
Complexity of Fractran and Productivity

Jörg Endrullis1, Clemens Grabmayer2, and Dimitri Hendriks1

1 Vrije Universiteit Amsterdam, Department of Computer Science
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

joerg@few.vu.nl diem@cs.vu.nl
2 Universiteit Utrecht, Department of Philosophy

Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
clemens@phil.uu.nl

Abstract. In functional programming languages the use of infinite struc-
tures is common practice. For total correctness of programs dealing with
infinite structures one must guarantee that every finite part of the result
can be evaluated in finitely many steps. This is known as productivity.
For programming with infinite structures, productivity is what termina-
tion in well-defined results is for programming with finite structures.
Fractran is a simple Turing-complete programming language invented by
Conway. We prove that the question whether a Fractran program halts
on all positive integers is Π0

2-complete. In functional programming, pro-
ductivity typically is a property of individual terms with respect to the
inbuilt evaluation strategy. By encoding Fractran programs as specifi-
cations of infinite lists, we establish that this notion of productivity is
Π0

2-complete even for some of the most simple specifications. Therefore
it is harder than termination of individual terms. In addition, we explore
generalisations of the notion of productivity, and prove that their com-
putational complexity is in the analytical hierarchy, thus exceeding the
expressive power of first-order logic.

1 Introduction

For programming with infinite structures, productivity is what termination is for
programming with finite structures. In lazy functional programming languages
like Haskell, Miranda or Clean the use of data structures, whose intended seman-
tics is an infinite structure, is common practice. Programs dealing with such in-
finite structures can very well be terminating. For example, consider the Haskell
program implementing a version of Eratosthenes’ sieve:

prime n = primes !! (n-1)

primes = sieve [2..]

sieve (n:xs) = n:(sieve (filter (\m -> m ‘mod‘ n /= 0) xs))

where prime n returns the n-th prime number for every n ≥ 1. The func-
tion prime is terminating, despite the fact that it contains a call to the non-
terminating function primes which, in the limit, rewrites to the infinite list of
prime numbers in ascending order. To make this possible, the strategy with re-
spect to which the terms are evaluated is crucial. Obviously, we cannot fully



2 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

evaluate primes before extracting the n-th element. For this reason, lazy func-
tional languages typically use a form of outermost-needed rewriting where only
needed, finite parts of the infinite structure are evaluated, see for example [13].

Productivity captures the intuitive notion of unlimited progress, of ‘work-
ing’ programs producing values indefinitely, programs immune to livelock and
deadlock, like primes above. A recursive specification is called productive if not
only can the specification be evaluated continually to build up an infinite normal
form, but this infinite expression is also meaningful in the sense that it repre-
sents an infinite object from the intended domain. The study of productivity (of
stream specifications in particular) was pioneered by Sijtsma [15]. More recently,
a decision algorithm for productivity of stream specifications from an expressive
syntactic format has been developed [6] and implemented [4].

We consider various variants of the notion of productivity and pinpoint their
computational complexity in the arithmetical and analytical hierarchy. In func-
tional programming, expressions are evaluated according to an inbuilt evaluation
strategy. This gives rise to productivity with respect to an evaluation strategy. We
show that this property is Π0

2-complete (for individual terms) using a standard
encoding of Turing machines into term rewriting systems. Next, we explore two
generalisations of this concept: strong and weak productivity. Strong productivity
requires every outermost-fair rewrite sequence to ‘end in’ a constructor normal
form, whereas weak productivity demands only the existence of a rewrite se-
quence to a constructor normal form. As it turns out, these properties are of
analytical complexity: Π1

1 and Σ1
1-complete, respectively.

Finally, we encode Fractran programs into stream specifications. In contrast
to the encoding of Turing machines, the resulting specifications are of a very
simple form and do not involve any computation on the elements of the stream.
We show that the uniform halting problem of Fractran programs is Π0

2-complete.
(Although Turing-completeness of Fractran is folklore, the exact complexity has
not yet been investigated before.) Consequently we obtain a strengthening of the
earlier mentioned Π0

2-completeness result for productivity.
Fractran [2] is a remarkably simple Turing-complete programming language

invented by the mathematician John Horton Conway. A Fractran program is a
finite list of fractions p1

q1
, . . . , pk

qk
. Starting with a positive integer n0, the algorithm

successively calculates ni+1 by multiplying ni with the first fraction that yields
an integer again. The algorithm halts if there is no such fraction.

To illustrate the algorithm we consider an example of Conway from [2]:

17

91
,

78

85
,

19

51
,

23

38
,

29

33
,

77

29
,

95

23
,

77

19
,

1

17
,

11

13
,

13

11
,

15

14
,

15

2
,

55

1

We start with n0 = 2. The leftmost fraction which yields an integer product
is 15

2 , and so n1 = 2 · 152 = 15. Then we get n2 = 15 · 551 = 825, etcetera. By
successive application of the algorithm, we obtain the following infinite sequence:

2, 15, 825, 725, 1925, 2275, 425, 390, 330, 290, 770, . . .

Apart from 21, the powers of 2 occurring in this infinite sequence are 22, 23, 25, 27,
211, 213, 217, 219, . . ., where the exponents form the sequence of primes.



