
Circular Coinduction in Coq
Using Bisimulation-Up-To Techniques?

Jörg Endrullis1 Dimitri Hendriks1 Martin Bodin2

1 VU University Amsterdam, Department of Computer Science
2 INRIA Rennes & ENS Lyon

j.endrullis@vu.nl r.d.a.hendriks@vu.nl martin.bodin@inria.fr

Abstract. We investigate methods for proving equality of infinite ob-
jects using circular coinduction, a combination of coinduction with term
rewriting, in the Coq proof assistant. In order to ensure productivity, Coq
requires the corecursive construction of infinite objects to be guarded.
However, guardedness forms a severe confinement for defining infinite
objects, and this includes coinductive proof terms. In particular, circu-
lar coinduction is troublesome in Coq, since rewriting usually obstructs
guardedness. Typically, applications of transitivity are in between the
guard and the coinduction hypothesis. Other problems concern the use of
lemmas, and rewriting under causal contexts. We show that the method
of bisimulation-up-to allows for an elegant rendering of circular coinduc-
tion, and we use this to overcome the troubles with guardedness.

1 Introduction

As any construction of infinite objects, constructive bisimilarity proofs have to
be productive. That is, it has to be guaranteed that the proof term has an infinite
constructor normal form with respect to the lazy evaluation of the calculus at
hand [5]. One way of ensuring productivity is by guarded corecursion [5,11].
Guardedness is a simple syntactic criterion implemented in proof assistants based
on type theory like Coq [4] and Agda [2]. A corecursive definition is guarded if
every corecursive call is guarded by at least one constructor of the coinductive
type we are building a term in, and only by such constructors. Then, in the
infinite process of unfolding a guarded definition, evermore building blocks of
the infinite structure are produced, yielding in the limit a term consisting of
constructors only.

Guardedness can be easily checked and it is readily seen why guarded core-
cursion implies productivity. On the other hand, guardedness is notorious for
confining the programmer to a restricted set of tools for defining coinductive
objects. Already the most simple examples of productive definitions fail to be
guarded. Coquand [5] considers the following corecursive definition

nats = 0 :: map (λn. n+ 1) nats map f (x :: s) = f x :: map fs (1)

? This research has been funded by the Netherlands Organization for Scientific Re-
search (NWO) under grant numbers 639.021.020 and 612.000.934.

2 Endrullis, Hendriks and Bodin

of the sequence of natural numbers nats = 0::1::2:: . . . ; where :: is the constructor
of the coinductive type of infinite sequences, or streams as we call them. The
definition of nats is clearly productive, yet it is not guarded, for the recursive call
is argument of the map function.

A similar problem occurs for definitions of morphic sequences (see Section 2),
like the following definition of the Thue-Morse sequence M = 0 :: 1 :: 1 :: 0 :: 1 :: 0 ::

0 :: 1 :: 1 :: 0 :: 0 :: 1 :: 0 :: 1 :: 1 :: 0 :: . . .,

M = 0 :: tail (h M) h (0 :: s) = 0 :: 1 :: h s h (1 :: s) = 1 :: 0 :: h s (2)

where tail (x :: s) = s. The corecursive call of M is not a direct argument of :: ,
and so Coq rejects this productive definition.

As indicated by Coquand [5], the problem of guardedness in (1), the definition
of nats, can be overcome by the alternative definition

nats = nats from 0 nats from n = n :: nats from (n+ 1)

The ‘computation’ is now embedded in the argument of the corecursion, and
no longer obstructs the guarding constructor :: . In Section 2 we give a similar
solution for (2), by generalizing the corecursive construction to carry a nonempty
list as argument. We show that every morphic sequence can be defined in Coq.

