C to D is a
function f : C → D such that f(Cs) ⊆ Ds for all s ∈ S, that is,
a function that respects the sorts.

An S-sorted signature Σ is a set of symbols f ∈ Σ, each having
a type (s1, . . . , sn, s) ∈ Sn+1, denoted by f :: s1× . . .×sn → s,
where n is the arity of f . Let X be an S-sorted set of variables.
The S-sorted set of terms Ter(Σ,X ) is inductively defined by:

– Xs ⊆ Ter(Σ,X )s for every s ∈ S, and

– f(t1, . . . , tn) ∈ Ter(Σ,X )s if f :: s1×. . .×sn → s, f ∈ Σ,
and t1 ∈ Ter(Σ,X )s1 , . . . , tn ∈ Ter(Σ,X )sn .

An S-sorted equation ` = r consists of terms `, r ∈ Ter(Σ,X )s×
Ter(Σ,X )s for some s ∈ S.

Definition 1. A bitstream signature Σ is an S-sorted signature with
S = {B ,S} such that 0, 1, : ∈ Σ where 0, 1 :: B are called
bits, and the infix symbol ‘:’ of type B × S → S is the stream
constructor. An equational bitstream specification over Σ is a finite
set E of equations over Σ.

From now on we let S = {B ,S}.

Definition 2. A stream algebra A = 〈A, [[·]]〉 consists of:

(i) an S-sorted domain A; AB = {0, 1} and ∅ 6= AS ⊆ {0, 1}N,



(ii) for every f :: s1 × . . . × sn → s ∈ Σ an interpretation
[[f ]] : As1 × . . . Asn → As ,

(iii) : ∈ Σ with [[:]](x, σ) = x : σ,
(iv) 0, 1 ∈ Σ with [[0]] = 0 and [[1]] = 1.

The clause (iv) of the definition is optional; in fact, the results
in this paper are independent of its presence. We have included it
since the models where [[0]] = [[1]] are trivial, in the sense that then
all bitstreams are equal.

Definition 3. Let A = 〈A, [[·]]〉 be a stream algebra. Moreover, let
α : X → A be a variable assignment. As usual, the interpretation
of terms [[·]]Aα : Ter(Σ,X )→ A is defined inductively by:

[[x]]
A
α = α(x) [[f(t1, . . . , tn)]]Aα = [[f ]]([[t1]]

A
α , . . . , [[tn]]

A
α )

Then A is called a (stream) model of E if [[`]]α = [[r]]α for every
` = r ∈ E and α : X → A. We write [[·]]α for [[·]]Aα whenever A is
clear from the context. For ground terms t ∈ Ter(Σ,∅), we have
[[t]]α = [[t]]β for all assignments α, β; we then write [[t]] for short.

Thus, we interpret function symbols as functions over bits and
bitstreams as imposed by their sort. In particular, terms of type S
are interpreted as bitstreams. In contrast to [17], our setup does
not allow for confusion in the models. Recall that confusion means
that the models can contain multiple representatives for the same
stream.

Definition 4. We say that a modelA = 〈A, [[·]]〉 is full if its domain
contains all bitstreams, AS = {0, 1}N.

4. Turing Machines as Equational Specifications
We now define a set of standard equations (for bitstream specifica-
tions) that will be used throughout this paper:

zeros = 0 : zeros ones = 1 : ones

zip1(τ) = τ

zip2(x : τ1, τ2) = x : zip2(τ2, τ1)

zipn(τ1, . . . , τn) = zip2(τ1, zipn−1(τ2, . . . , τn)) (n > 2)

 (9)

To give an example, zip3(σ, τ, ρ) = σ(0) : τ(0) : σ(1) : ρ(0) :
σ(2) : τ(1) : σ(3) : ρ(1) : σ(4) : τ(2) : . . . , writing σ(i) for the
i’th entry of the stream σ.

We emphasize that all systems of equations in this paper are
finite. To that end, we extend the specifications only by those
equations from (9) that are needed by the specification, that is, the
equations zipn(. . .) = . . . for which a symbol zipm with n ≤ m
occurs in the specification.

Lemma 1. In every stream model A = 〈A, [[·]]〉 of a specification
including the equations from (9) we have:

(i) [[zeros]] = 0ω and [[ones]] = 1ω ,
(ii) for all σ1, . . . , σk ∈ AS , k ≥ 2 and n ∈ N:

[[zip1]](σ1) = σ1,
[[zipk]](σ1, . . . , σk)(2n) = σ1(n)
[[zipk]](σ1, . . . , σk)(2n+ 1) = [[zipk−1]](σ2, . . . , σk)(n)

A Turing machine M is a quadruple 〈Q,Γ, q0, δ〉 consisting of a
finite set of states Q, an initial state q0 ∈ Q, a finite alphabet Γ
containing a designated blank symbol 2, and a partial transition
function δ : Q× Γ ⇀ Q× Γ× {L,R}.

For convenience, we restrict Γ to the alphabet Γ = {0, 1}
where 0 is the blank symbol 2, and we denote Turing machines
by triples 〈Q, q0, δ〉. As input for the Turing machines we typically
use a unary number representation 11 . . . 1 (n-times) to encode the
number n. Of course, another encoding is possible, as long as the
encoding is computable, and the Turing machine is able to detect

the end of the input (since 0 is part of the input alphabet and it is
also the blank symbol).

We define a translation of Turing machines to equational spec-
ifications of bitstream functions, based on the standard translation
to term rewriting systems from [24]. However, we represent the
tape using streams instead of finite lists, and have one instead of
four rules for ‘extending’ the tape. In particular, the equation for
extending the tape is the equation for zeros from (9). The terms of
the shape q(σ, τ) represent configurations of the Turing machine,
where the stream τ contains the tape content below and right of the
head, and σ the tape content left of the head. Notably, the head of
the machine stands on the first symbol of τ .

Definition 5. Let M = 〈Q, q0, δ〉 be a Turing machine. We define
the specification EM to consist of the following equations:

q(x, b : y) = q′(b′ : x, y) for every δ(q, b) = 〈q′, b′, R〉
q(a : x, b : y) = q′(x, a : b′ : y) for every δ(q, b) = 〈q′, b′, L〉

and for halting configurations additionally:

q(x, b : y) = b whenever δ(q, b) undefined

with the signature Σ = {0, 1, :} ∪ Q with types q :: S × S → B
for every symbol q ∈ Q, and 0, 1 :: B and ‘:’ of type B × S → S .
Moreover, we useRM to denote the term rewriting system obtained
from EM by orienting all equations from left to right.

Apart from the additional rule for termination, the translation
RM is standard, and the rewrite rules model the transition relation
of Turing machines in one-to-one fashion. So we take the liberty
to define input of tuples 〈n1, . . . , nk〉 ∈ Nk and oracles directly
on the term representations. We pass k-tuples 〈n1, . . . , nk〉 ∈ Nk
of natural numbers as input to a Turing machine by choosing the
following start configuration q0(zeros, zipk+1(k, n1, . . . , nk))
where n stands for (1 :)n zeros. The particular encoding of tuples
is not crucial, but zipk+1(k, n1, . . . , nk) is for equational specifi-
cations more convenient than the Gödel encoding.