Complexity of Fractran and Productivity 3

We translate Fractran programs to streams specifications in such a way that
the specification is productive if and only if the program halts on all n0 > 1.
Let us define the target format of this translation: the lazy stream format (LSF).
LSF consists of stream specifications of the form M→ C[M] where C is a context
built solely from: one data element •, the stream constructor ‘:’, the functions
head(x : σ) → x and tail(x : σ) → σ, unary stream functions modn, and k-ary
stream functions zipk with the following defining rules, for every n, k ≥ 1:

modn(σ)→ head(σ) : modn(tailn(σ))

zipk(σ1, σ2 . . . , σk)→ head(σ1) : zipk(σ2, . . . , σk, tail(σ1))
(LSF)

By reducing the uniform halting problem of Fractran programs to productivity
of LSF, we get that productivity for LSF is Π0

2-complete.
This undecidability result stands in sharp contrast to the decidability of

productivity for the pure stream format (PSF, [6]). Let us elaborate on the
difference between these two formats. Examples of specifications in PSF are:

J→ 0 : 1 : even(J) and Z→ 0 : zip(even(Z), odd(Z)) ,

including the defining rules for the stream functions involved:

even(x : σ)→ x : odd(σ) , odd(x : σ)→ even(σ) , zip(x : σ, τ)→ x : zip(τ, σ) ,

where zip ‘zips’ two streams alternatingly into one, and even (odd) returns a
stream consisting of the elements at its even (odd) positions. The specification
for Z produces the stream 0 : 0 : 0 : . . . of zeros, whereas the infinite normal form
of J is 0 : 1 : 0 : 0 : evenω, which is not a constructor normal form.

Excluded from PSF is the observation function on streams head(x : σ)→ x.
This is for a good reason, as we shall see shortly. PSF is essentially layered:
data terms (terms of sort data) cannot be built using stream terms (terms of
sort stream). As soon as stream dependent data functions are admitted, the
complexity of the productivity problem of such an extended format is increased.
Indeed, as our Fractran translation shows, productivity of even the most simple
stream specifications is undecidable and Π0

2-hard. The problem with stream de-
pendent data functions is that they possibly create ‘look-ahead’: the evaluation
of the ‘current’ stream element may depend on the evaluation of ‘future’ stream
elements. To see this, consider an example from [15]:

Sn → 0 : Sn(n) : Sn

where for a term t of sort stream and n ∈ N, we write t(n) as a shorthand for
head(tailn(t)). If we take n to be an even number, then Sn is productive, whereas
it is unproductive for odd n.

A hint for the fact that it is Π0
2-hard to decide whether a lazy specification is

productive already comes from a simple encoding of the Collatz conjecture (also
known as the ‘3x+1-problem’ [12]) into a productivity problem. Without proof
we state: the Collatz conjecture is true if and if only the following specification



4 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

produces the infinite chain • : • : • : . . . of data elements •:

collatz→ • : zip2(collatz,mod6(tail9(collatz))) (1)

In order to understand the operational difference between rules in PSF and rules
in LSF, consider the following two rules:

read(σ)→ head(σ) : read(tail(σ)) (2)

read′(x : σ)→ x : read′(σ) (3)

The functions defined by these rules are extensionally equivalent: they both im-
plement the identity function on fully developed streams. However, intensionally,
or operationally, there is a difference. A term read′(s) is a redex only in case s
is of the form u : t, whereas read(s) constitutes a redex for every stream term s,
and so head(s) can be undefined. The ‘lazy’ rule (2) postpones pattern matching.
Although in PSF we can define functions mod′n and zip′k extensionally equiva-
lent to modn and zipk, a pure version collatz′ of collatz in (1) above (using mod′6
and zip′2 instead) can easily be seen to be not productive (it produces two data
elements only), and to have no bearing on the Collatz conjecture.

Contribution and Overview. In Section 2 we show that the uniform halting prob-
lem of Fractran programs is Π0

2-complete. This is the problem of determining
whether a program terminates on all positive integers. Turing-completeness of
a computational model does not imply that the uniform halting problem in the
strong sense of termination on all configurations is Π0

2-complete. For example,
assume that we extend Turing machines with a special non-terminating state.
Then the computational model obtained can still compute every recursive func-
tion. However, the uniform halting problem becomes trivial.

Our result is a strengthening of the result in [11] where it has been shown
that the generalised Collatz problem (GCP) is Π0

2-complete. This is because
every Fractran program P can easily be translated into a Collatz function f
such that the uniform halting problem for P is equivalent to the GCP for f . The
other direction is not immediate, since Fractran programs form a strict subset
of Collatz functions. We discuss this in more detail in Section 2.

In Section 3 we explore alternative definitions of productivity and make them
precise in the framework of term rewriting. These can be highly undecidable:
‘strong productivity’ turns out to be Π1

1-complete and ‘weak productivity’ is
Σ1

1-complete. Productivity of individual terms with respect to a computable
strategy, which is the notion used in functional programming, is Π0

2-complete.
In Section 4 we prove that productivity Π0

2-complete even for specifications
of the restricted LSF format. The new proof uses a simple encoding of Fractran
programs P into stream specifications of the form MP → C[MP ], in such a way
that MP is productive if and only if the program P halts on all inputs. The
resulting stream specifications are very simple compared to the ones resulting
from encoding of Turing machines employed in Section 3. Whereas the Turing
machine encoding essentially uses calculations on the elements of the list, the
specifications obtained from the Fractran encoding contain no operations on the
list elements. In particular, the domain of data elements is a singleton.



Complexity of Fractran and Productivity 5

Related Work. In [3] undecidability of different properties of first-order TRSs is
analysed. While the standard properties of TRSs turn out to be either Σ0

1- or
Π0

2-complete, the complexity of the dependency pair problems [1] is essentially
analytical: it is shown to be Π1

1-complete. We employ the latter result as a basis
for our Π1

1- and Σ1
1-completeness results for productivity.

Roşu [14] shows that equality of stream specifications is Π0
2-complete. We

remark that this result can be obtained as a corollary of our translation of
Fractran programs P to stream specifications MP . Stream specifications MP have
the stream • : • : . . . as unique solutions if and only if they are productive. Thus
Π0

2-completeness of productivity of these specifications implies Π0
2-completeness

of the stream equality problem MP = • : • : . . ..
One of the reviewers pointed us to recent work [7] of Grue Simonsen (not

available at the time of writing) where Π0
2-completeness of productivity of or-

thogonal stream specifications is shown. Theorem 3.5 below can be seen as a
sharpening of that result in that we consider general TRSs and productivity
with respect to arbitrary evaluation strategies. For orthogonal systems the eval-
uation strategy is irrelevant as long as it is outermost-fair. Moreover we further
strengthen the result on orthogonal stream specifications by restricting the for-
mat to LSF.