The main objective of this paper is to enable the use of circular coinductive
rewriting [12] in Coq. In type theories, where proofs are first-class citizens, the
problem of guardedness also occurs in proving coinductive statements. In partic-
ular, equational reasoning and rewriting on terms of a coinductive type may very
well destroy guardedness. Let us consider an example where we want to show
that two stream terms are bisimilar. Bisimilarity as a relation between streams
can be defined coinductively as follows (where head is defined by head (x ::s) = x):

head s = head t tail s ∼ tail t

s ∼ t
∼intro

This means that ∼ is the greatest bisimulation (a bisimulation is a relation R
such that for all stream terms related by R the heads are equal and the tails
are again related by R). Let s and t be closed stream terms (i.e., containing no
variables, only constants from a given signature). A proof of s ∼ t evaluates, in
the limit, to an infinite constructor normal form ∼intro d0 (∼intro d1 (∼intro d2 · · ·))
where di is a proof of the equality of the i-th elements of s and of t, that is,
di : head (taili s) = head (taili t) for all i ∈ N.3

Suppose we want to prove that alt is bisimilar to g alt, given the assumptions4:

alt ∼ 0 :: 1 :: alt g (0 :: s) ∼ 0 :: 1 :: g s g (1 :: s) ∼ g s (3)

3 Throughout the paper, we use = to denote Coq’s equality, defined as the ⊆-least re-
flexive relation, equivalent to Leibniz equality. We note that = includes convertibility
induced by Coq’s native evaluation.

4 The flexibility to use assumptions, in addition to definitions, is essential to allow
for application of lemmas, and for unguarded or partial specifications of objects and
functions. E.g., the second equation for g is not guarded. In fact, g is productive only
for streams that contain infinitely many 0s.

Circular Coinduction in Coq Using Bisimulation-Up-To Techniques 3

Our coinductive proof that alt is a fixed point of g has the following shape:

d0

d1 d′′ : tail2 alt ∼ tail2 (g alt)

tail alt ∼ tail (g alt)
∼intro

alt ∼ g alt
∼intro

alt ∼ g alt
cofix π

(d)

We explain the proof tree in a bottom-up fashion. By the rule cofix π we first
introduce the coinduction hypothesis π : alt ∼ g alt into the context.5 Next we
apply the constructor ∼intro twice. Here we have not displayed proofs d0 and d1
of type head alt = head (g alt) and head (tail alt) = head (tail (g alt)), respectively;
both are obtained by plain equational reasoning and cause no problem. The
point we want to make concerns the subproof d′′ of tail2 alt ∼ tail2 (g alt). Left-
and right-hand side can be converted by rewriting, using the hypothesis π and
the assumptions (3), as follows:

tail2 alt
alt→ tail2 (0 :: 1 :: alt)

tail→ · tail→ alt
π→ g alt

tail← · tail← tail2 (0 :: 1 :: (g alt))
g← · g← tail2 (g (0 :: 1 :: alt))

alt← tail2 (g alt)

This conversion gives rise to the proof tree d′′ of the form:

e1 : tail2 alt ∼ alt

π : alt ∼ g alt e2 : g alt ∼ tail2 (g alt)

alt ∼ tail2 (g alt)
∼trans

tail2 alt ∼ tail2 (g alt)
∼trans

(d′′)

The omitted proofs e1 and e2 are obtained by equational reasoning without the
use of the coinduction hypothesis π. But let us reconsider the proof tree d with
d′′ filled in by the concrete subtree above. Note that the corecursive call (or coin-
duction hypothesis) π is not a direct argument of the guarding constructor ∼intro,
but nested within applications of ∼trans, as becomes even more apparent in the
corresponding proof term6:

d = cofix π (∼intro d0 (∼intro d1 (∼trans e1 (∼trans π e2)))) (4)

This corecursive construction is not guarded and Coq rejects it. However the
term d is productive, and reduces to a constructor normal form in the limit.

