
Clocked Lambda Calculus †

Jörg Endrullis, Dimitri Hendriks, Jan Willem Klop, and Andrew Polonsky

{j.endrullis,r.d.a.hendriks,j.w.klop,a.polonsky}@vu.nl

VU University Amsterdam, Department of Computer Science

One of the best-known methods for discriminating λ-terms with respect to

β-convertibility is due to Corrado Böhm. The idea is to compute the infinitary normal

form of a λ-term M , the Böhm Tree (BT) of M . If λ-terms M , N have distinct BTs, then

M 6=β N , that is, M and N are not β-convertible. But what if their BTs coincide? For

example, all fixed point combinators (fpcs) have the same BT, namely λx.x(x(x(. . .))).

We introduce a clocked λ-calculus, an extension of the classical λ-calculus with a unary

symbol τ used to witness the β-steps needed in the normalization to the BT. This

extension is infinitary strongly normalizing, infinitary confluent, and the unique

infinitary normal forms constitute enriched Böhm Trees, which we call clocked Böhm

Trees. These are suitable for discriminating a rich class of λ-terms having the same BTs,

including the well-known sequence of Böhm’s fpcs.

We further increase the discrimination power in two directions. First, by a refinement of

the calculus: the atomic clocked λ-calculus, where we employ symbols τp that also

witness the (relative) positions p of the β-steps. Second, by employing a localized version

of the (atomic) clocked BTs that has even more discriminating power.

We dedicate our paper to Corrado Böhm

in honour of his 90th birthday, in gratitude and admiration.

1. Introduction

We introduce new techniques for proving non-convertibility of λ-terms, and place our

earlier work on clocked Böhm Trees (EHK10; EHKP12) in a new and more elegant

setting, giving a first-class status to the clocks in a λ-calculus extended with an explicit

unary constructor τ . The idea is that in the normalization to the Böhm Tree (BT),

we leave behind an occurrence of τ at a position p to witness a β-step needed to head

normalize the subterm at p. The calculus consists of the following two rules:

(λx.M)N → τ(M [x :=N]) τ(M)N → τ(MN)

† This research has been partially funded by the Netherlands Organisation for Scientific Research
(NWO) under grant numbers 612.000.934, 639.021.020, and 612.001.002.

Endrullis, Hendriks, Klop, Polonsky 2

and we call it the clocked λ-calculus. It satisfies the desired infinitary properties of infini-

tary confluence, and infinitary strong normalization, and the unique infinitary normal

forms are BTs (in fact, Lévy–Longo Trees) enriched with τ symbols witnessing the β-steps

needed in the reduction to the BT. For a large class of λ-terms this yields a discrimina-

tion method, as follows: if the infinitary normal forms in the clocked λ-calculus cannot

be converted by deleting finitely many τ symbols, then the terms are not β-convertible.

This class of terms encompasses the so-called ‘simple’ terms, that is, terms that never

duplicate redexes in the reduction to the BTs, see (EHK10; EHKP12).

We further enhance the discrimination power as follows. We extend the class of simple

terms by allowing redex duplication, but requiring that of each redex only finitely many

residuals are contracted. Moreover, we introduce a sieve of time that fine-tunes the

method to a set of positions in the BT, then only requiring that the head reductions at

these positions do not contract infinitely many residuals of a single redex.

We also introduce the atomic clocked λ-calculus where the τ ’s also record the position

of the β-step they witness:

(λx.M)N → τε(M [x :=N]) τp(M)N → τLp(MN)

The need of refined discrimination techniques becomes apparent by studying fixed

point combinators (fpcs), which are ideally suited to study Böhm Trees (BTs). Indeed,

fpcs yield the simplest infinite BTs that there are: for every fpc Y , the Böhm Tree

BT(Y) = λx.xω = λx.x(x(x(. . .))), an ‘infinite normal form’ in the infinitary λ-calculus

λ∞, see (KKSdV97; Ter03; EHK10; EHKP12). Thus they cannot be distinguished by

their non-clocked BTs.

Fixed point combinators play an important role in the λ-calculus, namely in the con-

struction of recursively defined terms. Terms M satisfying M =β C[M] where C is a

context, can be defined by M ≡ Y (λx.C[x]) where Y is an fpc. Fixed point combinators

and weak fpcs, a generalization of fpcs, also play an important role in several typed λ-

calculi (GW94), where a possibility of typing a wfpc is associated with the emergence of

paradoxes.

Before setting up our technical framework, we discuss some related work.

Related Work

The idea of enriching BTs occurred as we recently noted, already in 1989 in a paper by

Naoi and Inagaki (NI89) in the setting of first-order rewriting systems. Their definition

bears a striking resemblance to our definition of clocked BTs and was meant to express

a notion of complexity or efficiency for terms. It was done “by counting, for each node

p in the limit, the number of rewriting steps required to obtain p”. It was not used for

discrimination purposes as we did in (EHK10; EHKP12), and again do in the present

paper. The main purpose of (NI89) was to give a continuous algebra semantics to TRSs.

A second strand of related work, this time in the setting of λ-calculus, is by Aehlig

and Joachimski in 2002 (AJ02). Just as we will do, they employed a ‘waiting instruction’

like our τ , but the actual setup is different from ours. More precisely, (AJ02) define a

normalization function by guarded corecursion (guaranteeing a total, productive func-

Clocked Lambda Calculus 3

tion (Coq94)), where the τ constructor serves as a guard, and is returned whenever the

argument is not yet in (weak) head normal form. The purpose of (AJ02) was to give

a continuous normalization strategy. We include τ in an extension of λ-calculus itself,

and our main concerns are discrimination techniques. Beyond that, our extension of λ-

calculus with τ resembles (AJ02) in the fact that our λ-calculus has the property SN∞,

infinitary normalization. Moreover, our calculus satisfies infinitary confluence, CR∞. We

remind that ordinary λ-calculus possesses neither of these two properties.

As a historical note, we mention that our τ constructor is very much reminiscent

of the hiaton suggested by W. Wadge (see (Wad81)), signifying a delay step. It was

also written as τ ; that notation was suggested by D. Park in (Par83), inspired by the

τ -step, or silent move, in process algebra, in particular Milner’s CCS. Several studies

(e.g. (Fau82; Mat85)) were employing this device called ‘hiatonisation’ in the semantics

of programming languages and dataflow networks, with issues such as the well-known

Brock–Ackerman anomaly, and Kahn’s principle.

2. Preliminaries

To make this paper self-contained, and to fix notations, we recall the main concepts. For

further reading on λ-calculus we refer to (Bar84) and (Bet03), and for Böhm, Berarducci

and Lévy–Longo Trees to (Bar84; AO93; BKdV00; BK09).

Definition 1. We fix a countably infinite set X of variables x, y, z, The set Ter(λ)

of finite λ-terms is inductively defined by the following grammar:

M ::= x | λx.M |M ·M (x ∈ X)

We use M,N, . . . to range over the elements of Ter(λ).

Usually we suppress the application symbol in a term M ·N and write MN for short.

We adopt the usual conventions for omitting brackets, i.e., we let application associate to

the left, so that N1N2 . . . Nk denotes (. . . (N1N2) . . . Nk), and we let abstraction associate

to the right: λx1 . . . xn.M stands for (λx1.(. . . (λxn.(M)))).

Definition 2. Let 2 be a fresh constant symbol, i.e., 2 6∈ X . Then a context is a term

containing precisely one occurrence of 2, that is, contexts are defined by

C ::= 2 | λx.C | CM |MC (x ∈ X ,M ∈ Ter(λ))

We write Con(λ) for the set of all finite contexts. For M ∈ Ter(λ) and C ∈ Con(λ) we

write C[M] to denote the term obtained from C by replacing the single occurrence of 2
with the term M , that is:

2[M] = M (λx.C)[M] = λx.C[M] (CN)[M] = C[M]N (NC)[M] = NC[M]

The set of finite and infinite terms is defined by interpreting the grammar from Def-

inition 1 coinductively, that is, Ter∞(λ) is the largest set X such that every element

M ∈ X is either a variable x, an abstraction λx.M ′ or an application M1M2 with

M ′,M1,M2 ∈ X. We will use ::=co to indicate that the grammar has to be interpreted

Endrullis, Hendriks, Klop, Polonsky 4

coinductively. For a thorough treatment of coinductive definition and proof principles we

refer to (SR12).