2 Fractran

The one step computation of a Fractran program is a partial function.

Definition 2.1. Let P = p1

q1
, . . . , pk

qk
be a Fractran program. The partial func-

tion fP : N⇀ N is defined for all n ∈ N by:

fP (n) =

{
n · pi

qi
where pi

qi
is the first fraction of P such that n · pi

qi
∈ N,

undefined if no such fraction exists.

We say that P halts on n ∈ N if there exists i ∈ N such that f i
P (n) = undefined.

For n,m ∈ N we write n→P m whenever m = fP (n).

The Fractran program for generating prime numbers, that we discussed in the
introduction, is non-terminating for all starting values n0, because the product
of any integer with 55

1 is an integer again. However, in general, termination of
Fractran programs is undecidable.

Theorem 2.2. The uniform halting problem for Fractran programs, that is, de-
ciding whether a program halts for every starting value n0 ∈ N>0, is Π0

2-complete.

A related result is obtained in [11] where it is shown that the generalised Collatz
problem (GCP) is Π0

2-complete, that is, the problem of deciding for a Collatz
function f whether for every integer x > 0 there exists i ∈ N such that f i(x) = 1.
A Collatz function f is a function f : N→ N of the form:

f(n) =


a0 · n+ b0, if n ≡ 0 (mod p)
...

...
ap−1 · n+ bp−1, if n ≡ p− 1 (mod p)



6 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

for some p ∈ N and rational numbers ai, bi such that f(n) ∈ N for all n ∈ N.
The result of [11] is an immediate corollary of Theorem 2.2. Every Fractran

program P is a Collatz function f ′P where f ′P is obtained from fP (see Defi-
nition 2.1) by replacing undefined with 1. We obtain the above representation
of Collatz functions simply by choosing for p the least common multiple of the
denominators of the fractions of P . We call a Fractran program P trivially im-
mortal if P contains a fraction with denominator 1 (an integer). Then for all not
trivially immortal P , P halts on all inputs if and only for all x > 0 there exists
i ∈ N such that f i

P (x) = 1. Using our result, this implies that GCP is Π0
2-hard.

Theorem 2.2 is a strengthening of the result in [11] since Fractran programs
are a strict subset of Collatz functions. If Fractran programs are represented as
Collatz functions directly, for all 0 ≤ i < p it holds either bi = 0, or ai = 0 and
bi = 1. Via such a translation Fractran programs are, e.g., not able to implement
the famous Collatz function C(2n) = n and C(2n+ 1) = 6n+ 4 (for all n ∈ N),
nor an easy function like f(2n) = 2n+ 1 and f(2n+ 1) = 2n (for all n ∈ N).

For the proof of Theorem 2.2 we devise a translation from Turing machines to
Fractran programs ([11] uses register machines) such that the resulting Fractran
program halts on all positive integers (n0 ≥ 1) if and only if the Turing machine is
terminating on all configurations. That is, we reduce the uniform halting problem
of Turing machines to the uniform halting problem of Fractran programs.

We briefly explain why we employ the uniform halting problem instead of the
problem of totality (termination on all inputs) of Turing machines, also known
as the initialised uniform halting problem. When translating a Turing machine
M to a Fractran program PM , start configurations (initialised configurations)
are mapped to a subset IM ⊆ N of Fractran inputs. Then from Π0

2-hardness of
the totality problem one can conclude Π0

2-hardness of the question whether PM

terminates on all numbers from IM . But this does not imply that the uniform
halting problem for Fractran programs is Π0

2-hard (termination on all natural
numbers n ∈ N). The numbers not in the target of the translation could make the
problem both harder as well as easier. A situation where extending the domain
of inputs makes the problem easier is: local confluence of TRSs is Π0

2-complete
for the set of ground terms, but only Σ0

1-complete for the set of all terms [3].
To keep the translation as simple we restrict to unary Turing machines having

only two symbols {0, 1} in their tape alphabet, 0 being the blank symbol.

Definition 2.3. A unary Turing machine M is a triple 〈Q, q0, δ〉, where Q is a
finite set of states, q0 ∈ Q the initial state, and δ : Q×{0, 1}⇀ Q×{0, 1}×{L,R}
a (partial) transition function. A configuration of M is a pair 〈q, tape〉 consisting
of a state q ∈ Q and the tape content tape : Z → {0, 1} such that the support
{n ∈ Z | tape(n) 6= 0} is finite. The set of all configurations is denoted by
ConfM . We define the relation→M on the set of configurations ConfM as follows:
〈q, tape〉 →M 〈q′, tape ′〉 whenever:

– δ(q, tape(0)) = 〈q′, f , L〉, tape ′(1) = f and ∀n 6= 0. tape ′(n+ 1) = tape(n), or
– δ(q, tape(0)) = 〈q′, f , R〉, tape ′(−1) = f and ∀n 6= 0. tape ′(n− 1) = tape(n).

We say that M halts (or terminates) on a configuration 〈q, tape〉 if the configu-
ration 〈q, tape〉 does not admit infinite →M rewrite sequences.



Complexity of Fractran and Productivity 7

The uniform halting problem of Turing machines is the problem of deciding
whether a given Turing machine M halts on all (initial or intermediate) config-
urations. The following theorem is a result of [8]:

Theorem 2.4. The uniform halting problem for Turing machines is Π0
2-complete.

This result carries over to unary Turing machines using a simulation based on a
straightforward encoding of tape symbols as blocks of zeros and ones (of equal
length), which are admissible configurations of unary Turing machines.