We obtain machines with oracles ξ1, . . . , ξm ⊆ N by writing
the oracles elementwise interleaved on the tape left of the head:

Notation 1. For n ∈ N we use n to abbreviate (1 :)n : zeros. For
ξ ⊆ N, we let ξ denote the stream χξ(0) : χξ(1) : χξ(2) : . . .
where χξ is the characteristic function of ξ. We write ~α short for
α1, . . . , αk and ~α for α1, . . . , αk if k is clear from the context.

For a term rewriting system R, we write→R for a rewrite step
with respect toR, and→∗R is the reflexive-transitive closure of→R.

Definition 6. Let M = 〈Q, q0, δ〉 be a Turing machine. Then for
stream terms ξ1, . . . , ξm :: S and n1, . . . , nk :: S , we define

M(ξ1, . . . , ξm;n1, . . . , nk) :=

q0(zipm(ξ1, . . . , ξm), zipk+1(k, n1, . . . , nk))

Definition 7. A Turing machine M = 〈Q, q0, δ〉 halts (with output
b) on inputs n1, . . . , nk ∈ N with oracles ξ1, . . . , ξm ⊆ N if there
is a rewrite sequence M(ξ1, . . . , ξm;n1, . . . , nk) →∗RM

b, where
b ∈ {0, 1}. Here ξ is short for the stream χξ(0) : χξ(1) : χξ(2) :
. . . where χξ is the characteristic function of ξ.

Note that the initial term is infinite due to the oracles, neverthe-
less we consider only finite reduction sequences. Due to the rules
for zipn and zeros, there are infinite rewrite sequences even if the
Turing machine halts. However, RM is orthogonal and therefore
outermost-fair rewriting (or lazy evaluation) is normalizing, that is,
computes the (unique) normal form b ∈ {0, 1} if it exists.

Definition 8. A k-ary predicate P with m oracles is a relation
P ⊆ ℘(N)m × Nk. Then P is called decidable if there is a Turing



machine M such that for all ~ξ ∈ ℘(N)m and ~n ∈ Nk: M halts on
input ~n with oracles ~ξ, and the output is 1 if and only if P (~ξ, ~n).

In correspondence with Definition 6 we define for ξ1, . . . , ξm,
n1, . . . , nk ∈ {0, 1}ω , [[M]](ξ1, . . . , ξm;n1, . . . , nk) as shorthand
for [[q0]]([[zipm]](ξ1, . . . , ξm), [[zipk+1]]([[k]], n1, . . . , nk)). Then
for the models of Turing machine specifications we have:

Lemma 2. Let P ⊆℘(N)m×Nk be decidable, and M = 〈Q, q0, δ〉
the corresponding Turing machine. Then in every stream model
A = 〈A, [[·]]〉 of a specification including the equations from (9)
and EM we have for every ~ξ ∈ ℘(N)m and ~n ∈ Nk: (~ξ, ~n) ∈ P if
and only if [[M]](ξ1, . . . , ξm;n1, . . . , nk) = 1.

Proof. P is decidable, hence M(ξ1, . . . , ξm;n1, . . . , nk) has a nf
in {0, 1}, and the normal form is 1 if and only if (~ξ, ~n) ∈ P .

5. Levels of Undecidability
We briefly introduce complexity related notions that are relevant for
this paper: promise problems, reducibility, hardness and complete-
ness, and the arithmetical and the analytical hierarchy. For more
details, we refer to the standard textbooks [18, 22].

Definition 9. Let A ⊆ P ⊆ N. The promise (membership)
problem for A with promise P is the question of deciding on the
input of n ∈ P whether n ∈ A. For the case P = N, we speak of
the membership problem for A.

We identify the membership problem for A with the set A
itself, and the promise problem for A with promise P with the pair
〈A,P 〉, also denoted by A|P .

Definition 10. Let A,B, P,Q ⊆ N. Then A|P can be (many-one)
reduced to B|Q, denoted A ≤ B, if there exists a partial recursive
function f : N ⇀ N such that P ⊆ domain(f), f(P ) ⊆ Q, and
∀n ∈ P. n ∈ A⇔ f(n) ∈ B.

Definition 11. LetB,Q ⊆ N andP ⊆ ℘(N)×℘(N). ThenB|Q is
called P-hard if everyA|P ∈ P can be reduced toB|Q. Moreover,
B|Q is P-complete if additionally B|Q can be reduced to some
A|P ∈ P .

We stress that Definition 11 does not require that a P-complete
promise problem B|Q is member of P itself. This allows for clas-
sifying promise problem using the usual arithmetic and analytical
hierarchy (for membership problems).

Lemma 3. If A|P can be reduced to B|Q and A|P is P-hard, then
B is P-hard.

We use 〈〈·〉〉 to denote the well-known Gödel encoding of finite
lists of numbers as elements of N: 〈〈n1, . . . , nk〉〉 := pn1+1

1 · . . . ·
p
nk+1
k , where p1 < p2 < . . . < pk are the first k prime numbers.

We define the arithmetical and analytical hierarchies:

Definition 12. Let Σ0
0 := Π0

0 := ∆0
0 be the collection of recursive

sets of natural numbers (the decidable problems). Then for n ≥ 1,
we define:

– Σ0
n consists of sets {n | ∃x∈N.〈〈x, n〉〉 ∈B}withB ∈ Π0

n−1,
– Π0

n consists of sets {n | ∀x∈N.〈〈x, n〉〉 ∈B}withB ∈ Σ0
n−1,

– ∆0
n := Σ0

n ∩Π0
n.

The arithmetical hierarchy consists of the classes Π0
n, Σ0

n and ∆0
n

for n ∈ N.

For example, the membership a ∈ A for every set A ∈ Π0
2 can

be defined by a formula of the form ∀x1.∃x2.∀x3.P (a, x1, x2, x3)
where P is a decidable predicate.

The analytical hierarchy extends this classification of sets to
formulas of the language of second-order arithmetic, that is, with

set (or equivalently function) quantifiers. The following definition
makes use of a result from recursion theory, see [18], stating that
if there is at least one set quantifier, then two number quantifiers
suffice (for functions quantifiers, one number quantifier suffices).

Definition 13. Let Σ1
0 := Π1

0 := ∆1
0 =

⋃
n∈N Π0

n be the set of all
arithmetic predicates. A set A ⊆ N is in Π1

n for n > 0 if there is a
decidable predicate P with m oracles such that for all a ∈ N:

a ∈ A ⇐⇒ ∀ξ1. ∃ξ2. . . .∃ξm. ∀x1. ∃x2. P (ξ1, . . . , ξn, a, x1, x2)

a ∈ A ⇐⇒ ∀ξ1. ∃ξ2. . . .∀ξm. ∃x1. ∀x2. P (ξ1, . . . , ξn, a, x1, x2)

for n even, and n odd, respectively. Here, ξ1, . . . , ξm ⊆ N, the
corresponding quantifiers are set quantifiers, and x1, x2 ∈ N with
number quantifiers. ThenA is in Σ1

n, if the condition holds with all
∀ and ∃ quantifiers swapped. Finally, ∆1

n = Π1
n ∩ Σ1

n.