Definition 3. The set Ter∞(λ) of (finite and) infinite λ-terms is defined by the grammar

M ::=co x | λx.M |MM (x ∈ X)

Definition 4. The set of infinite contexts, which we denote by Con∞(λ), is defined

inductively by the grammar as in Definition 2 with the difference that M ∈ Ter∞(λ).

Context filling, C[M] with C ∈ Con∞(λ) and M ∈ Ter∞(λ), is defined as before.

We note that infinite contexts are infinite λ-terms, but their single hole 2 resides at

finite depth.

Definition 5. A position is a sequence over {λ,L,R}. Let M ∈ Ter∞(λ) and p ∈
{λ,L,R}∗. The subterm M |p of M at position p is defined as follows:

M |ε = M (MN)|Lp = M |p
(λx.M)|λp = M |p (MN)|Rp = N |p

We let Pos(M) ⊆ {λ,L,R}∗ denote the set of positions p such that M |p is defined.

The root of a termM is the outermost constructor ofM . The symbol ofM at position p,

denoted by M(p), is the root of the subterm M |p. These notions are also employed for

contexts.

We introduce some further notations. Let →1 and →2 be binary relations on terms.

We write →1 · →2 for the relational composition of →1 and →2, i.e., M →1 · →2 N iff

M →1 P →2 N for some term P . We write →n for the n-fold composition of a relation

→, defined by M →0 M , and M →n+1 N iff M → ·→n N . We use →→ to denote the

reflexive-transitive closure of →, →→ = ∪n∈N→n. We let →= denote the reflexive closure

of →, →= =→0 ∪→1.

Definition 6. The relation→β on Ter(λ) or Ter∞(λ), called β-reduction, is the closure

under contexts of the β-rule:

(λx.M)N →M [x :=N] (β)

where M [x :=N] denotes the result of substituting N for all free occurrences of x in M .

We usually omit the subscript β in →β and →→β . For terms M,N ∈ Ter∞(λ), we write

M →p N to indicate the witnessing position of the contracted redex, so M →p N if there

exists a context C such that C(p) = 2, M ≡ C[(λx.P)Q] and N = C[P [x :=Q]].

We write M =β N to denote that M is β-convertible with N , i.e., =β is the equivalence

closure of →β . For syntactic equality (modulo renaming of bound variables) of λ-terms,

we use ≡.

Definition 7. A λ-term M is called a normal form if there exists no N with M → N .

We say that a term M has a normal form if it reduces to one, that is, if M →→ N for

Clocked Lambda Calculus 5

some normal form N . For λ-terms M having a normal form we write nf(M) to denote

the unique normal form N with M →→ N .†

Combinators are closed λ-terms, i.e., λ-terms without free variables. Some commonly

used combinators are:

I = λx.x K = λxy.x S = λxyz.xz(yz) B = λxyz.x(yz)

Definition 8 (Fixed point combinators).

(i) A term Y is a fixed point combinator (fpc) if Y x =β x(Y x).

(ii) An fpc Y is k-reducing if Y x→k x(Y x).

(iii) An fpc Y is reducing if Y is k-reducing for some k ∈ N.

(iv) A term Z is a weak fpc (wfpc) if Zx =β x(Z ′x) where Z ′ is again a wfpc.

Example 9. The well-known fpc’s of Curry and Turing, Y0 and Y1, are defined as follows:

Y0 ≡ λf.ωfωf Y1 ≡ ηη
ωf ≡ λx.f(xx) η ≡ λxf.f(xxf)

Note that Turing’s Y1 is a reducing fpc, whereas Curry’s Y0 is not.

Example 10. Another example of a non-reducing fpc is Hurkens fpc:

YH = λf.αfαfω αf = λab.f(bab) ω = λx.xx

Then YHx → αxαxω →2 x(ωαxω) → x(αxαxω) ← x(YHx). As we were informed by

Herman Geuvers in personal communication, this fpc was derived by Tonny Hurkens

in a study of Girard’s paradox. This term was a ‘looping combinator’ (before erasing

types), which is a well-typed wfpc. However, erasing the type information yielded the

proper fpc YH above.

Example 11. Yet another example of a non-reducing fpc is YMW, found via mechanical

search by McCune and Wos (MW91):

YMW = λf.α(B(Bf))α α = λab.abab

Then YMWx→→ f(α(B(Bx))α)← x(YMWx).

Remark 12. The definition of weak fpc’s in item (iv) of the above definition is essentially

coinductive (SR12), that is, implicitly employing a ‘largest set’ semantics. In long form,

the definition means the following: the set of weak fpc’s is the largest set W ⊆ Ter(λ)

such that for every Z ∈W we have Zx =β x(Z ′x) for some Z ′ ∈W .

A wfpc is alternatively defined as a term having the same Böhm Tree as an fpc,

namely λx.xω ≡ λx.x(x(x(. . .))). In type systems, typable wfpcs are known as ‘looping

combinators’; see (CH94; GW94).

A third alternative definition of wfpcs is via infinitary λ-calculus: Zx =λ∞ x(Zx).

† Uniqueness follows from confluence of the λ-calculus; see, e.g., (Bet03).

Endrullis, Hendriks, Klop, Polonsky 6

Example 13. Define by double recursion‡, Z and Z ′ such that Zx = x(Z ′x) and Z ′x =

x(Zx). Then Z,Z ′ are both wfpc’s, and Zx = x(x(Zx)). So Z delivers its output twice

as fast as an ordinary fpc, but the generator flipflops.

Example 14. An example of a weak fpc is the term A(BAB) where A ≡ BM and

M ≡ λx.xx. This example was found by Statman, in his study of terms composed only

of symbols B and M. Here the generator changes in each ‘production cycle’. We have the

following reduction:

A(BAB)x

→3 M(BABx)

→ BABx(BABx)

→3 A(Bx)(BABx)

→3 M(Bx(BABx))

→ Bx(BABx)(Bx(BABx))

→3 x(BABx(Bx(BABx)))

→3 x(A(Bx)(Bx(BABx)))

→3 x(M(Bx(Bx(BABx))))

→ x(Bx(Bx(BABx))(Bx(Bx(BABx))))

→3 x(x(Bx(BABx)(Bx(Bx(BABx)))))

→3 x(x(x(BABx(Bx(Bx(BABx))))))

→3 x(x(x(A(Bx)(Bx(Bx(BABx))))))

→3 x(x(x(M(Bx(Bx(Bx(BABx)))))))

→ x(x(x(Bx(Bx(Bx(BABx)))(Bx(Bx(Bx(BABx)))))))

→3 x(x(x(x(Bx(Bx(BABx))(Bx(Bx(Bx(BABx))))))))

→3 x(x(x(x(x(Bx(BABx)(Bx(Bx(Bx(BABx)))))))))

→3 x(x(x(x(x(x(BABx(Bx(Bx(Bx(BABx))))))))))

→3 x(x(x(x(x(x(A(Bx)(Bx(Bx(Bx(BABx))))))))))

→3 x(x(x(x(x(x(M(Bx(Bx(Bx(Bx(BABx)))))))))))

Definition 15. Let M,N be λ-terms, and n a natural number. We define MN∼n and

MnN as follows:

MN∼0 = M M0N = N

MN∼n+1 = MNN∼n Mn+1N = M(MnN)

A context of the form 2N∼n is called a vector. For the vector notation, it is to be

understood that term formation gets highest priority, i.e., MNP∼n = (MN)P∼n.

In the sequel we will consider extensions of the set of λ-terms, and of the λ-calculus.

It is straightforward to extend notations and terminology correspondingly. For example,

we write Ter∞(λ⊥) for the set of infinite λ-terms with a special constant symbol ⊥, i.e.,

defined by the ‘cogrammar’:

M ::=co x | λx.M |MM | ⊥ (x ∈ X)

Böhm Trees, Lévy–Longo Trees, and Berarducci Trees form particular subsets of the set

Ter∞(λ⊥), where ⊥ stands for the different notions of ‘undefined’ in these semantics.

‡ See (Klo07) for several proofs of the double fixed point theorem, including some of (Bar84; Smu85).

Clocked Lambda Calculus 7

For completeness sake we repeat their classic definitions below, see Definition 20. We

define some preliminary notions first.

Definition 16. We define a metric d on Ter∞(λ⊥) by d(M,N) = 0 whenever M ≡ N ,

and d(M,N) = 2−k otherwise, where k ∈ N is the least length of all positions p such

that M(p) 6≡ N(p).