We now give a translation of Turing machines to Fractran programs. Without
loss of generality we restrict in the sequel to Turing machines M = 〈Q, q0, δ〉 for
which δ(q, x) = 〈q′, s′, d′〉 implies q 6= q′. In case M does not fulfil this condition
then we can find an equivalent Turing machine M ′ = 〈Q ∪ Q#, q0, δ

′〉 where
Q# = {q# | q ∈ Q} and δ′ is defined by δ′(q, x) = 〈p#, s, d〉 and δ′(q#, x) =
〈p, s, d〉 for δ(q, x) = 〈p, s, d〉.

Definition 2.5. Let M = 〈Q, q0, δ〉 be a Turing machine. Let tape`, h, taper,
tape ′`, h

′, tape ′r, mL,x, mR,x, copyx and pq for every q ∈ Q and x ∈ {0, 1} be
pairwise distinct prime numbers. The intuition behind these primes is:

– tape` and taper represent the tape left and right of the head, respectively,
– h is the tape symbol in the cell currently scanned by the tape head,
– tape ′`, h

′, tape ′r store temporary tape content (when moving the head),
– mL,x, mR,x execute a left or right move of the head on the tape, respectively,
– copyx copies the temporary tape content back to the primary tape, and
– pq represent the states of the Turing machine.

The subscript x ∈ {0, 1} is used to have two primes for every action: in case an
action p takes more than one calculation step we cannot write p·...

p·... since then p
in numerator and denominator would cancel itself out. We define the Fractran
program PM to consist of the following fractions (listed in program order):

1

p · p′
for every p, p′ ∈ {mL,0, mL,1, mR,0, mR,1, copy0, copy1}

every p, p′ ∈ {pq | q ∈ Q} and p, p′ ∈ {h, h′} (4)

to get rid of illegal configurations,

mL,1−x · tape ′`
mL,x · tape2

`

mL,1−x · tape ′2r
mL,x · taper

mL,1−x · tape ′r
mL,x · h′

mL,1−x · h
mL,x · tape`

copy0

mL,x
(5)

with x ∈ {0, 1}, for moving the head left on the tape,

mR,1−x · tape ′r
mR,x · tape2

r

mR,1−x · tape ′2`
mR,x · tape`

mR,1−x · tape ′`
mR,x · h′

mR,1−x · h
mR,x · taper

copy0

mR,x
(6)

with x ∈ {0, 1}, for moving the head right on the tape,

copy1−x · tape`

copyx · tape ′`

copy1−x · taper

copyx · tape ′r

1

copyx

(7)



8 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

with x ∈ {0, 1}, for copying the temporary tape back to the primary tape,

pq′ · h′s
′ ·md,0

pq · h
whenever δ(q, 1) = 〈q′, s′, d〉 (8)

1

pq · h
(for termination) for every q ∈ Q (9)

pq′ · h′s
′ ·md,0

pq
whenever δ(q, 0) = 〈q′, s′, d〉 (10)

for the transitions of the Turing machine. Whenever we use variables in the
rules, e.g. x ∈ {0, 1}, then it is to be understood that instances of the same rule
are immediate successors in the sequence of fractions (the order of the instances
among each other is not crucial).

Example 2.6. Let M = 〈Q, a0, δ〉 be a Turing machine where Q = {a0, a1, b},
and the transition function is defined by δ(a0, 0) = 〈b, 1, R〉, δ(a1, 0) = 〈b, 1, R〉,
δ(a0, 1) = 〈a1, 0, R〉, δ(a1, 1) = 〈a0, 0, R〉, δ(b, 1) = 〈a0, 0, R〉, and we leave δ(b, 0)
undefined. That is, M moves to the right, converting zeros into ones and vice
versa, until it finds two consecutive zeros and terminates. Assume that M is
started on the configuration 1b1001, that is, the tape content 11001 in state
b with the head located on the second 1. In the Fractran program PM this
corresponds to n0 = pb · tape1

` · h1 · tape100
r as the start value where we represent

the exponents in binary notation for better readability. Started on n0 we obtain
the following calculation in PM :

pb · tape1
` · h1 · tape100

r (configuration 1b1001)

→(8) mR,0 · pa0
· tape1

` · tape100
r →2

(6;1st) mR,0 · pa0
· tape1

` · tape ′10r

→(6;2nd) mR,1 · pa0
· tape ′10` · tape ′10r →(6;5th) copy0 · pa0

· tape ′10` · tape ′10r

→2
(7;1st)→

2
(7;2nd)→(7;3rd) pa0

· tape10
` · tape10

r (configuration 10a001)

→(10) mR,0 · pb · tape10
` · h′1 · tape10

r →(6;1st) mR,1 · pb · tape10
` · h′1 · tape ′1r

→2
(6;2nd) mR,1 · pb · tape ′100` · h′1 · tape ′1r →(6;3rd+5th) copy0 · pb · tape ′101` · tape ′1r

→5
(7;1st)→(7;2nd)→(7;3rd) pb · tape101

` · tape1
r (configuration 101b01)

reaching a configuration where the Fractran program halts.

Definition 2.7. We translate configurations c = 〈q, tape〉 of Turing machines
M = 〈Q, q0, δ〉 to natural numbers (input values for Fractran programs). We
reuse the notation of Definition 2.5 and define:

nc = tapeL
` · pq · hH · tapeR

r

L =

∞∑
i=0

2i · tape(−1− i) H = tape(0) R =

∞∑
i=0

2i · tape(1 + i)

Lemma 2.8. For every Turing machine M and configurations c1, c2 we have:

(i) if c1 →M c2 then nc1 →∗PM
nc2 , and

(ii) if c1 is a →M normal form then nc1 →∗PM
undefined.



Complexity of Fractran and Productivity 9

Proofs of Lemma 2.8 and Theorem 2.2 can be found in [5].