6. Equality in Models
In this section we study the complexity of different model-theoretic
semantics of equivalence of bitstream specifications. Based on the
notion of models for bitstream specifications from Section 3, we
first formalize the equivalences that we consider.

For all of the following model-theoretic equivalences, we have
the choice whether or not we require the models to be full, that is,
their domain contains all bitstreams. For example, we can consider
the equality of terms in all models or in all full models:

Definition 14. Let E be a bitstream specification over Σ, and
s, t ∈ Ter(Σ,X ) with s, t :: S . Then s and t are said to be

– equal in all models of E if
A |= E implies A |= s = t for all stream algebras A ,

– equal in all full models of E if
A |= E implies A |= s = t for all full stream algebras A .

The set of solutions of a term s in a specification E is the set of
interpretations [[s]] of s in all models satisfying E:

Definition 15. Let E be a bitstream specification over Σ, and
s ∈ Ter(Σ,∅) with s :: S . Then the set of

– solutions of s in E with respect to all models is
[[s]]E = { [[s]]A | A |= E } ,

– solutions of s in E with respect to all full models is
[[s]]E, full = { [[s]]A | A full,A |= E } .

Here it suffices to consider only ground terms s ∈ Ter(Σ,∅).
For terms t ∈ Ter(Σ,X ) with variables, the set of solutions can be
defined as [[t]]E = { [[t]]Aα | A |= E,α : X → A }. However, then
[[t]]E = [[s]]E if s is the ground term obtained from t by interpreting
the variables in t as fresh constants (formally, this amounts to an
extension of the signature).

Definition 16. Let Es and Et be bitstream specifications over Σs
and Σt, respectively. Let s ∈ Ter(Σs,∅) and t ∈ Ter(Σt,∅).
Then s and t have

– equal solutions over all models if [[s]]Es
= [[t]]Et

,
– equal solutions over all full models if [[s]]Es, full = [[t]]Et, full.

Definition 17. Let E be bitstream specifications over Σ, and s ∈
Ter(Σ,∅). Then s is said to have

– a unique solution over all models if |[[s]]E | = 1,
– a unique solution over all full models if |[[s]]E, full| = 1,
– a solution over all models if |[[s]]E | ≥ 1,
– a solution over all full models if |[[s]]E, full| ≥ 1,
– at most one solution over all models if |[[s]]E | ≤ 1,



– at most one solution over all full models if |[[s]]E, full| ≤ 1.

6.1 Auxiliary Definitions
First, we define a few (systems of) equations that are repeatedly
used throughout this section. The following function iszeros that
maps zeros to ones and every other bitstreams to zeros:

iszeros(zeros) = ones iszeros(0 : σ) = iszeros(σ)

iszeros(1 : σ) = zeros

}
(10)

This function does exactly what its name suggests; it checks
whether the argument is the stream of zeros. We use the bit 0
or the stream zeros for false, and 1 and ones for true.

We focus on specifications of bitstreams, and encode streams
of natural numbers as bitstreams via the sequence of run-length of
ones. For instance, the stream 3 : 1 : 0 : 2 : . . . is encoded as
1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 : . . .. We then define
functions uhd and utl that are the unary counterpart for head and
tail on streams of natural numbers:

uhd(0 : σ) = zeros utl(0 : σ) = σ

uhd(1 : σ) = 1 : uhd(σ) utl(1 : σ) = utl(σ)

}
(11)

For instance, we have

uhd(1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : . . .) = 1 : 1 : 1 : zeros

utl(1 : 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 : . . .) = 1 : 0 : 0 : 1 : 1 : . . .

The following lemma summarizes these properties:

Lemma 4. In every stream model A = 〈A, [[·]]〉 of a specification
including the equations from (10) and (11) we have:

(i) [[iszeros]](0
ω) = 1ω ,

[[iszeros]](w) = 0ω for every w ∈ AS \ {0ω},
(ii) [[uhd]](1n 0w) = 1n 0ω for every w ∈ AS ,

[[uhd]](1ω) = 1ω ,
(iii) [[utl]](1n 0w) = w for every w ∈ AS .

Note that all interpretations are uniquely defined, apart from the
combination [[utl]](1ω) which can be any stream depending on the
model. To avoid this case, we need means to ensure that a certain
bitstream is a valid encoding of a stream of natural numbers, that
is, the stream contains infinitely many zeros:

natstr(ones) = zeros natstr(0 : σ) = 1 : natstr(σ)

natstr(1 : σ) = natstr(σ)

}
(12)

Then an equation natstr(X) = ones guarantees that [[X]] repre-
sents a stream of natural numbers:

Lemma 5. In every stream model A = 〈A, [[·]]〉 of a specification
including the equations from (12) we have: [[natstr]](w) = 1ω if
and only if w contains infinitely many zeros.

Proof. The equations on the right ‘walk’ over the stream, deleting
1’s and converting 0’s to 1’s. If the stream contains infinitely many
0’s, then an infinite stream of 1’s will be produced. However, if
some tail of the stream contains only 1’s then the equation on the
left ensures that the interpretation is unequal to 1ω .

Definition 18. Let M = 〈Q, q0, δ〉 be a Turing machine. Then the
canonical model A = 〈A, [[·]]〉 for the union of the specifications
EM, (9), (10), (11) and (12) consists of the domain AS = {0, 1}N
with interpretations [[·]] as given in Lemmas 4 and 5, extended by

(i) [[utl]](1ω) = 1ω ,
(ii) for every ξ1, . . . , ξm, n1, . . . , nk ⊆ N:

[[q]](~ξ, ~n) = 1 whenever [[q]](~ξ, ~n)→∗ 1, and
[[q]](~ξ, ~n) = 0 otherwise.

Lemma 6. The canonical model is a model of the union of the
equational specifications RM, (9), (10), (11) and (12).

Proof. The rewrite systemRM is orthogonal, consequently we have
finitary confluence and infinitary unique normal forms [24]. Hence,
we can employ a normal forms semantics for [[q]] (where we map
terms without normal forms to 0). For the remaining equations, it
is easy to see that the chosen semantics forms a model.

6.2 Equality in all Models
For the complexity of equality in all models we obtain:

Theorem 1. The following problem is Π1
1-complete:

INPUT: Bitstream specification E, terms s, t :: S .
QUESTION: Are s and t equal in all models of E?

Proof. The well-foundedness problem for decidable binary rela-
tions is known to be Π1

1-complete, that is, the problem of deciding
on the input of a decidable binary predicate M ⊆ N × N (given
in the form of a Turing machine), whether M is well-founded. We
reduce this problem to an equality problem. Let M ⊆ N × N be a
decidable predicate, and M = 〈Q, q0, δ〉 the corresponding Turing
machine. We define the following specification E:

S = iszeros(run(1,X)) natstr(X) = ones

run(0, σ) = ones

run(1, σ) = 0 : run(

Φ(σ)︷ ︸︸ ︷
M(zeros; uhd(σ), uhd(utl(σ))), utl(σ))

together with the equations from EM and (9), (10), (11) and (12).
We prove that: E |= S = zeros if and only if M is well-founded.