Definition 17. Let R be a reduction relation on Ter∞(λ). A transfinite rewrite sequence

(of ordinal length α) is a sequence of rewrite steps (Mγ →R,pγ Mγ+1)γ<α such that for

every limit ordinal κ < α we have that if β approaches κ from below, then

(i) the distance d(Mγ ,Mκ) tends to 0, and, moreover,

(ii) the depth of the rewrite action, i.e., the length of the positions pγ , tends to infinity.

The sequence is called strongly convergent if α is a successor ordinal, or there exists a

term Mα such that the conditions (i) and (ii) are fulfilled for every limit ordinal κ ≤ α.

In this case we write M0 →→→R Mα, or M0 →α
R Mα to explicitly indicate the length α of

the sequence. The sequence is called divergent if it is not strongly convergent.

Let M ∈ Ter∞(λ) be a term. The infinitary properties strong normalization SN∞,

confluence CR∞, and unique normalization UN∞ of R are defined as follows:

SN∞(M) : all infinite rewrite sequences from M are strongly convergent;

CR∞(M) : ∀N1, N2 (N1 ←←←R M →→→R N2 =⇒ N1 →→→R · ←←←R N2);

UN∞(M) : ∀N1, N2 (N1 ←←←R M →→→R N2 and N1, N2 normal forms =⇒ N1 ≡ N2).

We write SN∞(R), CR∞(R) or UN∞(R) if the respective property holds for all terms.

Definition 18.

(i) A head reduction step →h is a β-reduction step of the form:

λx1 . . . xn.(λy.M)NN1 . . . Nm → λx1 . . . xn.(M [y :=N])N1 . . . Nm with n,m ≥ 0.

(ii) Accordingly, a head normal form (hnf) is a λ-term of the form:

λx1. . . . λxn.yN1 . . . Nm with n,m ≥ 0 (where y may be one of the xi (1 ≤ i ≤ n)).

(iii) A weak head normal form (whnf) is an hnf or an abstraction, that is, a whnf is a term

of the form xM1 . . .Mm or λx.M .

(iv) A term has a (weak) hnf if it reduces to one.

(v) We call a term root-stable if it does not reduce to a redex: (λx.M)N . A term is called

root-active if it does not reduce to a root-stable term.

(vi) A term of order 0 is a term that cannot be β-reduced to an abstraction term. A term

M is mute (Ber96) if it is a term of order 0 which cannot be reduced to a variable or

to an application M1M2 with M1 a term of order 0. Equivalently: M has an infinite

reduction with at the root infinitely many times a redex contraction.

Remark 19. We note that if M reduces to a hnf N , the number of head steps in any

reduction from M to N is the same. This is the reason why the annotations in the clocked

BTs introduced in Section 3 are canonical, and not subject to some reduction strategy.

Definition 20. Let M ∈ Ter∞(λ⊥). Then we define the Böhm Tree BT(M), Lévy–

Endrullis, Hendriks, Klop, Polonsky 8

Longo Tree LLT(M), and Berarducci Tree BeT(M) coinductively by

BT(M) =

{
λ~x.y BT(M1) . . .BT(Mm) if M has hnf λ~x.yM1 . . .Mm,

⊥ otherwise.

LLT(M) =


x LLT(M1) . . . LLT(Mm) if M has whnf xM1 . . .Mm,

λx.LLT(M ′) if M has whnf λx.M ′,

⊥ otherwise.

BeT(M) =


y if M →→ y,

λx.BeT(N) if M →→ λx.N ,

BeT(M1)BeT(M2) if M →→M1M2 such that M1 is of order 0,

⊥ in all other cases (i.e., when M is mute).

3. Clocked Lambda Calculus

In previous work (EHK10; EHKP12), we introduced clocked Böhm Trees by annotating

Böhm Trees. Here we give a first-class status to the clocks, and obtain the clocked BTs as

the infinitary normal forms in an extended λ-calculus. We extend the λ-calculus with an

explicit unary constructor τ in the spirit of (AJ02); cf. also (Wad81; Par83; NI89) (the

latter though have no explicit constructor leading to the annotations as we define below).

The idea is that in the normalization to the Böhm Tree, we leave behind an occurrence

of τ at a position p to witness the β-step needed to head normalize the subterm at p.

Definition 21. The set Ter∞(λτ) of (finite and infinite) terms of the clocked λ-calculus

is coinductively defined by the following grammar

M ::=co x | λx.M |MM | τ(M) (x ∈ X)

The set Con∞(λτ) of infinite contexts is inductively defined by

C ::= 2 | λx.C | CM |MC | τ(C) (x ∈ X ,M ∈ Ter∞(λτ))

Next we define a rewrite relation → for obtaining clocked Lévy–Longo Trees (LLTs)

as its infinitary normal forms. LLTs form a refinement of Böhm Trees, and likewise so for

their clocked variants. The reason for focusing on LLTs will become clear in the sequel.

Definition 22. The relation → on Ter∞(λτ) of the clocked λ-calculus is defined as

the closure under contexts of the rules

(λx.M)N → τ(M [x :=N]) (βτ)

τ(M)N → τ(MN) (τ -app)

The τ symbol can be interpreted as follows: in the normalization of a term to its

LLT every subterm τn(M) means that n β-steps were needed to normalize the original

subterm to M , its weak head normal form (whnf, see Definition 18). Infinite stacks τω

then stand for ‘undefined’, i.e., the original subterm did not have a whnf.

Clocked Lambda Calculus 9

Example 23. We compute the →→→ -normal form of Y0K. First we note that

Y0K ≡ (λf.ωfωf)K→ τ(ωKωK)

ωK ≡ λx.K(xx)→ τ(λxy.xx)

ωKωK → τ(λxy.xx)ωK → τ((λxy.xx)ωK)→ τ(τ(λy.ωKωK)))

Hence we obtain

Y0K→→→ τ3(λy.τ2(λy.τ2(λy.τ2(λy.τ2(. . .)))))

which can be recognized as the LLT λy.λy.λy. . . . enriched with τ ’s. After the initial

application of Y0, every abstraction λy is produced by precisely two head reduction steps

as witnessed by the preceding occurrence of τ2.

Before we show that the normal forms of →→→ indeed constitute enriched LLTs, we

collect some global infinitary properties of →→→ .

Lemma 24. The relation →→→ has the properties UN∞, SN∞ and CR∞.

Proof. UN∞ follows from orthogonality of the rules defining → , see (KS09). SN∞ is

equivalent to the non-existence of root-active terms (KdV05). This follows from observing

that any contraction of a root redex will introduce a τ at the root, hence every term

admits at most one root step. Finally, CR∞ immediately follows from UN∞ and SN∞.

Definition 25. Let M ∈ Ter∞(λτ). We define the clocked Lévy–Longo Tree LLT (M)

of M as the (unique) infinitary normal form of M with respect →→→ .

Example 26. Consider the fpcs Y0 of Curry and Y1 of Turing, defined in Example 9.

Figure 1 displays the clocked Lévy–Longo Trees of Y0f (left) and Y1f (right), computed

τ2

·

f τ1

·

f τ1

·

f . . .

τ2

·

f τ2

·

f τ2

·

f . . .

Fig. 1. Clocked Lévy–Longo Trees of Y0f and Y1f .

as follows. We have Y0 ≡ λf.ωfωf where ωf ≡ λx.f(xx), and

ωfωf → τ(f(ωfωf))

Endrullis, Hendriks, Klop, Polonsky 10

Therefore we obtain

LLT (ωfωf) = τ(f LLT (ωfωf))

LLT (Y0f) = τ(LLT (ωfωf)) = τ2(f LLT (ωfωf))

For Y1 ≡ ηη where η ≡ λx.λf.f(xxf) we get:

Y1f ≡ ηηf → τ(λf.f(ηηf))f → τ((λf.f(ηηf))f)→ τ(τ(f(ηηf)))

Hence, LLT (Y1f) = τ2(f LLT (Y1f)).

We let b·c : Ter∞(λτ) → Ter∞(λ⊥) denote the map that replaces every outermost

occurrence of a subterm of the form τω by ⊥ and removes all other occurrences of τ .

Lemma 27. Let M ∈ Ter(λ). Then bLLT (M)c is the Lévy–Longo Tree LLT(M) of M .