3 What is Productivity?

A program is productive if it evaluates to a finite or infinite constructor normal
form. This rather vague description leaves open several choices that can be made
to obtain a more formal definition. We explore several definitions and determine
the degree of undecidability for each of them. See [6] for more pointers to the
literature on productivity.

The following is a productive specification of the (infinite) stream of zeros:

zeros→ 0 : zeros

Indeed, there exists only one maximal rewrite sequence from zeros and this ends
in the infinite constructor normal form 0 : 0 : 0 : . . .. Here and later we say that
a rewrite sequence ρ : t0 → t1 → t2 → . . . ends in a term s if either ρ is finite
with its last term being s, or ρ is infinite and then s is the limit of the sequence
of terms ti, i.e. s = limi→∞ ti. We consider only rewrite sequences starting from
finite terms, thus all terms occurring in ρ are finite. Nevertheless, the limit s
of the terms ti may be an infinite term. Note that, if ρ ends in a constructor
normal form, then every finite prefix will be evaluated after finitely many steps.

The following is a slightly modified specification of the stream of zeros:

zeros→ 0 : id(zeros) id(σ)→ σ

This specification is considered productive as well, although there are infinite
rewrite sequences that do not even end in a normal form, let alone in a construc-
tor normal form: e.g. by unfolding zeros only we get the limit term 0 : id(0 : id(0 :
id(. . .))). In general, normal forms can only be reached by outermost-fair rewrit-
ing sequences. A rewrite sequence ρ : t0 → t1 → t2 → . . . is outermost-fair [16] if
there is no tn containing an outermost redex which remains an outermost redex
infinitely long, and which is never contracted. For this reason it is natural to
consider productivity of terms with respect to outermost-fair strategies.

What about stream specifications that admit rewrite sequences to construc-
tor normal forms, but that also have divergent rewrite sequences:

maybe→ 0 : maybe maybe→ sink sink→ sink

This example illustrates that, for non-orthogonal stream specifications, reach-
ability of a constructor normal form depends on the evaluation strategy. The
term maybe is only productive with respect to strategies that always apply the
first rule.

For this reason we propose to think of productivity as a property of indi-
vidual terms with respect to a given rewrite strategy. This reflects the situation
in functional programming, where expressions are evaluated according to an in-
built strategy. These strategies are usually based on a form of outermost-needed
rewriting with a priority order on the rules.



10 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

3.1 Productivity with respect to Strategies

For term rewriting systems (TRSs) [16] we now fix definitions of the notions of
(history-free) strategy and history-aware strategy. Examples for the latter notion
are outermost-fair strategies, which typically have to take history into account.

Definition 3.1. Let R be a TRS with rewrite relation →R.
A strategy for →R is a relation ; ⊆ →R with the same normal forms as→R.
The history-aware rewrite relation →H,R for R is the binary relation on

Ter(Σ)× (R× N∗)∗ that is defined by:

〈s, hs〉 →H,R 〈t, hs : 〈ρ, p〉〉 ⇐⇒ s→ t via rule ρ ∈ R at position p .

We identify t ∈ Ter(Σ) with 〈t, ε〉, and for s, t ∈ Ter(Σ) we write s →H,R t
whenever 〈s, ε〉 →H,R 〈t, h〉 for some history h ∈ (R × N∗)∗. A history-aware
strategy for R is a strategy for →H,R.

A strategy ; is deterministic if s ; t and s ; t′ implies t = t′. A strategy
; is computable if the function mapping a term (a term/history pair) to its set
of ;-successors is a total recursive function, after coding into natural numbers.

Remark 3.2. Our definition of strategy for a rewrite relation follows [17]. For
abstract rewriting systems, in which rewrite steps are first-class citizens, a def-
inition of strategy is given in [16, Ch. 9]. There, history-aware strategies for a
TRS R are defined in terms of ‘labellings’ for the ‘abstract rewriting system’
underlying R. While that approach is conceptually advantageous, our definition
of history-aware strategy is equally expressive.

Definition 3.3. A (TRS-indexed) family of strategies S is a function that as-
signs to every TRS R a set S(R) of strategies for R. We call such a family S of
strategies admissible if S(R) is non-empty for every orthogonal TRS R.

Now we give the definition of productivity with respect to a strategy.

Definition 3.4. A term t is called productive with respect to a strategy ; if all
maximal ; rewrite sequences starting from t end in a constructor normal form.

In the case of non-deterministic strategies we require here that all maximal
rewrite sequences end in a constructor normal form. Another possible choice
could be to require only the existence of one such rewrite sequence (see Sec-
tion 3.2). However, we think that productivity should be a practical notion.
Productivity of a term should entail that arbitrary finite parts of the constructor
normal form can indeed be evaluated. The mere requirement that a constructor
normal form exists leaves open the possibility that such a normal form cannot
be approximated to every finite precision in a computable way.

For orthogonal TRSs outermost-fair (or fair) rewrite strategies are the natural
choice for investigating productivity because they guarantee to find (the unique)
infinitary constructor normal form whenever it exists (see [16]).

Pairs and finite lists of natural numbers can be encoded using the well-known
Gödel encoding. Likewise terms and finite TRSs over a countable set of variables
can be encoded. A TRS is called finite if its signature and set of rules are finite.
In the sequel we restrict to (families of) computable strategies, and assume that



Complexity of Fractran and Productivity 11

strategies are represented by appropriate encodings.
Now we define the productivity problem in TRSs with respect to families of

computable strategies, and prove a Π0
2-completeness result.

Productivity Problem with respect to a family S of computable strategies
Instance: Encodings of a finite TRS R, a strategy ; ∈ S(R) and a term t.
Answer : ‘Yes’ if t is productive with respect to ;, and ‘No’, otherwise.

Theorem 3.5. For every family of admissible, computable strategies S, the pro-
ductivity problem with respect to S is Π0

2-complete.