For ‘⇒’ let M be non-well-founded, and n0 M n1 M n2 M
. . . be an infinite chain. We construct a Σ-algebra A = 〈A, [[·]]〉
such thatA |= E but notA |= S = zeros. We defineA as an exten-
sion of the canonical model (Definition 18). The values of [[Φ(σ)]]
and [[utl(σ)]] are determined by the canonical model, and together
with the equations for run we obtain for every stream ξ ∈ {0, 1}ω:
[[run]](0, ξ) = 1ω , and [[run]](1, ξ) = 0 : [[run]]([[Φ(ξ)]], [[utl]](ξ)).
Hence, there is a unique interpretation [[run]] that results in a model
for the equations of run. We define κi = 1ni 0 1ni+1 0 1ni+2 . . ..
and we let n = 1n 0ω . Then for i ∈ N we have

[[run]](1, κi) = 0 : [[run]]([[Φ]](κi), κi+1)

= 0 : [[run]]([[M]](ni, ni+1), κi+1) = 0 : [[run]](1, κi+1)

since we have that [[uhd]](κj) = nj and [[utl]](κj) = κj+1 for
all j ∈ N by Lemma 4. Thus, [[run]](1, κ0) = 0ω . Let [[X]] = κ0

and [[S]] = 1ω . Then [[natstr]]([[X]]) = [[ones]] by Lemma 5, and
[[S]] = [[iszeros]]([[run]](1, [[X]])) by Lemma 4. We have constructed a
model, where [[S]] = 1ω , and, hence, E 6|= S = zeros.

For ‘⇐’ let M be well-founded. Let A be a Σ-algebra such
that A |= E. We show that [[S]] = 0ω . Since [[natstr]]([[X]]) =
[[ones]], [[X]] contains infinitely many zeros by Lemma 5. Thus,
[[X]] = 1n0 0 1n1 0 1n2 . . . for some n0, n1, n2, . . . ∈ N. Let
κi = 1ni 0 1ni+1 0 1ni+2 . . . for i ∈ N. Then

[[run]](1, κi) = 0 : [[run]]([[M]](ni, ni+1), κi+1)

=

{
[[run]](1, κi+1) if [[M]](ni, ni+1) = 1

[[run]](0, κi+1) = 1ω if [[M]](ni, ni+1) = 0

Hence, [[run]](1, [[X]]) = 0ω if and only if [[M]](ni, ni+1) = 1
for all i ∈ N. However, this would contradict well-foundedness
of M . As a consequence, we obtain that [[run]](1, [[X]]) 6= 0ω and
[[S]] = iszeros([[run]](1, [[X]])) = 0ω by Lemma 4. This concludes
the Π1

1-hardness proof.
To show Π1

1-membership, we resort to the Löwenheim–Skolem
theorem. It states that if a formula of first-order predicate logic has
an uncountable model, then it also has a countable model. Here,



we employ that the domain AS can be encoded as an arbitrary set
with functions [[head]] :: AS → {0, 1} and [[tail]] :: AS → AS

together with a first-order predicate logic formula that excludes
confusion, that is, elements a, b ∈ AS with [[head]][[tail]]n(a) =
[[head]][[tail]]n(b) for all n ∈ N are required to be equal, that is,
a = b. Likewise, the interpretations of the symbols in Σ can be
translated to first-order predicates, and validity of the equations to
first-order formulas. As a consequence,A |= E ∧ [[s]] 6= [[t]] can be
expressed as first-order formula, and if it has a model, then also a
countable one. Hence, it suffices in ∀A. A |= E ⇒ [[s]] = [[t]] to
quantify over countable models. For this purpose of quantifying
over countable models, a set quantifier ∀A ⊆ N suffices. This
proves Π1

1-membership.

The following three results are obtained by slight adaptations of
the proof of Theorem 1.

Theorem 2. The following problems:
INPUT: Bitstream specification E, ground term s :: S .

QUESTION: Does s have (i) at most one solution, (ii) a solution,
and (iii) a unique solution over all models of E?

are (i) Π1
1-complete, (ii) Σ1

1-complete, and (iii) Π1
1-hard, Σ1

1-hard
and strictly contained in ∆1

2.

6.3 Equality in all Full Models
In Section 6.2 we have considered models whose domain was any
non-empty set of bitstreams (AS ⊆ {0, 1}ω). However, when
writing equations such as even(x : y : τ) = x : even(τ), the
intended semantics is often that these equations should hold for all
streams, that is, in full models with domain AS = {0, 1}ω . We
find that the restriction to full models results in a huge jump of the
complexity, which then subsumes the entire analytical hierarchy.

To prepare for the proof, we introduce some auxiliary specifica-
tions. We define nat such that an equation nat(X) = ones guar-
antees that the interpretation [[X]] represents a natural number in
unary encoding, that is, [[X]] = 1n 0ω for n ∈ N, as follows:

nat(0 : 1 : σ) = zeros nat(1 : σ) = nat(σ)

nat(0 : 0 : σ) = nat(0 : σ) nat(ones) = zeros

}
(13)

Lemma 7. In every stream model A = 〈A, [[·]]〉 of a specification
including the equations from (13) we have: if [[nat]](w) = 1ω then
w = 1n 0ω for some n ∈ N.

Proof. If a stream is not of the format 1n 0ω for some n ∈ N then
it is 1ω or contains . . . 01 . . .. The last equation rules out the case
1ω (ensures that the interpretation is not 1ω).

The first three equations are exhaustive in the sense that every
stream can be matched by one of them. The first equation rules out
streams that contain a 1 after a 0, and the equations two and three
‘walk’ step by step over the stream (proceed with the tail).

We moreover define a function leq such that leq(X,Y ) = ones
guarantees that pointwise [[X]] ≤ [[Y ]]:

leq(0 : σ, x : τ) = leq(σ, τ)

leq(1 : σ, 1 : τ) = leq(σ, τ)

leq(1 : σ, 0 : τ) = zeros

 (14)

Lemma 8. In every stream model A = 〈A, [[·]]〉 of a specification
including the equations from (14) we have that if [[leq]](σ, τ) = 1ω ,
then σ is pointwise ≤ than τ (for all σ, τ ∈ AS ).

Lemmas 7 and 8 are valid for non-full models as well. As
explained in the introduction, the assumption of full models is
crucial to guarantee that equations with variables have to hold for
all streams (assigned to the variables) and not only the streams in
the model.

Theorem 3. The following problem subsumes the analytical hier-
archy:

INPUT: Bitstream specification E, terms s, t :: S .
QUESTION: Are s and t equal in all full models of E?

The idea of the proof is as follows. We translate formulas of the
analytical hierarchy into stream specifications by representing ∀ set
quantifiers by equations with variables. This simulates a quantifica-
tion over all streams as the models are full, and the equations have
to hold for all assignments of the variables.

The ∃ set quantifiers are eliminated in favor of Skolem func-
tions f , that is, axioms of the form ∀~x. ∃y. ψ(x1, . . . , xn, y) are
replaced by ∀~x.ψ(x1, x2, . . . , xn, f(x1, . . . , xn)). The interpreta-
tion of these functions is determined by the model, and the question
whether there exists a model corresponds to an existential quantifi-
cation over all Skolem functions.