Proof. By coinduction. We do case distinction on the weak head normal form of M .

(i)M has no whnf. Then bLLT (M)c = bτωc = ⊥ = LLT(M).

(ii)M converges to whnf xM1 · · ·Mn after n steps of weak head reduction. By coinduc-

tion, bLLT (Mi)c = LLT(Mi). Then

bLLT (M)c = bτn(xM1 · · ·Mn)c = xbM1c · · · bMnc

= xLLT(M1) · · · LLT(Mn) = LLT(M)

(iii)M converges to whnf λx.N in n steps. By coinduction, bLLT (N)c = LLT(N). Then

bLLT (M)c = bτn(λx.LLT (N))c = λx.bLLT (N)c

= λx.LLT(N) = LLT(M)

Remark 28. Let→BT be the extension of the relation→ from Definition 22 by taking

the closure under contexts of the rules (βτ), (τ -app) and

λx.τ(M)→ τ(λx.M) (τλ)

Then for every M ∈ Ter∞(λτ), the infinitary normal form of M with respect to →BT is

the clocked Böhm Tree of M . However, the rules are no longer orthogonal and infinitary

confluence of →BT is just a syntactic accident. This becomes visible in Remark 46 where

confluence is lost when τ ’s are annotated with positions.

A clocked version of Berarducci Trees can be obtained as the infinitary normal forms

of the contextual closure of the rules

(λx.M)N → τ(M [x :=N])

τn(λx.M)N → τn((λx.M)N) (n ∈ N)

Note that this system has infinitely many rules.

Remark 29. We make the connection with the notations used in (EHK10; EHKP12).

There we had annotated terms [k]M , and a constant symbol ⊥. In the framework we

introduce here, these correspond to terms τk(M) and τω, respectively.

Clocked Lambda Calculus 11

We now extend the notion of position as introduced in Definition 5 to Ter∞(λτ).

Definition 30. A position is a sequence over {λ,L,R, τ}. Let M ∈ Ter∞(λτ) and

p ∈ {λ,L,R, τ}∗. The subterm M |p of M at position p is defined as follows:

M |ε = M (MN)|Lp = M |p τ(M)|τp = M |p
(λx.M)|λp = M |p (MN)|Rp = N |p

We let Pos(M) ⊆ {λ,L,R, τ}∗ denote the set of positions p such that M |p is defined.

We now define relations � and = ∃ on λ-terms via their clocked Lévy–Longo Trees.

Definition 31. We define →τ ⊆ Ter∞(λτ)2 as the closure under contexts of the rule

τ(M)→M

and use =τ to denote the equivalence closure of →τ . For M,N ∈ Ter∞(λτ), we define

(i) M � N , M is globally improved by N iff LLT (M)→→→τ LLT (N);

(ii) M = ∃ N , M eventually matches N iff LLT (M) =τ LLT (N).

For example, as can be deduced from the clocked LLTs of Y0f and Y1f in Figure 1, we

have that Y0f globally improves Y1f , in symbols Y0f � Y1f .

Definition 32. A position p′ ∈ {λ,L,R, τ}∗ is a τ -extension of p ∈ {λ,L,R}∗ if p is

obtained from p′ by dropping all occurrences of τ . Furthermore, let M ∈ Ter∞(λτ) and

p ∈ Pos(bMc). Then we define]τ (M,p) as follows:

]τ (τn(M), ε) = n if M(ε) 6= τ

]τ (τ(M), p) =]τ (M,p) if p 6= ε

]τ (λx.M, λp) =]τ (M,p)

]τ (MN,Lp) =]τ (M,p)

]τ (MN,Rp) =]τ (N, p)

In other words,]τ (M,p) denotes the maximal n ∈ N such that p′′ = p′τn ∈ Pos(M)

and p′′ is a τ -extension of p. Alternatively,]τ (M,p) is the number of τ -extensions p′ of

p such that M(p′) = τ .

Note that for terms M,N ∈ Ter∞(λτ) with bMc = bNc, we have M =τ N if and only

if]τ (M,p) 6=]τ (N, p) for at most finitely many positions p ∈ Pos(bMc).

Example 33. Consider the term M ≡ τ(λx.τ(τ(xτ(λy.y)))) and its term tree depicted

as follows, where the positions of M are displayed in blue:

Endrullis, Hendriks, Klop, Polonsky 12

τ

λx

τ

τ

·

x τ

λy

y

ε

τ

τλ

τλτ

τλττ

τλττL τλττR

τλττRτ

τλττRτλ

Then Pos(bMc) = {ε, λ, λL, λR, λRλ}, and]τ (M, ε) = 1,]τ (M,λ) = 2,]τ (M,λL) = 0,

]τ (M,λR) = 1, and]τ (M,λRλ) = 0.

Lemma 34. Let M ∈ Ter∞(λτ), and p′ ∈ Pos(M) be a τ -extension of p ∈ {λ,L,R}∗.
Then bM |p′c = bMc|p.

We now adapt (EHKP12, Proposition 25) and (EHKP12, Theorem 26).

Proposition 35. Clocks are accelerated under reduction, that is, if M→→N , then the

reduct N improves M globally, that is, LLT (M) →→→τ LLT (N). Dually, clocks slow

down under expansion (the reverse of reduction).

Proposition 35 yields the following method for discriminating λ-terms:

Theorem 36. Let M and N be λ-terms. If N cannot be improved globally by any reduct

of M , then M 6=β N .

Theorem 36 is often difficult to use as we have to prove something for all reducts of M .

Nevertheless, it can be useful, see for example (EHKP12), where we apply the theorem to

solve a question of Selinger and Plotkin (Plo07).

Fortunately, for a large class of λ-terms the clocks are invariant under reduction, that

is, the clocked Lévy–Longo Trees coincide up to a finite number of τ ’s (i.e., modulo a

finite number of insertion and removal of τ ’s). In (EHK10) we have shown that the clocks

are invariant for ‘simple’ terms. For the application to Lévy–Longo Trees, here we adapt

the definition from (EHK10) to weak head normal forms.

Definition 37 (Simple terms). A redex (λx.M)N is called:

(i) linear if x has at most one occurrence in M ;

(ii) call-by-value if N is a normal form; and

(iii) simple if it is linear or call-by-value.

A λ-term M is simple if (a) it has no whnf, or the head reduction to whnf contracts only

simple redexes and is of one of the following forms: (b) M →→h λx.M
′ with M ′ a simple

term, or (c) M →→h yM1 . . .Mm with M1, . . . ,Mm simple terms.

Clocked Lambda Calculus 13

Proposition 38. Let N be a reduct of a simple term M . Then N eventually matches M

(i.e., LLT (M) =τ LLT (N)).

The following is a reformulation of (EHK10, Corollary 32) for Lévy–Longo Trees:

Corollary 39. If simple terms M , N do not eventually match (LLT (M) 6=τ LLT (N)),

then they are not β-convertible, that is, M 6=β N .

Even if a term M is not simple, it frequently is possible to simplify M , that is, to

reduce M to a simple term. This helps for distinguishing λ-terms M and N , since we

can always consider β-equivalent terms M ′ =β M and N ′ =β N instead. However, there

are also non-simplifiable fpcs, as given in the following example.

Example 40. Let Y ≡ λf.αfαf I with αf ≡ λxy.yf(xx(yy)). We then have

Y → λf.(λy.yf(αfαf (yy)))I→ λf.If(αfαf (II))→ λf.f(αfαf (II))

→4 λf.f(f(αfαf (II(II))))→6 λf.f(f(αfαf (II(II)(II(II)))))→10 · · ·

It is not difficult to see that this fixed point combinator Y cannot be simplified.

4. Atomic Clocked Lambda Calculus

We generalize the method introduced in the previous section by not only recording

whether head reduction steps have taken place, but also where they took place.

Definition 41. The set Ter∞(λτ?) of (finite and infinite) terms of the atomic clocked

λ-calculus is coinductively defined by the following grammar

M ::=co x | λx.M |MM | τp(M) (x ∈ X , p ∈ {L}∗)

The set Con∞(λτp) of infinite contexts is inductively defined by

C ::= 2 | λx.C | CM |MC | τp(C) (x ∈ X ,M ∈ Ter∞(λτ), p ∈ {L}∗)

We keep using the set {λ,L,R, τ}∗ for the positions, ignoring the positions in the

subscripts of τ . Accordingly, the notion of τ -extension remains unchanged.