Guardedness problems occur in the vast majority of cases when coinduc-
tion is combined with equational reasoning. The transformation of (productive)
proof terms into guarded proof terms is the main topic of our paper. For this
purpose we adopt techniques from process algebra and employ the method of
‘bisimulation-up-to’ [18], a generalization of Milner’s bisimulation up to bisimi-
larity [16]. Let R be a binary relation on streams, and U a function from relations
to relations. Then R is a bisimulation up to U if 〈s, t〉 ∈ R implies head s = head t
and 〈tail s, tail t〉 ∈ U(R). Under certain conditions, the fact that a relation R is
a bisimulation up to U is sufficient to conclude that R is a subrelation of ∼, and

5 Of course, now concluding the proof by π immediately yields a non-productive term,
and is rightfully rejected by the guardedness checker.

6 In a form analogous to stream definitions (1) and (2), the bisimilarity proof term (4)
can also be written as d = ∼intro d0 (∼intro d1 (∼trans e1 (∼trans d e2))).

4 Endrullis, Hendriks and Bodin

so stream terms related by R are bisimilar. Typically R is included in U(R), and
thus, in comparison with a full bisimulation, less diagrams have to be checked.

For the purpose of formalizing circular coinduction in Coq, we take U(R)
to be the least relation including R and ∼, and closed under causal functions,
transitivity and symmetry. A stream function F is causal (called ‘special’ in [15])
if the first n elements of the resulting stream F s only depend on the first n
elements of the argument stream s. For the validity of a bisimilarity proof, it
does not harm to use the coinduction hypothesis under a causal function [15].

We show soundness of the bisimulation-up-to method for this mapping U ,
that is, if R is a bisimulation up to U , then U(R) is a bisimulation. We also
show that every circular coinduction proof can be transformed, in a structure-
preserving way, to a proof that R is a bisimulation up to U , where the relation
R consists of all pairs (u, v) such that u ∼ v is a coinduction hypothesis in the
original proof.

We thereby overcome the guardedness problem. The reason is that for proving
that a relation is a bisimulation-up-to there is no need for corecursion, and hence
guardedness is not an issue. The corecursive construction of bisimilarity proofs
is now part of the general soundness result. In order to formalize a proof by
circular coinduction in Coq, one can use our translation to obtain a proof by
bisimulation-up-to U , and then apply the soundness result to obtain a (guarded)
bisimilarity proof accepted by Coq.

Related Work. Danielsson [6] works around the guardedness problem for stream
definitions by defining a problem-specific language where the functions that ob-
struct guardedness are constructors, and defining an interpreter for the language
by guarded corecursion. Recent work [14] supports compositionality in coinduc-
tion proofs by what is called ‘parameterized coinduction’, which allows for se-
mantic rather than syntactic guardedness checking. In the present paper we are
concerned with equational reasoning, and provide a systematic way for a Coq
formalization of proofs by circular coinduction.

Overview. Sections 2 and 3 form a step-up to the main topic treated in Section 4.
This order chronologically reflects how we came about to use up-to techniques.
Sections 2 and 3 provide an informal discussion of how to overcome guardedness
problems for several examples. In particular, in Section 2 we show how to define
morphic sequences in Coq, using the idea explained above: postpone computation
(viz. iterations of the morphism) in favour of guarding the corecursive call. The
same idea is used in Section 3: to ensure guardedness of bisimilarity proofs,
applications of transitivity are postponed by reformulating a goal s ∼ t into the
equivalent statement ∀s′, t′. s′ ∼ s ⇒ t ∼ t′ ⇒ s′ ∼ t′. In Section 4 we give a
proof system for circular coinduction, restricted to the setting of streams over a
two-element alphabet. We define our notion of bisimulation up-to U , and discuss
the soundness proof which states that if R is a bisimulation-up-to U then U(R)
is a bisimulation. Finally we show that every proof by circular coinduction can
be transformed to a bisimilarity proof accepted by Coq. The supporting Coq
development is available as [10]. We conclude in Section 6.