Proof. For every analytical setA, we reduce the membership prob-
lem in A to an equality problem. Every set A of the analytical hier-
archy can be defined by

a 6∈ A ⇐⇒ (15)
∀ξ1. ∃ξ2. ∀ξ3. . . . ∃ξn. ∀x1. ∃x2. M(ξ1, . . . , ξn, a, x1, x2)

where n ∈ N is even (without loss of generality since Π1
n ⊂ Π1

n+1)
and M a decidable predicate. Let M = 〈Q, q0, δ〉 the Turing
machine corresponding to M . Let a ∈ N be given. We define E
to be the following system of equations:

S(τ1, τ3, . . . , τn−1) = run(1, zipn(τ1, g2(τ1), τ3, g4(τ1, τ3),

. . . , τn−1, gn(τ1, τ3, . . . , τn−1)), zeros)

S(τ1, τ3, . . . , τn−1) = zeros

run(0, τ, γ1) = ones

run(1, τ, γ1) = 0 : run(M(τ ;A, γ1, h2(τ, γ1)), τ, 1 : γ1)

A = (1 :)a zeros

nat(h2(τ, γ1)) = ones

together with the equations from EM, (9), and (13). The symbols
g2i are typed S i → S . We claim: E |= zeros = ones if and only if
a ∈ A. For this purpose it suffices to show that the specification has
a model (∃A.A |= E) if and only if the formula in the right-hand
side of (15) is valid.

The idea is that the specification models a Skolem normal form
of the analytical formula in (15). The ∀ set quantifiers are modeled
by an equation with stream variables; recall that equations have to
hold for all assignments of the variables. In particular, the variables
τ1, τ3, . . . , τn−1 in the first equation S(τ1, τ3, . . . , τn−1) = . . .
model the set quantifiers ∀ξ1, . . . , ∀ξn−1, respectively. The ∃
set quantifiers are modeled by Skolem functions g2, g4, . . . , gn
which in the specification are stream functions that get the value
of the preceding ∀ quantifiers as arguments. These stream func-
tions g2i are unspecified and can be ‘freely chosen’ by the modelA.
Thus, the existential quantification over the Skolem functions
corresponds to the existential quantification over all models in
∃A.A |= E.

The streams τ1, g2(τi), . . . , τn−1, gn(τ1, τ3, . . . , τn−1) that
represent the values of the set quantifiers are then interleaved by
zipn, and passed as the second argument, named τ , to run; this
argument serves as the left side of the tape for every invocation of
the Turing machine M.

The ∀x1 number quantifier is modeled by the third argument γ1

of run. The initial value of γ1 is zeros, and ‘1 : 2’ is prepended
(corresponding to counting up) each time the Turing machine halts
with output 1. The number quantifier ∃x2 is modeled by the Skolem
function h2 for which the equation nat(h2(τ, γ1)) = ones ensures



by Lemma 4 that the interpretation [[h2(τ, γ1)]] is a unary encoding
of a natural number. Then the term M(τ ;A, γ1, h2(τ, γ1)) with τ =
zipn(τ1, g2(τ1), τ3, g4(τ1, τ3), . . . , τn−1, gn(τ1, τ3, . . . , τn−1)) cor-
responds precisely to M(ξ1, . . . , ξn, a, x1, x2) in (15).

For ‘⇐’, assume that the formula in (15) is valid. We construct
a model A = 〈A, [[·]]〉 as an extension of the canonical model
(Definition 18). For [[g2]], [[g4]], . . . , [[gn]], [[h2]] we pick the Skolem
functions for the quantifiers ∃ξ2, ∃ξ4, . . . , ∃ξn, ∃x2, respectively
(where [[h2]] is a stream function that works on the unary encoding
of natural numbers). For σ ∈ {0, 1}ω , we define [[nat]](σ) = 1ω

if σ is of the form 1n 0ω , and 0ω , otherwise. The definition of
[[run]] is analogous to the proof of Theorem 1. Finally, we define
[[S]](τ1, τ2, . . . , τn−1) = 0ω for all τ1, τ2, . . . , τn−1 ∈ {0, 1}ω ,
and [[A]] = 1a 0ω . Then it is straightforward to verify that A is a
model of the specification.

For ‘⇒’, letA = 〈A, [[·]]〉 be a model of the specification. Then
we let the existential quantifiers ∃ξ2, ∃ξ4, . . . , ∃ξn and ∃x2 in (15)
behave according to the interpretations [[g2]], [[g4]], . . . , [[gn]], [[h2]],
respectively (here the translation from sets ξ ⊆ N to streams ξ is as
usual). Assume that there exists an assignment of the ∀ quantifiers
∀ξ1, ∀ξ2, . . . , ∀ξn−1 and ∀x2 for which the formula in (15) is not
valid, that is, M(ξ1, . . . , ξn, a, x1, x2) does not hold where the ex-
istential choices are governed by the model as described above.
We translate this ‘counterexample’ back to the model by consider-
ing [[S]](ξ1, ξ3 . . . , ξn−1). As in the proof of Theorem 1, it is then
straightforward to show that [[S]](ξ1, ξ3 . . . , ξn−1) 6= 0ω . However,
this contradicts the assumption ofA being a model due to the equa-
tion S(τ1, τ3, . . . , τn−1) = zeros.

The proof of Theorem 3 immediately yields the following:

Theorem 4. Each of the following problems (i), (ii), and (iii),
subsume the analytical hierarchy:

INPUT: Bitstream specification E, ground term t :: S .
QUESTION: Does t have: (i) a solution, (ii) a unique solution,

(iii) at most one solution, over all full models of E?

6.4 Equality of Solutions
In this section, we study the complexity of deciding whether terms
have the same set of solutions over all (full) models. It is easy to
see that the hardness of these problems is at least that of deciding
equality in all (full) models. When considering all models, the
problem turns out Π1

2-complete, and, thus, higher than the degree
Π1

1 of equality in all models.

Remark 2. Let us briefly discuss the applicability of equality in all
(full) models for the comparison of terms s, t that are specified
in independent specifications Es and Et. First, we rename the
symbols of one of the specifications such that Σs ∩Σt = {0, 1, :}.
Thereafter, we consider the validity of s = t in the union Es ∪Et.

We show on two examples that this approach does not always
yield the intended results. Let EM consist of the single equation
M = 1 : M , and EN of

N = inv(N) inv(0 : σ) = 1 : inv(σ) inv(1 : σ) = 0 : inv(σ)

Then M has the stream of ones as unique solution, but N has no
solution. Since EN does not have model, the union EM ∪EN also
does not admit one. Thus, EM ∪ EN |= M = N holds for trivial
reasons. Nevertheless, we would not like to consider M and N as
equivalent (at least if they are given by independent specifications).

Even if the specifications have unique solutions, a similar effect
can occur. Let M = zeros and EM consist of the equations

iszeros(nxor(σ)) = zeros

nxor(0 : 0 : σ) = 1 : nxor(σ) nxor(0 : 1 : σ) = 0 : nxor(σ)

nxor(1 : 0 : σ) = 0 : nxor(σ) nxor(1 : 1 : σ) = 1 : nxor(σ)

together with the equations (10). Let N = blink and EN consist
of the equation blink = 0 : 1 : blink. Both specifications have
models, and zeros and blink have unique solutions. For example,
EM admits a model whose domain consists of all eventually con-
stant streams. However, EM rules out models for which there exist
elements σ ∈ AS with [[nxor]](σ) = 0ω . In particular, the stream
0101 . . . is excluded from the domain AS . As a consequence, the
union EM ∪ EN has no models, and EM ∪ EN |= zeros = blink
holds.