Definition 42. We define the rewrite relation → on Ter∞(λτ?) of the atomic clocked

λ-calculus as the closure under contexts C ∈ Con∞(λτp) of the following rules:

(λx.M)N → τε(M [x :=N])

τp(M)N → τLp(MN)

We overload the notation →τ and also use it for the rewrite relation that removes

symbols τp. Moreover, we reuse the terminology from Section 3.

Definition 43. We define →τ ⊆ Ter∞(λτ?)
2 as the closure under contexts of the rule

τp(M)→M

and use =τ to denote the equivalence closure of →τ . We define

(i) M � N , M is globally improved by N iff LLT (M)→→→τ LLT (N);

Endrullis, Hendriks, Klop, Polonsky 14

(ii) M = ∃ N , M eventually matches N iff LLT (M) =τ LLT (N).

Definition 44. Let M ∈ Ter∞(λτ?) and p ∈ Pos(bMc). We define]τ (M,p) as follows:

]τ (τq1(. . . τqn(M) . . .), ε) = 〈q1, . . . , qn〉 if for all q ∈ {L}∗ we have M(ε) 6= τq

]τ (τq(M), p) =]τ (M,p) if p 6= ε

]τ (λx.M, λp) =]τ (M,p)

]τ (MN,Lp) =]τ (M,p)

]τ (MN,Rp) =]τ (N, p)

It is straightforward to adapt Proposition 35, Theorem 36, Proposition 38 and Corol-

lary 39 from the previous section to the refined setting of atomic clocks.

Atomic clocks do improve discrimination power, as can be seen in the following exam-

ple.

Example 45. In (EHKP12, Examples 35, 36) we computed the (non-atomic) clocked

BTs of the fpcs Yn ≡ Y0δ
∼n with δ ≡ λab.b(ab) from the Böhm sequence and the

fpcs Un ≡ BY0S
∼nI of the Scott sequence. This showed that both sequences do not

contain any duplicates. In the framework of Section 3, for n ≥ 2 they are rendered

as LLT (Yn) = τ2n(x LLT (Ynx)), and LLT (Unx) = τ3n−2(x LLT (Unx)). From these

clocks it follows that Yn 6=β Un for all n > 2. We now discriminate Y2 from U2 by their

atomic clocked LLTs, computed as follows. We first reduce both terms to simple terms:

Y2x ≡ Y0δδx→→ ηηδx where η ≡ λab.b(aab)
U2x ≡ BY0SSIx→→ θθIx where θ ≡ λabc.bc(aabc)

Then we compute the atomic clocked LLTs of these simple reducts, as follows:

ηηδx→ τε((λb.b(ηηb)))δx θθIx→ τε(λbc.bc(θθbc))Ix

→ τL((λb.b(ηηb))δ)x → τL((λbc.bc(θθbc))I)x

→ τL(τε(δ(ηηδ)))x → τL(τε(λc.Ic(θθIc)))x

→ τL(τε(τε(λb.b(ηηδb))))x → 2 τLL(τL((λc.Ic(θθIc))x))

→ 3 τLL(τL(τL(λb.b(ηηδb)x))) → τLL(τL(τε(Ix(θθIx))))

→ τLL(τL(τL(τε(x(ηηδx))))) → τLL(τL(τε(τε(x)(θθIx))))

→ τLL(τL(τε(τL(x(θθIx)))))

Thus the atomic clocked LLTs of these terms can be expressed by the equations:

LLT (ηηδx) = T1 where T1 = τLL(τL(τL(τε(xT1))))

LLT (θθIx) = T2 where T2 = τLL(τL(τε(τL(xT2))))

Note that their atomic clocks are distinct indeed, while both terms have the same (non-

atomic) clocked LLT T ≡ τ4(xT). Hence the method from the previous section is not

applicable. However, the atomic clocks do allow us to discriminate the terms. Hence

Y2 6=β U2 (by Corollary 39 which generalizes to the setting of atomic BT’s).

Remark 46. If, instead of Lévy–Longo Trees, we want a calculus for obtaining Böhm

Clocked Lambda Calculus 15

Trees, we have to let the τs move over the abstractions (part of the hnfs that Böhm Trees

are built from), that is, we then add the following rule to the system of Definition 42:

λx.τp(M)→ τλp(λx.M)

However, we find that the critical pair arising from M ≡ (λx.τp(P))Q is not joinable:

τε(τp(P [x :=Q]))←M → τλp(λx.P)Q→ τLλp((λx.P)Q)→ τLλp(τε(P [x :=Q]))

Confluence can be restored by imposing the ‘head-first’ strategy as defined in the next

section.

5. Localized Clocks

In this section, we increase the power of our discrimination method. We extend the class

of simple terms in two directions. First, we allow redex duplication, but require that of

each redex only finitely many residuals are contracted. Second, we localize the method to

a set of positions in the Lévy–Longo Tree; we then only require that the head reductions

at these positions do not contract infinitely many residuals of a single redex. To keep the

presentation simple, we present this section using the non-atomic clocked λ-calculus. We

emphasize that everything in this section generalizes to the atomic clocked λ-calculus.

We define a ‘head-first, then arguments’ evaluation strategy for → :

Definition 47. A redex occurrence at the root of R in a term C[RM1M2 . . .Mn] is said

to precede all other redex occurrences in R and all redex occurrences in M1, . . . ,Mn.

A head-first redex is a redex occurrence that is not preceded by another redex occur-

rence. A rewrite sequence adheres to the head-first strategy if it only contracts head-first

redexes. The top-down strategy contracts of all head-first redexes at a minimal depth,

the leftmost one.

In other words, the head-first strategy forbids the contraction of a redex at position p if

there is a redex at a position q @ p or at a position qLn with qR @ p and n ≥ 1. Note

that the top-down strategy is deterministic. Correspondingly, for terms M , we refer to

the unique top-down reduction starting from M as the top-down reduction for M .

We briefly introduce a tracing residuals via underlining (BKdV00; Ter03). To keep the

presentation simple, we only trace redexes in a term M to their residuals in LLT (M);

this suffices for our purposes.

Definition 48. We define the set Ter∞(λτ) by the following grammar:

M ::=co x | λx.M | λx.M |MM | τ(M) | τ(M) (x ∈ X)

For positions, we ignore the underlining and keep using {λ,L,R, τ}∗. Let → be the

closure under contexts Con∞(λτ) of the rules (βτ), (τ -app) and

(λx.M)N → τ(M [x :=N]) (βτ)

τ(x)y → τ(xy) (τ -app)

We use LLT (M) to denote the infinitary normal form of M with respect to →→→ .

Endrullis, Hendriks, Klop, Polonsky 16

Let M ∈ Ter∞(λτ) and p ∈ Pos(M) the position of a redex χ in M . We define M as

the term obtained from M by underlining the symbol λ at position pL. The underlined

occurrences of τ in LLT (M) are called the witnesses of χ. Let q ∈ Pos(LLT(M)) be a

position in the (τ -free) Lévy–Longo Tree of M . We say that χ contributes to q if there is

a witness of χ at some τ -extension q′ of q.

Example 49. Consider the term M ≡ Sxy(II) and the redex χ ≡ II at position R. Let

M ≡ SxyZ, where Z ≡ (λx.x)I. Then we have

M → τ(λyz.xz(yz))yZ

→ τ((λyz.xz(yz))y)Z

→ τ(τ(λz.xz(yz)))Z

→ τ(τ(λz.xz(yz))Z)

→ τ(τ((λz.xz(yz))Z))

→ τ(τ(τ(xZ(yZ))))

→ τ(τ(τ(xτ(I)(yZ))))

→ τ(τ(τ(xτ(I)(yτ(I)))))

Now observe that the witnesses of χ are at positions τττLR and τττRR, and hence χ

contributes to the positions LR and RR of the Lévy–Longo Tree of M .

Definition 50. For a Lévy–Longo Tree T ∈ Ter∞(λ⊥), we write Pos?(T) for the set

of positions that are neither ⊥, nor the left child of an application. (In other words, the

elements of Pos?(T) are precisely the positions of maximal weak head normal forms.)

Next, we vastly extend the discrimination methods for simple terms (Proposition 38

and Corollary 39). First, we fine-tune the notion of ‘invariance under reduction’ by consid-

ering sets of positions P ⊆ Pos?(LLT(M)). Second, we allow the contraction of non-simple

redexes if only finitely many descendants of the copied redex are contracted.