Circular Coinduction in Coq Using Bisimulation-Up-To Techniques 5

2 Morphic Sequences in Coq

We show how to define morphic sequences by means of guarded corecursion. A
morphic sequence (typically) is an infinite sequence obtained as the iterative fixed
point of a morphism (also called a ‘substitution’). Morphisms for transforming
and generating infinite words provide a fundamental tool for formal languages,
and have been studied extensively; we refer to [3]. We first give a standard
definition of morphic sequences. Then we provide a ‘direct’ corecursive definition,
using a productive version of the fixed point equation h(w) = w. Finally we show
how to turn such an equation into a definition by guarded corecursion, and prove
that the thus defined sequence is indeed the unique fixed point of h.

A morphism is a map h : A∗ → B∗, with A and B finite alphabets, such that
h(ε) = ε and h(uv) = h(u)h(v) for all words u, v ∈ A∗, and can thus be defined
by giving its values on the symbols of A.7

Let h : A∗ → A∗ be a morphism prolongable on the letter a0 ∈ A, that is,
h(a0) = a0x for some x ∈ A∗ such that hi(x) 6= ε for all i ≥ 0. Then we see
that hi+1(a0) = hi(h(a0)) = hi(a0x) = hi(a0)hi(x) , and hence hi(a0) is a strict
prefix of hi+1(a0), for all i ≥ 0. So then limi→∞ hi(a0) exists and is infinite; this
limit is denoted by hω(a0) = limi→∞ hi(a0) = a0 xh(x)h2(x)h3(x) · · · and it is
readily seen to be the unique fixed point of h that starts with the letter a0, that
is, h(hω(a0)) = hω(a0). A sequence w ∈ Aω is (purely) morphic if w = hω(a0)
for some morphism h and starting letter a0.

Without loss of generality [3], we may assume morphisms to be non-erasing,
i.e., h(a) 6= ε for all a ∈ A. Hence, we replace the condition that h be prolongable
on starting letter a0, by the simpler h(a0) = a0x for some non-empty word x.
Now we can define h as a function in Aω → Aω by guarded corecursion and
pattern matching, as follows; for all b ∈ A and u ∈ Aω:

h(b :: u) = b0 :: b1 :: . . . :: bk−1 :: h(u) where b0b1 · · · bk−1 = h(b),

We now give a productive (yet unguarded) definition of w = hω(a). This
method is based on the work [7,8]. Clearly, the fixed point equation w = h(w),
where we now view w as a recursion variable, is not productive (and, typically,
also does not have a unique solution for w). By using the knowledge that the
first letter of w is a0, we can turn it into

w = a0 :: w′ w′ = tail(h(w)) (5)

In order to see that this specification is productive indeed, we plug in the infor-
mation that h(a0) = a0x where, say, x = a1a2 · · · ak with k ≥ 1. We do so by
replacing w by a0 ::w′, in the right-hand side of the equation for w′ and rewriting
h and tail ; we then obtain

w = a0 :: w′ w′ = a1 :: a2 :: . . . :: ak :: h(w′) (6)

This is clearly a productive equation, because h ‘consumes’ one stream element
at most, and, being non-erasing, produces one stream element at least. However,
as will be clear by now, the corecursive equation for w′ is not guarded, because

7 Juxtaposition of words denotes concatenation.

6 Endrullis, Hendriks and Bodin

the recursive call is nested within h.
In order to solve this problem, we generalize the construction by adding an

argument on which h is applied, and from which we can always extract the
next element to produce. The construction is reminiscent of Emile Post’s tag
systems [17]. Let the type of our morphism h be A+ → A+, mapping nonempty
words to nonempty words. Then we can define the morphic stream w = hω(a0) by

w = a0 :: tagh(x) tagh(ay) = a :: tagh(yh(a)) (7)

where we recall that the morphism h, the starting letter a0 and the non-empty
word x are such that h(a0) = a0x. We note that the function tagh : A+ → Aω

is defined by guarded corecursion, and hence (7) is accepted by Coq.
In this general set-up we prove (in Coq, see [10]) that the stream w defined

by (7) is indeed the fixed point of h (and so satisfies also the equations (5)
and (6)). That w is the unique fixed point (starting with a0) follows from the
fact that h is non-erasing and prolonging on a0.