As a consequence of the proof of Theorem 3, we obtain:

Theorem 5. The following problem subsumes the analytical hier-
archy:

INPUT: Bitstream specificationsEs,Et, ground terms s, t ::S .
QUESTION: Do s and t have equal solutions over all full models,

that is, [[s]]Es, full = [[t]]Et, full ?

We conclude this section with an investigation of the complexity
of deciding whether two terms have the same set of solutions over
all models. The proof of Theorem 1 yields only Π1

1-hardness. In
order to show Π1

2-hardness, we employ a result of [4] stating that
it is a Π1

2-complete problem to decide whether the ω-language of a
non-deterministic Turing machine contains all words {0, 1}ω .

Therefore, we consider non-deterministic Turing machines with
one-sides tapes. Without loss of generality, we may restrict the
non-determinism δ : Q × Γ → ℘(Q × Γ × {L,R}) to binary
choices in each step, that is, |δ(q, b)| ≤ 2 for every q ∈ Q and
b ∈ {0, 1}. (Broader choices then are simulated by sequences of
binary choices.) Moreover, for our purposes, it suffices to consider
Turing machines that never halt. For the ω-language, halting always
corresponds to rejecting a run, and this rejection can be simulated
by alternating moving forth and back eternally.

That is, a non-deterministic Turing machine M = 〈Q, q0, δ0, δ1〉
has two transition functions δ0, δ1 : Q × Γ → Q × Γ × {L,R}
and we allow a non-deterministic choice between these functions
in each step. Note that, for modeling non-determinism in an equa-
tional specifications, we cannot take the union of the specifications
E〈Q, q0, δ0〉 and E〈Q, q0, δ1〉, since multiple equations having the
same left-hand side do not model choice, but additional restrictions
on the models of the specification. To this end, we introduce a third
argument for the binary function symbols q ∈ Q in Definition 5.
This argument then governs the non-deterministic choice. In or-
der to model one-sided tapes, we introduce a fourth argument that
stores the position on the tape, and is increased, when moving right,
and decreased, when moving left. That is, we adapt Definition 5 to:

q(x, b : y, i : z, p) = q′(b′ : x, y, z, 1 : p)

q(a : x, b : y, i : z, 1 : p) = q′(x, a : b′ : y, z, p)

for δi(q, b) = 〈q′, b′, R〉 and δi(q, b) = 〈q′, b′, L〉, respectively.
We useEn

M to denote this specification, andRn
M for the correspond-

ing term rewriting system. In the initial configuration, the third ar-
gument should be an underspecified stream, allowing for any non-
deterministic choice. We pass zeros as fourth argument, thereby
ensuring that the head cannot move to negative tape indices.

A run of M on an ω-wordw ∈ {0, 1}ω is aRn
M rewrite sequence

starting from a term q0(zeros, w,N, zeros) where N ∈ {0, 1}ω
determines the non-deterministic choices; herew is the termw(0) :
w(1) : . . . A run of M is complete if every tape position p ≥ 0 is
visited (that is, positions right of the starting position), and it is
oscillating if some tape position is visited infinitely often. A run is
accepting if it is complete and not oscillating, that it, it visits every
position p ≥ 0 at least once, but only finitely often.

Definition 19. The ω-language Lω(M) is the set of all ω-words
w ∈ {0, 1}ω such that M has an accepting run w.



We employ the following result, which follows from [4]:

Theorem 6. The set {M | Lω(M) = {0, 1}ω} is Π1
2-complete.

We are now ready for the proof of Π1
2-completeness of equality

of the set of solutions over all models. In the proof, we introduce a
fifth argument for the symbol q ∈ Q inEn

M which enforces progress
(productivity) and rules out exactly the oscillating runs.

Theorem 7. The following problem is Π1
2-complete:

INPUT: Bitstream specificationsEs,Et, ground terms s, t ::S .
QUESTION: Do s and t have equal solutions over all models equal,

that is, [[s]]Es
= [[t]]Et

?

Proof. Let M = 〈Q, q0, δ0, δ1〉 be a non-deterministic Turing ma-
chine. We reduce the problem in Theorem 6 to a decision problem
for the equality of the set of solutions over all full models. We let
s = X and define the specification Es to consist of:

q0(zeros,X,N, zeros, P ) = zeros (16)
natstr(P ) = ones (17)

q(x, b : y, i : z, p, 1 : v) = q′(b′ : x, y, z, 1 : p, v) (18)

for δi(q, b) = 〈q′, b′, R〉
q(a : x, b : y, i : z, 1 : p, 1 : v) = q′(x, a : b′ : y, z, p, v) (19)

for δi(q, b) = 〈q′, b′, L〉
q(x, y, z, 1 : p, 0 : v) = 0 : q(x, y, z, p, v) (20)
q(x, y, z, 0 : p, 0 : v) = ones (21)

q(a : x, b : y, i : z, 0 : p, 1 : v) = ones (22)

for δi(q, b) = 〈q′, b′, L〉
The equation (16) starts M on the stream X with non-deterministic
choices governed by N and P for enforcing progress. The streams
X and N are unspecified, thus arbitrary. The equation (17) en-
sures that [[P ]] contains infinitely many zeros. The equations (18)
and (19) model the computation of M as discussed before, but now
in each step removing the context 1 : 2 from the fifth argument. If
the fifth argument starts with a 0, then (20) decrements the position
counter (the fourth argument). Recall, the position counter deter-
mines how many steps the Turing machine M is permitted to move
left. Thus, always eventually decrementing the counter rules out the
oscillating runs. The equations (21) and (22) rule out models where
the head move left of the envisaged progress [[P ]].

It is important to note that for any non-oscillating run σ, we
can define a function p : N → N such that after p(n) steps,
M visits only tape indices ≥ n. Then an assignment [[P ]] =
1p(0) 0 1p(1) 0 1p(2) 0 . . . in the model will permit this run to hap-
pen, that is, the head will never fall behind the envisaged progress
and Equations (21) and (22) do not apply.

As a consequence, we have [[s]]Es
= {0, 1}ω if and only if for

every [[X]] ∈ {0, 1}ω there exists a non-oscillating run (that is, an
appropriate choice [[N]]) of M on [[X]]. Now we define t = Y and
Et = {Y = Y} for which obviously [[t]]Et

= {0, 1}ω . Therefore,
[[s]]Es

= [[t]]Et
if and only if Lω(M) = {0, 1}ω . This concludes

the proof of Π1
2-hardness.

For Π0
2-membership, the problem can be characterized by the

following analytical formula: ∀〈As,At〉.∃〈A′s,A′t〉.(As |= Es ⇒
A′t |= Et ∧ [[s]]As = [[t]]A

′
t) ∧ (At |= Et ⇒ A′s |= Es ∧ [[t]]At =

[[s]]A
′
s). As in the proof of Theorem 1, here, it suffices to quantify

over countable models.