For the purpose of refining the comparison of clocks to positions P ⊆ Pos?(LLT(M))),

we define a function resetP that ‘resets’ the clocks for all positions not belonging to P .

Definition 51. Let P ⊆ {λ,L,R}∗. We define resetP (·) : Ter∞(λτ) → Ter∞(λτ) as

follows. For T ∈ Ter∞(λτ) we let resetP (T) = resetεP (T) where:

resetpP (λx.T) = λx.resetpλP (T)

resetpP (T1T2) = resetpLP (T1) resetpRP (T2)

resetpP (τ(T)) =


T if T = τω

τ(resetpP (T)) if T 6= τω and p ∈ P
resetpP (T) if T 6= τω and p 6∈ P

So the term resetP (T) is obtained from T by removing all occurrences of τ that are

neither (i) at a position p′ which is a τ -extension of some p ∈ P , nor (ii) part of an

infinite τ -stack.

Clocked Lambda Calculus 17

We now define relations �P and =P

∃
, for comparing the clocks at positions P ⊆

{λ,L,R}∗. These can be viewed as ‘localized’ versions of � and = ∃ (see Definition 31).

Definition 52. For M,N ∈ Ter∞(λτ) and P ⊆ Pos?(LLT(M)), we define:

(i) M �P N , M is globally improved by N on P if and only if

resetP (LLT (M))→→→τ resetP (LLT (N)) ,

see Figure 2

(ii) M �P
∃
N , M is eventually improved by N on P if and only if

resetP (LLT (M)) =τ · →→→τ resetP (LLT (N)) ;

(iii) M =P

∃
N , M eventually matches N on P if and only if

resetP (LLT (M)) =τ resetP (LLT (N)) ,

see Figure 3.

Whenever we suppress P it is to be understood that P = Pos?(LLT(M)).

These properties can be equivalently formulated as follows:

(i) M �P N iff M =LLT N and]τ (LLT (M), p) ≥]τ (LLT (N), p) for all p ∈ P ;

(ii) M �P
∃
N iff M =LLT N and]τ (LLT (M), p) ≥]τ (LLT (N), p) for almost all p ∈ P .

(iii) M =P

∃
N iff M =LLT N and]τ (LLT (M), p) =]τ (LLT (N), p) for almost all p ∈ P .

where we write M =LLT N as a shorthand for LLT(M) ≡ LLT(N).

≥

≥

≥

≥

LLT (M)

τ2

τ3

τ4
τ7

τ7

τ5τ3

τ2

LLT (N)

τ2

τ4

τ1
τ3

τ5

τ9τ3

τ1

Fig. 2. M is globally improved by N on P ; the positions corresponding to

P ⊆ Pos?(LLT(M)) are encircled.

The following is a straightforward generalization of Proposition 35.

Proposition 53. Clocks are accelerated under reduction, that is, if M→→N , then the

reduct N globally improves M on P . Dually, clocks slow down under expansion (the

reverse of reduction).

Endrullis, Hendriks, Klop, Polonsky 18

=

=

=

LLT (M)

τ2

τ4

τ1
τ3

τ5

τ9τ3

τ2

LLT (N)

τ2

τ4

τ1
τ3

τ5

τ9τ3

τ2

eventually

Fig. 3. M eventually matches N on P ; the positions corresponding to

P ⊆ Pos?(LLT(M)) are encircled.

We generalize the notion of simple terms to ‘P -safe’ terms as follows; see Definition 47

for the notion of top-down reduction. In the following definition, by ‘P is prefix-closed’

we refer to the closure with respect to the superset Pos?(LLT(M)), i.e., whenever p ∈ P ,

p′ ∈ Pos?(LLT(M)) and p′ v p, then p′ ∈ P .

Definition 54. Let M ∈ Ter∞(λ) and P ⊆ Pos?(LLT(M)). Then we say M is:

(i) P -bounded if no term in the top-down reduction →→→ of M to normal form contains

a redex contributing to infinitely many p ∈ P ;

(ii) P -safe if every →→β reduct of M is P -bounded;

(iii) strongly P -safe if P is prefix-closed and M is P -bounded.

In order to understand the notion of P -bounded, as defined in item (i) of Definition 54,

one can think of it as follows: Suppose that, in the reduction to the infinite normal form,

we give every created redex a unique name (and let the residuals carry the same name),

and we assign the same name to the τ that is created when the redex is contracted. Then

M is P -bounded, if each name occurs only finitely often at τ -extensions of p ∈ P .

We use the property ‘strongly P -safe’ as a simple sufficient criterion for being P -safe.

The following lemma justifies the naming:

Lemma 55. Let M be a λ-term and P ⊆ Pos?(LLT(M)). If M is strongly P -safe then

M is P -safe.

Proof. Let M be strongly P -safe, that is, P is prefix-closed and M is P -bounded. We

use ◦−→ to denote a complete development of a set of redexes (Ter03); note that→ ⊆ ◦−→.

It suffices to show that the property of being strongly P -safe is preserved under single

steps: γ : M →βτ N . To this end, let σM : M →≤ω LLT (M) be the top-down reduction

of M to clocked Lévy–Longo Tree normal form. Let σN be the projection σM over γ, that

is, σN = σM/γ (Ter03). Then σN is the top-down reduction of N to clocked Lévy–Longo

Tree normal form: σN : N →≤ω LLT (N) ≡ LLT (M). As a consequence of σN = σM/γ

and the fact that no redex contracted in σM can ever get nested inside another redex,

we have that (∗) the steps of σN form a subsequence of σM .

For a contradiction, we assume that a term N ′ in the reduction σN contains a redex R

Clocked Lambda Calculus 19

such that there is an infinite set SN of steps→ in σN that contract a residual of R and

contribute to a position p ∈ P . Thus we have a prefix σ′N of σN with σ′N : N →∗ N ′,

and a corresponding prefix σ′M of σM such that σ′M : M →∗ M ′ with γ/σ′M : M ′ ◦−→ N ′

contracting the residuals of γ. By (∗) we can find every step of SN back in σM ; thus

SN in σN traces back to set of steps SM in σM . It follows that R is not a residual of a

redex in M ′, thus is created by γ/σ′M , for otherwise M was not strongly P -safe. We trace

every step of SM back along σM to the point of its creation. As M is strongly P -safe

(and by the pigeonhole principle), these steps trace back to an infinite number of distinct

redex creations ζ. Note that redexes that contribute to a position p can only be created

by contraction of redexes that contribute to a position p′ v p. Thus the redex creations

in ζ are part of steps → contributing to p′ ∈ P as a consequence of SM belonging to

steps → that contribute to p ∈ P , and P being prefix-closed. Since γ/σ′M : M ′ ◦−→ N ′

contracts only residuals of γ and creates R, it follows that every redex creation in ζ is due

to a residual of the step γ. However, the contraction of an infinite number of residuals of

γ in steps → contributing to positions p ∈ P contradicts M being strongly P -safe.

Example 56. We consider the λ-term M = NN with N = λx.((λy.a(ya(xx)))I). Then

σ′M : M = NN →h (λy.a(ya(NN)))I→h a(Ia(NN)) and ϕ : Ia(NN)→h a(NN)

and LLT (M) = τ2(a(τ1(a(LLT (M)))). Let P = { 2(22)n | n ∈ N }, that is, the positions

p ∈ Pos(LLT(M)) of the subterms with clock 1, that is,]τ (LLT (M), p) = 1. Note that

the only redexes that contribute to positions p ∈ P are the Ia-redex that are always

created by the immediately preceding step. Thus M is P -bounded, but it admits a reduct

that is not P -bounded: M →→M ′ = N ′N ′ where N ′ = λx.a(Ia(xx)); here

σ′M : M ′ = N ′N ′ →h a(Ia(NN)) and ϕ : Ia(N ′N ′)→h a(N ′N ′)

and LLT (M ′) = τ1(a(τ1(a(LLT (M ′)))). Now the steps→ repeatedly contract redexes

Ia that are, except for the first, residuals of the redex Ia in the second N ′ in N ′N ′ = M ′.

This illustrates that the property ‘P -bounded’ is not preserved under reduction, and

thus does not imply P -safety. Moreover, it demonstrates that the condition of P being

prefix-closed is crucial in the definition of ‘strongly P -safe’.