Proof. A Turing machine is called total (encodes a total function N → N) if it
halts on all inputs encoding natural numbers. The problem of deciding whether
a Turing machine is total is well-known to be Π0

2-complete, see [9]. Let M be
an arbitrary Turing machine. Employing the encoding of Turing machines into
orthogonal TRSs from [10], we can define a TRS RM that simulates M such that
for every n ∈ N it holds: every reduct of the term M(sn(0)) contains at most
one redex occurrence, and the term M(sn(0)) rewrites to 0 if and only if the
Turing machine M halts on the input n. Note that the rewrite sequence starting
from M(sn(0)) is deterministic. We extend the TRS RM to a TRS R′M with the
following rules:

go(0, x)→ 0 : go(M(x), s(x))

and choose the term t = go(0, 0). Then R′M is orthogonal and by construction
every reduct of t contains at most one redex occurrence (consequently all strate-
gies for R coincide on every reduct of t). The term t is productive if and only
if M(sn(0)) rewrites to 0 for every n ∈ N which in turn holds if and only if the
Turing machine M is total. This concludes Π0

2-hardness.
For Π0

2-completeness let S be a family of computable strategies,R a TRS, ; ∈
S(R) and t a term. Then productivity of t can be characterised as:

∀d ∈ N. ∃n ∈ N. every n-step ;-reducts of t

is a constructor normal form up to depth d
(?)

Since the strategy ; is computable and finitely branching, all n-step reducts of t
can be computed. Obviously, if the formula (?) holds, then t is productive w.r.t.
;. Conversely, assume that t is productive w.r.t. ;. For showing (?), let d ∈ N
be arbitrary. By productivity of t w.r.t. ;, on every path in the reduction graph
of t w.r.t. ; eventually a term with a constructor normal form up to depth d
is encountered. Since reduction graphs in TRSs always are finitely branching,
Koenig’s lemma implies that there exists an n ∈ N such that all terms on depth
greater or equal to n in the reduction graph of t are constructor prefixes of depth
at least d. Since d was arbitrary, (?) has been established. Because (?) is a Π0

2-
formula, the productivity problem with respect to S also belongs to Π0

2. ut
Theorem 3.5 implies that productivity is Π0

2-complete for orthogonal TRSs
with respect to outermost-fair rewriting. To see this, apply the theorem to the
family of strategies that assigns to every orthogonal TRS R the set of com-
putable, outermost-fair rewriting strategies forR, and ∅ to non-orthogonal TRSs.



12 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

The definition of productivity with respect to computable strategies reflects
the situation in functional programming. Nevertheless, we now investigate vari-
ants of this notion, and determine their respective computational complexity.

3.2 Strong Productivity

As already discussed, only outermost-fair rewrite sequences can reach a con-
structor normal form. Dropping the fine tuning device ‘strategies’, we obtain the
following stricter notion of productivity.

Definition 3.6. A term t is called strongly productive if all maximal outermost-
fair rewrite sequences starting from t end in a constructor normal form.

The definition requires all outermost-fair rewrite sequences to end in a construc-
tor normal form, including non-computable rewrite sequences. This catapults
productivity into a much higher class of undecidability: Π1

1, a class of the an-
alytical hierarchy. The analytical hierarchy continues the classification of the
arithmetical hierarchy using second order formulas. The computational complex-
ity of strong productivity therefore exceeds the expressive power of first-order
logic to define sets from recursive sets.

A well-known result of recursion theory states that for a given computable
relation > ⊆ N × N it is Π1

1-hard to decide whether > is well-founded, see [9].
Our proof is based on a construction from [3]. There a translation from Turing
machines M to TRSs RootM (which we explain below) together with a term tM
is given such that: tM is root-terminating (i.e., tM admits no rewrite sequences
containing an infinite number of root steps) if and only if the binary relation >M

encoded by M is well-founded. The TRS RootM consists of rules for simulating
the Turing machine M such that M(x, y)→∗ T iff x >M y holds (which basically
uses a standard encoding of Turing machines, see [10]), a rule:

run(T, ok(x), ok(y))→ run(M(x, y), ok(y), pickn)

and rules for randomly generating a natural number:

pickn→ c(pickn) pickn→ ok(0(.)) c(ok(x))→ ok(S(x)) .

The term tM = run(T, pickn, pickn) admits a rewrite sequence containing in-
finitely many root steps if and only if >M is not well-founded. More precisely,
whenever there is an infinite decreasing sequence x1 >M x2 >M x3 >M . . ., then
tM admits a rewrite sequence run(T, pickn, pickn) →∗ run(T, ok(x1), ok(x2)) →
run(M(x1, x2), ok(x2), pickn) →∗ run(T, ok(x2), ok(x3)) →∗ . . .. We further note
that tM and all of its reducts contain exactly one occurrence of the symbol run,
namely at the root position.

Theorem 3.7. Strong productivity is Π1
1-complete.

Proof. For the proof of Π1
1-hardness, let M be a Turing machine. We extend the

TRS RootM from [3] with the rule run(x, y, z)→ 0:run(x, y, z). As a consequence
the term run(T, pickn, pickn) is strongly productive if and only if >M is well-
founded (which is Π1

1-hard to decide). If >M is not well-founded, then by the
result in [3] tM admits a rewrite sequence containing infinitely many root steps



Complexity of Fractran and Productivity 13

which obviously does not end in a constructor normal form. On the other hand if
>M is well-founded, then tM admits only finitely many root steps with respect to
RootM , and thus by outermost-fairness the freshly added rule has to be applied
infinitely often. This concludes Π1

1-hardness.
Rewrite sequences of length ω can be represented by functions r : N → N

where r(n) represents the n-th term of the sequence together with the position
and rule applied in step n. Then for all r (one universal ∀r function quantifier)
we have to check that r converges towards a constructor normal form whenever
r is outermost-fair; this can be checked by a first order formula. We refer to [3]
for the details of the encoding. Hence strong productivity is in Π1

1. ut

3.3 Weak Productivity

A natural counterpart to strong productivity is the notion of ‘weak produc-
tivity’: the existence of a rewrite sequence to a constructor normal form. Here
outermost-fairness does not need to be required, because rewrite sequences that
reach normal forms are always outermost-fair.