7. Equality for Behavioral Specifications
In this section we consider the notion of equality from [17] which
is based on hidden algebras [16]. We introduce the hidden models

of bitstream specifications as employed in [17], where it has been
shown that deciding the equality of (equationally defined) streams,
with respect to this semantics, is a Π0

2-complete problem. We con-
sider the following two extensions of this semantics:

(i) extending the semantics to streams over natural numbers, or

(ii) requiring the behavioral equivalence ≡ to be a congruence.

We show that both extensions lift the complexity of deciding equal-
ity to the level Π1

1 of the analytical hierarchy. If the specifications
are required to be productive (thus, separating the problem of pro-
ductivity [10] from that of equality) it can be shown that the com-
plexity resides at Π0

1 [13]. The results in [17] (as well as the re-
sults we mention in the current paper) are based on the comparison
of non-productive specifications, and the proofs inherently encode
productivity problems.

Let us briefly explain why the Π1
1-completeness for the equality

of bitstreams in Theorem 1 does not directly carry over the setup
of [17]. The problem is the definition of the function natstr in (12)
containing the equation natstr(ones) = zeros. This equation does
not work if we have confusion in the models and behavioral equiva-
lence is not a congruence. In particular, as discussed in Section 2, if
ones′ = 1 : ones′, we cannot conclude that natstr(ones′) = zeros.
As a consequence, with the behavioral specifications of [17] it is
not possible to enforce that a bitstream always eventually contains
a zero. However, if we consider behavioral specifications of streams
of natural numbers, then we no longer need natstr, hence, reestab-
lishing the Π1

1-completeness result for the equality of streams of
natural numbers specified behaviorally. There is a similar problem
with the equation iszeros(zeros) = ones, that, however, can be over-
come by discarding iszeros as in the proof of Theorem 2.

7.1 Basic Setup
In [17], every bitstream specification contains the equations

head(x : σ) = x tail(x : σ) = σ

where head :: S → B and tail :: S → S .

Definition 20. A hidden Σ-algebra A = 〈A, [[·]]〉 consists of

(i) an S-sorted domain A where AB = {0, 1},
(ii) for every f :: s1 × . . . × sn → s ∈ Σ an interpretation

[[f ]] : As1 × . . . Asn → As,
(iii) 0, 1 ∈ Σ with [[0]] = 0 and [[1]] = 1.

We stress that now AS is an arbitrary set.

Definition 21. Let A = 〈A, [[·]]〉 be a hidden Σ-algebra. Then
σ, τ ∈ AS are called behaviorally equivalent, denoted by σ ≡ τ ,
if they are indistinguishable with {head, tail}-experiments, that is:

σ ≡ τ ⇐⇒ ∀n ∈ N. [[head]]([[tail]]n(σ) = [[head]]([[tail]]n(τ)

On the domain AB , we let ≡ be the identity relation.

Note that ≡ is a not a congruence (only for [[head]] and [[tail]]).

Definition 22. Let E be a bitstream specification over Σ. A hid-
den Σ-algebra behaviorally satisfies E, denoted A |≡ E, if for
every equation of E, the left- and right-hand sides are behaviorally
equivalent: [[`]]α ≡ [[r]]α for every ` = r ∈ E and α : X → A. We
say that an equation ` = r is behaviorally satisfied in all hidden
models of E, denoted E |≡ ` = r if A |≡ E implies A |≡ ` = r
for every hidden Σ-algebra A.

For a discussion of this semantics, we refer to Section 2.

7.2 Behavioral Equivalence as Congruence
We now adapt the basic setup by requiring ≡ to be a congruence
relation, that is, s ≡ t implies f(. . . , s, . . .) ≡ f(. . . , t, . . .). The
resulting models are called behavioral in [2].



Definition 23. A hidden Σ-algebra is called behavioral if ≡ is a
congruence relation. For a bitstream specificationE over Σ, we say
that ` = r is behaviorally satisfied in all behavioral models of E if
A |≡ E ⇒ A |≡ ` = r for every behavioral hidden Σ-algebra A.

Theorem 8. The following problem is Π1
1-complete:

INPUT: Bitstream specification E, terms s, t :: S .
QUESTION: Is s = t satisfied in all behavioral models of E?

Proof. We show: the equation s = t is behaviorally satisfied in all
behavioral models of E if and only if s = t holds in all models of
E; the latter property is Π1

1-complete by Theorem 1.
The direction ‘⇐’ follows immediately, since every Σ-algebra

is a behavioral hidden Σ-algebra. For ‘⇒’, let A = 〈A, [[·]]〉 be a
hidden Σ-algebra. Let A/≡ = 〈A/≡, [[·]]/≡〉 be the quotient al-
gebra. That is, A/≡ are the congruence classes of A with respect
to ≡. For symbols f ∈ Σ and B1, . . . , Bar(f) ∈ A/≡, we define
[[f ]]/≡(B1, . . . , Bar(f)) = B if [[f ]](b1, . . . , bar(f)) = b for b1 ∈
B1, . . . , bar(f) ∈ Bar(f), and B is the congruence class of b with
respect to ≡. The quotient algebra A/≡ is a behavioral hidden Σ-
algebra that, due to≡ being a congruence, behaviorally satisfies the
same equations as A. Let A′ be the Σ-algebra obtained from A/≡
by renaming the domain elements into the streams they represent,
that is, a ∈ (A/≡)S becomes [[head]](a) : [[head]]([[tail]](a)) : . . ..
Then [[:]](x, σ) = x : σ, since in A/≡ every stream has a unique
representative in the model. Hence, A′ is a stream algebra. More-
over, for elements a, b of the domain of A/≡, we have a ≡ b iff
a = b. Hence, A′ is a model of an equation s = t if and only if
s = t is behaviorally satisfied in A.

7.3 Streams of Natural Numbers
We briefly study hidden models with confusion, described in Sec-
tion 2, for streams of natural numbers. A N-stream specification
is now defined like a bitstream specification, except the sorts are
S = {N ,S}, and the symbols are 0 :: N , s :: N → N and ‘:’
of type N × S → S . We adapt the definition of hidden Σ-algebras
accordingly.

Definition 24. A hidden Σ-algebra A = 〈A, [[·]]〉 consists of

(i) an S-sorted domain A and AN = N,
(ii) for every f :: s1 × . . . × sn → s ∈ Σ an interpretation

[[f ]] : As1 × . . . Asn → As,
(iii) 0, s ∈ Σ with [[0]] = 0 and [[s]](x) = x+ 1,
(iv) for every s ∈ AS there are n ∈ N and s′ ∈ AS such that we

have s = [[:]](b, s′); see further Remark ??.

The definitions of behavioral equivalence and satisfaction are the
same as for bitstream specifications. A slight modification of the
proof of Theorem 2 results in the following.

Theorem 9. The following problem is Π1
1-complete:

INPUT: N-stream specification E, terms s, t :: S .
QUESTION: Does E |≡ s = t hold? That is, is s = t behaviorally

satisfied in all hidden models of E?

Proof. We reduce the well-foundedness problem for decidable bi-
nary relations to an equality problem. Let M ⊆ N × N be a de-
cidable predicate, and M = 〈Q, q0, δ〉 the corresponding Turing
machine. We define the following specification E:

zeros = run(1,X) unary(0) = zeros

run(0, σ) = ones unary(s(x)) = 1 : unary(x)

run(1, σ) = 0 : run(M(zeros; unary(head(σ)),

unary(head(tail(σ)))), tail(σ))

together with the equations from EM and (9). In contrast with
the proof of Theorem 2, X is now a stream of natural numbers.