The property ‘strongly P -safe’ (and thus ‘P -safe’) is a generalization of simple terms.

Lemma 57. Let M be a simple λ-term. Then M is strongly P -safe for every prefix-closed

P ⊆ Pos?(LLT(M)).

Proof. Follows immediately from the fact that simple terms do not duplicate redexes

throughout the top-down reduction to clocked Lévy–Longo Tree normal form.

For P -safe terms, the clock on positions P is invariant under reduction:

Lemma 58. Let M be a λ-term, P ⊆ Pos?(LLT(M)) such that M is P -safe. If M →→β N

then M eventually matches N on P , that is, resetP (LLT (M)) =τ resetP (LLT (N)).

Proof. By induction it suffices to consider the case γ : M → N . Consider the top-

down rewrite sequences σ : M →≤ω LLT (M) and σ′ : N →≤ω LLT (N). Then σ′ is

Endrullis, Hendriks, Klop, Polonsky 20

the subsequence of σ where precisely those steps are selected that are not residuals of γ.

Since M is P -safe only a finite number of the residuals of γ are part of steps → in σ

contributing to p ∈ P . Thus a finite number of =τ steps suffices to equalize the clocks at

all positions p ∈ P .

Example 59. We continue Example 56 to illustrate that the property P -bounded is not

sufficient for Lemma 58. We have M →→M ′′ = N ′′N ′′ where N ′′ = λx.a(a(xx)), and

σ′M : M ′′ = N ′′N ′′ →h a(a(M ′′))

Thus LLT (M ′′) = τ1(a(τ0(a(BT (M ′)))). Now although M is P -bounded and M →→
M ′′, we do not have resetP (LLT (M)) =τ resetP (LLT (N)) since from LLT (M) to

LLT (M ′′) all positions in P have changed from τ1 to τ0.

As immediate consequence, we obtain the following discrimination methods:

Proposition 60. Let M and N be λ-terms, P ⊆ Pos?(LLT(M)) such that M is P -safe.

If M does not eventually improve N on P (not M �P
∃
N), then M 6=β N .

Theorem 61. Let M and N be P -safe λ-terms where P ⊆ Pos?(LLT(M)). If M and N

do not match eventually on P (not M =P

∃
N), then M 6=β N .

We give an example that shows that the extension of the method can handle duplication

of redexes.

Example 62. Let Y ≡ λf.αfαf I(II) with αf ≡ λxyz.zzf(xxy(yy)). We then have the

following top-down reduction:

Y f → τ(T)

T ≡ αfαf I(II)→3 τ3(II(II)fT)→4 τ4(I(II)fT)→3 τ5(IIfT)→3 τ6(IfT)→2 τ7(fT)

Thus LLT (Y f) ≡ τ8(f τ7(f τ7(f τ7(f . . .)))). The term Y x is not simple, and cannot

be simplified. Nevertheless, the term is P -safe for P = Pos?(LLT(Y f)) = {Rn | n ∈ N}
since (i) P is prefix-closed and (ii) in the top-down reduction displayed above, there is

no redex contributing to an infinite number of positions p ∈ P . For (ii) note that the

only redex duplicated in the cyclic part of the reduction of T is II and all residuals of

this redex are contracted before the end of the cycle (within the next 12 steps).

Thus we can apply either Proposition 60 or Theorem 61 to conclude that Y f is not

β-convertible to Y0f and Y1f (see Figure 1) which are also P -safe by Lemma 57.

The following example illustrates the use of localized clocks.

Example 63. Recall Y1 ≡ ηη where η ≡ λxf.f(xxf). We consider the terms M and N

defined by

M ≡ αMαM IY1 αM ≡ λxyz.ya(xxyz)z

N ≡ αNαN IY1 αN ≡ λxy.yλz.a(xxyz)z

Clocked Lambda Calculus 21

We have the following head reductions

M →h,LL→h,L→h,ε IaMY1 →h,LL aMY1

N →h,LL→h,L I(λz.a(αNαN Iz)z)Y1 →h,L (λz.a(αNαN Iz)z)Y1 →h,ε aNY1

thus M →∗ τLL(τL(τε(τLL(aMY1)))) and N →∗ τLL(τL(τL(τε(aNY1)))). Note that the

non-atomic clocked Lévy–Longo Trees of M and N coincide: LLT (M) ≡ LLT (N) ≡ T
where T ≡ τ4(a T LLT (Y1)).

The terms M and N cannot be simplified as they infinitely often duplicate Y1, and the

redexes in Y1 contribute to infinitely many positions of LLT(M) and LLT(N), respectively.

As a consequence, we need to choose a set of positions P ⊆ LLT(M) to which Y1 does

not contribute: P = { (LR)n | n ∈ N }. This set is prefix-closed (in Pos?(LLT(M))) and

in the reductions displayed above no residual of a duplicated redex is contracted. Thus

the terms M and N are strongly P -safe and thus P -safe by Lemma 55. We have that

resetP (LLT (M)) ≡ TM TM ≡ τLL(τL(τε(τLL(aTMLLT(Y1)))))

resetP (LLT (N)) ≡ TN TN ≡ τLL(τL(τL(τε(aTNLLT (Y1)))))

Hence M and N do not eventually match on P , and hence M 6=β N by Theorem 61 (for

atomic Lévy–Longo Trees).

6. Statman’s Conjecture

R. Statman has conjectured that there is no fpc Y such that Y =β Y δ where δ ≡
λab.b(ab). In an equivalent phrasing, there is no solution for the unknown Y in the

following system of equations:

Y =β δ Y

Y =β Y δ

Note that Y = δ Y if and only if Y is an fpc, i.e., all fpcs are fixed points of δ. B. Intrigila

gave a confirmation of this conjecture in (Int97), employing a syntactic analysis of the

standard reductions to a hypothetical common reduct. The proof employs an induction

on n on the number of x’s produced in the common reduct. (This refers to both Y and

Y δ having BT λx.xω; a more precise statement is below.) The proof in (Int97) seems

to have a gap however for the base case of the above induction, as the present authors

noticed in communication with B. Intrigila. As yet, this gap has not been closed.

An Analysis of Intrigila’s Proof

If Y is a fixed point combinator, we have Y x→→ x(C[x]) for some multi-hole context C

with C[x] =β Y x. A multi-hole context is a λ-term with multiple (0 or more) occurrences

of 2, and context filling C[M] replaces all occurrences of 2 with M . In the remainder of

this section we fix a variable x that is fresh for all multi-hole contexts C used here.

Definition 64. A multi-hole context C is a fixed point context (fpcx) if C[x] =β x(C[x]).

Endrullis, Hendriks, Klop, Polonsky 22

Obviously every fpc Y gives rise to an fpcx Y 2. Moreover, for every fpcx C we have:

(i) C[x]→→ x(C ′[x])←← x(C[x]) for some fpcx C ′, and

(ii) there exists a head reduction C[x]→→h x(C ′′[x]) for some fpcx C ′′ with C ′′[x] =β C[x].

In (Int97), Intrigila suggests the following generalization of Statman’s question to fpcxs:

Conjecture 65. There exists no fpcx C such that λx.C[x] =β C[δ].

To see why this is a generalization, note that Y =β λx.Y x for every fpc Y . The advantage

of working with fpcxs in place of fpcs is that if C[x] →→β x(C ′[x]) then C ′ is again an

fpcx.

The following is a compressed rendering of the proof of (Int97).

We define the weight of a fixed point context C as follows:

w(C) = min{n | λx.C[x]→→ λx.xnH ←← C[δ], H not of the form x2 }

Assume there exists an fpcx C with λx.C[x] = C[δ]. Then let C be such a context with

minimal weight w(C). Then there exist standard reductions

σ1 : λx.C[x]→→ λx.xw(C)H σ2 : C[δ]→→ λx.xw(C)H

with H not of the form x2.

We have C[x]→→h x(C ′[x]) for some fpcx C ′. As a consequence, the standard reduction

σ2 starts with the same steps where x is replaced by δ:

σ2 : C[δ]→→h δ(C
′[δ])→h λx.x(C ′[δ]x)→→ λx.xw(C)H

Throughout C[δ]→→h δ(C
′[δ]) no abstraction is created at the root, but the final term of

σ2 has an abstraction at the root. Thus there must be an additional head step that creates

the abstraction: σ3 : δ(C ′[δ])→h λx.x(C ′[δ]x). Hence w(C) > 0. Let H ′ ≡ xw(C)−1(H).