Definition 3.8. A term t is called weakly productive if there exists a rewrite
sequence starting from t that ends in a constructor normal form.

For non-orthogonal TRSs the practical relevance of this definition is questionable
since, in the absence of a computable strategy to reach normal forms, mere
knowledge that a term t is productive does typically not help to find a constructor
normal form of t. For orthogonal TRSs computable, normalising strategies exist,
but then also all of the variants of productivity coincide (see Section 3.4).

Theorem 3.9. Weak productivity is Σ1
1-complete.

Proof. For the proof of Σ1
1-hardness, let M be a Turing machine. We exchange

the rule run(T, ok(x), ok(y)) → run(M(x, y), ok(y), pickn) in the TRS RootM
from [3] by the rule run(T, ok(x), ok(y))→ 0: run(M(x, y), ok(y), pickn). Then we
obtain that the term run(T, pickn, pickn) is weakly productive if and only if >M

is not well-founded (which is Σ1
1-hard to decide). This concludes Π1

1-hardness.
The remainder of the proof proceeds analogously to the proof of Theorem 3.7,

except that we now have an existential function quantifier ∃r to quantify over
all rewrite sequences of length ω. Hence weak productivity is in Σ1

1. ut

3.4 Discussion

For orthogonal TRSs all of the variants of productivity coincide. That is, if we
restrict the first variant to computable outermost-fair strategies;A as already
discussed, other strategies are not very reasonable. For orthogonal TRSs there
always exist computable outermost-fair strategies, and whenever for a term there
exists a constructor normal form, then it is unique and all outermost-fair rewrite
sequences will end in this unique constructor normal form.

This raises the question whether uniqueness of the constructor normal forms
should be part of the definition of productivity. We consider a specification of



14 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

the stream of random bits:

random→ 0 : random random→ 1 : random

Every rewrite sequence starting from random ends in a normal form. However,
these normal forms are not unique. In fact, there are uncountably many of them.
We did not include uniqueness of normal forms into the definition of productiv-
ity since non-uniqueness only arises in non-orthogonal TRSs when using non-
deterministic strategies. However, one might want to require uniqueness of nor-
mal forms even in the case of non-orthogonal TRSs.

Theorem 3.10. The problem of determining, for TRSs R and terms t in R,
whether t has a unique (finite or infinite) normal form is Π1

1-complete.

Proof. For Π1
1-hardness, we extend the TRS constructed in the proof of The-

orem 3.9 by the rules: start → run(T, pickn, pickn), run(x, y, z) → run(x, y, z),
start → ones, and ones → 1 : ones. Then start has a unique normal form if and
only if >M is well-founded. For Π1

1-completeness, we observe that the property
can be characterised by a Π1

1-formula: we quantify over two infinite rewrite se-
quences, and, in case both of them end in a normal form, we compare them.
Note that consecutive universal quantifiers can be compressed into one. ut

Let us consider the impact on computational complexity of taking up the
condition of uniqueness of normal forms into the definition of productivity. In-
cluding uniqueness of normal forms without considering the strategy would in-
crease the complexity of productivity with respect to a family of strategies to
Π1

1. However, we think that doing so would be contrary to the spirit of the no-
tion of productivity. Uniqueness of normal forms should only be required for the
normal forms reachable by the given (non-deterministic) strategy. But then the
complexity of productivity remains unchanged, Π0

2-complete. The complexity of
strong productivity remains unaltered, Π1

1-complete, when including uniqueness
of normal forms. However, the degree of undecidability of weak productivity in-
creases. From the proofs of Theorems 3.9 and 3.10 it follows that the property
would then both be Σ1

1-hard and Π1
1-hard, then being in ∆1

1.

4 Productivity for Lazy Stream Specifications is Π0
2

In this section we strengthen the undecidability result of Theorem 3.5 by showing
that the productivity problem is Π0

2-complete already for a very simple format
of stream specifications, namely the lazy stream format (LSF) introduced on
page 3. We do so by giving a translation from Fractran programs into LSF and
applying Theorem 2.2.

Definition 4.1. Let P = p1

q1
, . . . , pk

qk
be a Fractran program. Let d be the least

common multiple of the denominators of P , that is, d := lcm(q1, . . . , qk). Then
for n = 1, . . . , d define p′n = pi ·(d/qi) and bn = n · pi

qi
where pi

qi
is the first fraction

of P such that n · pi

qi
is an integer, and we let p′n and bn be undefined if no such

fraction exists. Then, the stream specification induced by P is a term rewriting



Complexity of Fractran and Productivity 15

system RP = 〈ΣP , RP 〉 with:

ΣP = {•, : , head, tail, zipd,MP } ∪ {modp′
n
| p′n is defined}

and with RP consisting of the following rules:

MP → zipd(T1, . . . ,Td), where, for 1 ≤ n ≤ d, Tn is shorthand for:

Tn =

{
modp′

n
(tailbn−1(MP )) if p′n is defined,

• : modd(tailn−1(MP )) if p′n is undefined.

head(x : σ)→ x modk(σ)→ head(σ) : modk(tailk(σ))

tail(x : σ)→ σ zipd(σ1, σ2 . . . , σd)→ head(σ1) : zipd(σ2, . . . , σd, tail(σ1))

where x, σ, σi are variables.1

The rule for modn defines a stream function which takes from a given stream
σ all elements σ(i) with i ≡ 0 (mod n), and results in a stream consisting of
those elements in the original order. As we only need rules modp′

n
whenever p′n

is defined we need d such rules at most.
If p′n is undefined then it should be understood that m · p′n is undefined. For

n ∈ N let ϕ(n) denote the number from {1, . . . , d} with n ≡ ϕ(n) (mod d).