Since X is unspecified, its interpretation in the model can be an
arbitrary stream of natural numbers. As in the proofs of Theorems 1
and 2, we employ X to guess an infinite path through M . Instead
of uhd(·) and utl(·) on bitstreams, we now take unary(head(·))
and tail(·), respectively, where the function unary converts natural
numbers to unary representations in forms of streams. As in the
proof of Theorem 2, it follows that there exists a hidden Σ-algebra
A with A |≡ E if and only if M is not well-founded. Thus,
E |≡ zeros = ones if and only if M is well-founded.

8. Equivalence of Lambda Terms
In this section we investigate the complexity of deciding the equal-
ity of λ-terms with respect to the observational equivalences =nf ,
=hnf and =whnf as introduced in Section 1. Furthermore, we study
the complexity of deciding whether two λ-terms have the same
Böhm trees or Lévy–Longo trees. The interested reader is referred
to [1, 7] for an introduction to Böhm trees, and to [6] for a thorough
study of the observational equivalences on λ-terms.

Definition 25. Let M be a λ-term. The Böhm tree BT(M) of
M is a potentially infinite term defined as follows. If M has no
hnf, then BT(M) = ⊥. Otherwise, there is a head reduction
M →∗h λx1. . . . λxn.yM1 . . .Mm to head normal form. Then we
define BT(M) = λx1. . . . λxn.yBT(M1) . . .BT(Mm).

Definition 26. Let M be a λ-term. The Lévy–Longo tree LT(M)
of M is a potentially infinite term defined as follows:

LT(M) = ⊥ if M has no whnf

LT(M) = λx.LT(N) if M →∗h λx.N
LT(M) = xLT(M1) . . . LT(Mm) if M →∗h xM1 . . .Mm

For the observational equivalences we obtain:

Theorem 10. For each =? ∈ {=n, =h, =w}, the following
problem is Π0

2-complete:
INPUT: λ-terms M , N .

QUESTION: Does M =? N hold?

Proof. First, we show Π0
2-membership of the problem. We consider

=n (=h and =w work analogously). A λ-termQ has a normal form
if and only ifQ admits a standard reduction→∗std to a normal form,
see [1]. For a λ-termQ, and n ∈ N, we writeQ→≤nstd nf to denote
that Q rewrites to a normal form within ≤ n steps of standard
reduction. Note that this is a decidable property. Then we claim:

M =n N ⇐⇒ (23)

∀C. ∀n. ∃m.
(
C[M ]→≤n+m

std nf ⇔ C[N ]→≤n+m
std nf

)
For ‘⇒’ in (23), assume that M =n N . Let C be a context. We
distinguish the following cases:

(i) Assume that C[M ] has a normal form. Then C[N ] has one,
and C[M ] →k

std nf and C[N ] →`
std nf for some k, ` ∈ N.

Then in (23) for any n ∈ N we can choose m = max(k, `).
(ii) The case that C[N ] has a normal form is symmetric to (i).

(iii) If neither C[M ] nor C[N ] have a normal form, then neither
C[M ]→≤n+m

std nf nor C[N ]→≤n+m
std nf for any n,m ∈ N.

For ‘⇐’ in (23), assume M 6=n N . Then there is a context C
such that exactly one of the terms C[M ] and C[N ] has a normal
form; without loss of generality, assume C[M ] →≤nstd nf for some
n ∈ N. Hence, C[M ] →≤n+m

std nf for every m ∈ N, but
C[N ]→≤n+m

std nf for nom ∈ N. Thus, the right-hand side of (23)
is not satisfied.

From (23) it follows that =n is in Π0
2, since the two quantifiers

∀C and ∀n can be merged into a single ∀-quantifier.



We now proceed with proving Π0
2-hardness of the problem. Let

T be a Turing machine, and let T be a λ-term such that for all
n,m ∈ N, T nm rewrites to K if T terminates on input n within
m steps, and to KI, otherwise. Here, K = λxy.x and I = λx.x are
the usual combinators, and k = λf.λx.fnx is the Church numeral
representing the natural number k ∈ N. The construction of such
T is standard, see [1]. Now we define:

M = (λx.λa.a(xx))(λx.λa.a(xx))

N = N ′N ′zer N ′ = λxn.T ′n zer(λa.a(xx(succn)))

T ′ = T ′′T ′′ T ′′ = λxnm.TnmI(xxn(succm))

zer = λfx.x succ = λzfx.f(zfx)

We show that M =? N if and only if T halts on all n ∈ N. Note
that T ′nm→∗ I if Tnm→∗ K, that is, if T terminates on input n
in m steps; otherwise T ′nm→∗ T ′n (m+ 1). Hence, we obtain

T ′n 0→∗ I ⇐⇒ T halts on input n

⇐⇒ T ′n 0 has a (weak) head normal form

The Lévy–Longo tree of M is λa.a(λa.a(λa.a . . .)). If T halts on
input n, we have

N ′N ′n→∗ T ′n zer(λa.a(N ′N ′n+ 1))→∗ λa.a(N ′N ′n+ 1)

Thus if T terminates on all n ∈ N, then the Lévy–Longo trees ofM
and N are equal, and, hence, by [6] we have M =w N , M =h N
and M =n N . Otherwise, let n ∈ N be minimal such that T does
not halt on n. Then by the above, we have:

N →∗ λa. a(λa. a(. . . λa. a︸ ︷︷ ︸
n-times

(N ′N ′n) . . .))

Then N In →∗ N ′N ′n has no (weak) head normal form, but M In

has. Thus we have M 6=n N , M 6=h N and M 6=w N . This
proves Π0

2-hardness.

The proof immediately yields the following result:

Theorem 11. The following problems are Π0
2-complete:

INPUT: λ-terms M , N .
QUESTION: (i) Do s and t have equal Böhm trees?

(ii) Do s and t have equal Lévy–Longo trees?

Proof. Follows immediately from the proof of Theorem 10 since
M and N are observationally equal if and only if they have the
same Lévy–Longo tree, and for M and N the Lévy–Longo trees
coincide with their Böhm trees.

We mention that for Berarducci trees, the proof of Theorem 10
implies Π0

2-hardness. It is not difficult to see that the problem of
deciding the equality of Berarducci trees is in Π0

3. We leave the
determination of the precise complexity to future work.

9. Conclusions
We have investigated different model-theoretic and rewriting based
semantics of equality of infinite objects, specified either by systems
of equations or by λ-terms. It turns out that the complexities for
these notions vary from the low levels of the arithmetical hierarchy
Π0

1 and Π0
2, up to Π1

1 and Π1
2 of the analytical hierarchy, and some

even subsume the entire arithmetical and analytical hierarchy. In
particular, the observational equivalences of λ-terms, that are of
interest for functional programming, are all Π0

2-complete.
Apart from Π0

1, none of these classes are recursively enumerable
or co-recursively enumerable. Thus, there exists no complete proof
systems for proving or for disproving equality. An exception is the
equality of normal forms for productive specifications for which
inequalities can be recursively enumerated [13].
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