Then C ′[x]→→ H ′ ←← C ′[δ]x by σ2 and σ3. If

λx.H ′ ←← C ′[δ], (∗)

then w(C ′) ≤ w(C)− 1 contradicts the choice of C.

If we have (∗), then we are finished. Unfortunately, in (Int97), the proof of (∗) is left

to the reader, see (Int97, Claim 3). For the case w(C) ≥ 2 the argument is indeed trivial.

However, for the base case w(C) = 1 we were not able to prove (∗).

Statman’s Conjecture in a Wider Perspective

Statman’s Y =β Y δ problem, aptly paraphrased by Statman and Intrigila as:

Does there exist a double fixed point combinator?

is in our opinion far more important than a mere syntactic puzzle. We have the impression

that it refers to deep structures in λ-calculus which may be only partially understood

yet. The Y =β Y δ problem, or its variations below, may require new techniques to

discriminate λ-terms. As Intrigila remarked in (Int97) in a closing sentence:

There are at present hardly any techniques to prove such non-equations.

Clocked Lambda Calculus 23

Our present clocked λ-calculus endeavors to contribute in this respect.

Let us give a reason why Y 6=β Y δ for any fpc Y is made more plausible. We can

prove this non-equation for all fpcs Y that we have seen, for example those in the Böhm

sequence and those in the Scott sequence, see Example 45. In fact, we can prove Y 6=β Y δ

for all simple or simplifiable fpcs Y , also for some non-simplifiable fpcs, see Example 62.

Statman’s conjecture can be seen as part of a much more encompassing conjecture, as

follows. Here we call a context C an fpc generating context if C[Y] is an fpc for every

fpc Y , see (EHKP12). We consider the following fpc generating contexts

2δ 2(SS)S∼kI (k ∈ N)

Conjecture 66. There are no non-trivial identifications between the fpcs thus ob-

tained. More precisely, we have that C[Y] 6=β D[Y] for all fpcs Y and contexts C =

C1[C2[. . . [Cn[2]] . . .]], andD = D1[D2[. . . [Dm[2]] . . .]] such that C 6≡ D, where C1, . . . , Cn
and D1, . . . , Dm are fpc generating contexts displayed above.

There are several interesting further variations on Statman’s conjecture:

(i) Z 6=β Zδ for wpcs Z;
(ii) Y =β Y

′ iff Y δ = Y ′δ for fpcs Y, Y ′.

Finally we quote R. Smullyan:

The theory of sage birds (technically called fixed point combinators) is a fascinating and basic

part of combinatory logic; we have only scratched the surface.

R. Smullyan (Smu85).

7. Concluding Remarks

In future work we intend to extend the current clock and discrimination techniques to

the setting of simply typed λ-calculus, as in Plotkin’s PCF (Plo77). Such an extension

is even more interesting with respect to our interest in fpcs, as PCF has fpcs built-in as

primitives.

A second extension is to extend pure lambda calculus with the µ-operator, with the

reduction rule µx.M → M [x :=µx.M]. Although the µ-operator and its reduction rule

are directly definable in λ-calculus, the interplay between λ and µ is quite interesting, as

is the employment of µ in rendering fpcs. It is possible to define a clocked λµ-calculus,

in analogy to the clocked calculus of the present paper. A combination of µ and simple

types is also in a preliminary way studied in the wake of this paper, but its elaboration

will only be in forthcoming work.

A third extension is to consider the letrec constructor, yielding the existence of

solutions to arbitrary systems of equations.

References

K. Aehlig and F. Joachimski. On Continuous Normalization. In Proc. Workshop on Computer

Science Logic (CSL 2002), volume 2471 of LNCS, pages 59–73. Springer, 2002.

S. Abramsky and C.-H.L. Ong. Full Abstraction in the Lazy Lambda Calculus. Information

and Computation, 105(2):159–267, 1993.

Endrullis, Hendriks, Klop, Polonsky 24

H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics, volume 103 of Studies in

Logic and The Foundations of Mathematics. North-Holland, revised edition, 1984.

A. Berarducci. Infinite λ-Calculus and Non-Sensible Models. In Logic and Algebra (Pontignano,

1994), pages 339–377. Dekker, New York, 1996.

I. Bethke. Lambda Calculus, 2003. Chapter 10 in (Ter03).

H.P. Barendregt and J.W. Klop. Applications of Infinitary Lambda Calculus. Information and

Computation, 207(5):559–582, 2009.

I. Bethke, J.W. Klop, and R.C. de Vrijer. Descendants and Origins in Term Rewriting. Infor-

mation and Computation, 159(1–2):59–124, 2000.

Th. Coquand and H. Herbelin. A-Translation and Looping Combinators in Pure Type Systems.

Journal of Functional Programming, 4(1):77–88, 1994.

Th. Coquand. Infinite Objects in Type Theory. In H. Barendregt and T. Nipkow, editors,

TYPES, volume 806, pages 62–78. Springer–Verlag, Berlin, 1994.

J. Endrullis, D. Hendriks, and J.W. Klop. Modular Construction of Fixed Point Combinators

and Clocked Böhm Trees. In Proc. Symp. on Logic in Computer Science (LICS 2010), pages

111–119, 2010.

J. Endrullis, D. Hendriks, J.W. Klop, and A. Polonsky. Discriminating Lambda-Terms using

Clocked Böhm Trees. Logical Methods in Computer Science, 2012. In print.

A.A. Faustini. The Equivalence of an Operational and a Denotational Semantics for Pure

Dataflow. PhD thesis, University of Warwick, 1982.

H. Geuvers and B. Werner. On the Church–Rosser Property for Expressive Type Systems and

its Consequences for their Metatheoretic Study. In Proc. Symp. on Logic in Computer Science

(LICS 1994), pages 320–329, 1994.

B. Intrigila. Non-Existent Statman’s Double Fixed Point Combinator Does Not Exist, Indeed.

Information and Computation, 137(1):35–40, 1997.

J.W. Klop and R.C. de Vrijer. Infinitary Normalization. In We Will Show Them: Essays

in Honour of Dov Gabbay, volume 2, pages 169–192. College Publ., 2005. Techn. report:

http://www.cwi.nl/ftp/CWIreports/SEN/SEN-R0516.pdf.

R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Infinitary Lambda Calculus. Theoretic

Computer Science, 175(1):93–125, 1997.

J.W. Klop. New Fixed Point Combinators from Old. In Reflections on Type Theory, λ-Calculus,

and the Mind. Essays Dedicated to Henk Barendregt on the Occasion of his 60th Birthday,

pages 197–210. 2007. Online version: http://www.cs.ru.nl/barendregt60.

J. Ketema and J.G. Simonsen. Infinitary Combinatory Reduction Systems: Confluence. Logical

Methods in Computer Science, 5(4):1–29, 2009.

S.G. Matthews. Metric Domains for Completeness. PhD thesis, University of Warwick, 1985.

W. McCune and L. Wos. The Absence and the Presence of Fixed Point Combinators. Theoretic

Compututer Science, 87(1):221–228, 1991.

T. Naoi and Y. Inagaki. Algebraic Semantics and Complexity of Term Rewriting Systems. In

Proc. Conf. on Rewriting Techniques and Applications (RTA 1989), volume 355 of Lecture

Notes in Computer Science, pages 311–325. Springer, 1989.

D. Park. The Fairness Problem and Nondeterministic Computing Networks. Foundations of

Computer Science IV, Distributed Systems: Part 2, (159):133–161, 1983.

G.D. Plotkin. Lcf considered as a programming language. Theoretical Computer Science,

5(3):223–255, 1977.

G.D. Plotkin, 2007. Personal communication at the symposium for H. Barendregt’s 60th birth-

day.

Clocked Lambda Calculus 25

R. Smullyan. To Mock a Mockingbird, and Other Logic Puzzles: Including an Amazing Adventure

in Combinatory Logic. Alfred A. Knopf, New York, 1985.

D. Sangiorgi and J.J.M.M. Rutten. Advanced Topics in Bisimulation and Coinduction, volume 52

of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2012.

Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer

Science. Cambridge University Press, 2003.

W.W. Wadge. An Extensional Treatment of Dataflow Deadlock. Theoretical Computer Science,

13:3–15, 1981.