Lemma 4.2. For every n > 0 we have fP (n) = b(n− 1)/dc · p′ϕ(n) + bϕ(n).

Proof. Let n > 0. For every i ∈ {1, . . . , k} we have n · pi

qi
∈ N if and only if

ϕ(n) · pi

qi
∈ N, since n ≡ ϕ(n) mod d and d is a multiple of qi. Assume that fP (n)

is defined. Then fP (n) = n·p′ϕ(n)/d = (b(n−1)/dc·d+((n−1) mod d)+1)·p′ϕ(n)/d

= b(n−1)/dc·p′ϕ(n)+ϕ(n)·pi/qi = b(n−1)/dc·p′ϕ(n)+bϕ(n). Otherwise whenever

fP (n) is undefined then p′ϕ(n) is undefined. ut

Lemma 4.3. Let P be a Fractran program. Then RP is productive for MP if
and only if P is terminating on all integers n > 0.

Proof. Let σ(n) be shorthand for head(tailn(σ)). It suffices to show for all n ∈ N:
MP (n)→∗ • if and only if P halts on n. For this purpose we show MP (n)→+ •
whenever fP (n+ 1) is undefined, and MP (n)→+ MP (fP (n+ 1)− 1), otherwise.
We have MP (n)→∗ Tϕ(n+1)(bn/dc).

Assume that fP (n + 1) is undefined. By Lemma 4.2 p′ϕ(n+1) is undefined,

thus thus MP (n)→∗ • whenever bn/dc = 0, and otherwise we have:

MP (n)→∗ Tϕ(n+1)(bn/dc)→∗ modd(tailϕ(n+1)−1(MP ))(bn/dc − 1)→∗ MP (n′)

where n′ = (bn/dc − 1) · d+ ϕ(n+ 1)− 1 = n− d. Clearly n ≡ n′ (mod d), and
then MP (n)→∗ • follows by induction on n.

Assume that fP (n+ 1) is defined. By Lemma 4.2 p′ϕ(n+1) is defined and:

MP (n)→∗ Tϕ(n+1)(bn/dc)→∗ modp′
ϕ(n+1)

(tailbϕ(n+1)−1(MP ))(bn/dc)
1 Note that modd(tailn−1(zipd(T1, . . . ,Td))) equals Tn, and so, in case p′n is undefined,

we just have Tn = • :Tn. In order to have the simplest TRS possible (for the purpose
at hand), we did not want to use an extra symbol (•) and rule (•)→ • : (•).



16 Jörg Endrullis, Clemens Grabmayer, and Dimitri Hendriks

and hence MP (n)→+ MP (n′) with n′ = bn/dc · p′ϕ(n+1) + bϕ(n+1) − 1. Then we

have n′ = fP (n+ 1)− 1 by Lemma 4.2. ut
Theorem 4.4. The restriction of the productivity problem to stream specifica-
tions induced by Fractran programs and outermost-fair strategies is Π0

2-complete.

Proof. Since by Lemma 4.3 the uniform halting problem for Fractran programs
can be reduced to the problem here, Π0

2-hardness is a consequence of Theorem 2.2.
Π0

2-completeness follows from membership of the problem in Π0
2, which can be

established analogously as in the proof of Theorem 3.5. ut
Note that Theorem 4.4 also gives rise to an alternative proof for the Π0

2-hardness
part of Theorem 3.5, the result concerning the computational complexity of
productivity with respect to strategies.

References

1. T. Arts and J. Giesl. Termination of Term Rewriting Using Dependency Pairs.
Theoretical Computer Science, 236:133–178, 2000.

2. J.H. Conway. Fractran: A Simple Universal Programming Language for Arithmetic.
In Open Problems in Communication and Computation, pages 4–26. Springer, 1987.

3. J. Endrullis, H. Geuvers, and H. Zantema. Degrees of Undecidabililty of TRS
Properties. http://arxiv.org/abs/0902.4723, 2009.

4. J. Endrullis, C. Grabmayer, and D. Hendriks. ProPro: an Automated Productivity
Prover. http://infinity.few.vu.nl/productivity/, 2008.

5. J. Endrullis, C. Grabmayer, and D. Hendriks. Complexity of Fractran and Pro-
ductivity. http://arxiv.org/abs/0903.4366, 2009.

6. J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productiv-
ity of Stream Definitions. In FCT 2007, number 4639 in LNCS, pages 274–287.
Springer, 2007.

7. J. Grue Simonsen. The Π0
2-Completeness of Most of the Properties of Rewriting

Systems You Care About (and Productivity). In RTA’09, 2009. To appear.
8. G.T. Herman. Strong Computability and Variants of the Uniform Halting Problem.

Zeitschrift für Math. Logik und Grundlagen der Mathematik, 17(1):115–131, 1971.
9. P.G. Hinman. Recursion-Theoretic Hierarchies. Springer, 1978.

10. J.W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science,
volume 2, pages 1–116. Oxford University Press, 1992.

11. S.A. Kurtz and J. Simon. The Undecidability of the Generalized Collatz Problem.
In TAMC ’07, volume 4484 of LNCS, pages 542–553. Springer, 2007.

12. J.C. Lagarias. The 3x + 1 Problem and its Generalizations. AMM, 92(1):3–23,
1985.

13. S. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice–Hall, 1987.

14. G. Roşu. Equality of Streams is a Π0
2-complete Problem. In ICFP, pages 184–191,

2006.
15. B.A. Sijtsma. On the Productivity of Recursive List Definitions. ACM Transactions

on Programming Languages and Systems, 11(4):633–649, 1989.
16. Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 2003.
17. Y. Toyama. Strong Sequentiality of Left-Linear Overlapping Term Rewriting Sys-

tems. In LICS, pages 274–284. IEEE Computer Society Press, Los Alamitos, 1992.