Example 1. The Fibonacci word 0100101001001 · · · [3] is generated by iterating
the morphism f defined by f(0) = 01 and f(1) = 0, on the starting letter 0. In
Coq we define nonempty lists inductively, we use [a] for the singleton list, and
overload the symbol :: to also denote the constructor for nonempty lists. The
Fibonacci word fib is thus defined by

fib = 0 :: tagf [1] tagf [a] = a :: tagf (f a) tagf (a :: u) = a :: tagf (u++ f a)

f [0] = 0 :: [1] f (0 :: u) = 0 :: 1 :: f u [a] ++ v = a :: v

f [1] = [0] f (1 :: u) = 0 :: f u (a :: u) ++ v = x :: (u++ v)

3 Coinduction Loading

The idea of guarding the corecursive call by hiding the computation in an extra
argument, as outlined in the previous section, turns out to be useful in the
setting of bisimilarity proofs as well. We present the method of coinduction
loading, which in some cases suffices to turn a productive bisimilarity proof into
a guarded one. Here we want to avoid that transitivity of ∼ is applied to the
coinduction hypothesis (= corecursive call). The idea is to reformulate a goal
s ∼ t into the equivalent statement

∀s′, t′. s′ ∼ s ⇒ t ∼ t′ ⇒ s′ ∼ t′ .

This enables us to move applications of transitivity to the argument of the
corecursive call, as illustrated by the following example. Suppose we are given
the following definitions (=) and assumption (∼):

dup (x :: s) = x :: x :: dup s exp (x :: s) ∼ x :: dup (exp s)

odd (x :: y :: s) = y :: odd s log (x :: s) = x :: log (odd s)

The behavior of these functions is illustrated by applying them to the stream
nats = 0 :: 1 :: 2 :: . . . :

Circular Coinduction in Coq Using Bisimulation-Up-To Techniques 7

dup nats = 0 :: 0 :: 1 :: 1 :: 2 :: 2 :: . . . exp nats = 0 :: 1 :: 1 :: 2 :: 2 :: 2 :: 2 :: . . .

odd nats = 1 :: 3 :: 5 :: 7 :: 9 :: . . . log nats = 0 :: 2 :: 6 :: 14 :: 30 :: 62 :: . . .

The assumption for exp can, in Coq, not be taken as a definition, because the core-
cursive call is nested within dup, and so is not guarded, although certainly pro-
ductive. On the other hand, the corecursive equation for log is perfectly guarded.
The function log has a logarithmically increasing production function [7], i.e.,
n elements in leads to blog2(n+ 1)c elements out. Definitions are always prefer-
able to assumptions since Coq’s native evaluation does not harm guardedness of
proofs, whereas rewriting terms by using bisimilarity proofs does. Consider the
following corecursive proof term8, which witnesses that odd ◦ dup is the identity
function:

cofix π (λ(x :: s′). ∼intro (=refl x) (π s′)) : ∀s. odd (dup s) ∼ s (8)

Note that this proof term is defined by guarded corecursion. After we have
destructed s into x :: s′, the terms tail (odd (dup (x :: s′))) and odd (dup s′) are
convertible by Coq’s native evaluation; similarly the subgoal head (odd (dup (x ::

s′))) = x is proved by reflexivity. Finally, the application of the coinduction
hypothesis π : ∀s. odd (dup s) ∼ s to s′ proves that odd (dup s′) is bisimilar to s′.

Now we want to prove that also the composition log ◦ exp is the identity:

∀s. log (exp s) ∼ s (9)

The proof that we want to construct (but which is not accepted by Coq) looks as
follows; here we have omitted the subterms d of type head (log (exp (x ::s′))) = x,
and e whose type is indicated in the tree:

d

e : tail (log (exp (x :: s′))) ∼ log (exp s′) π s′ : log (exp s′) ∼ s′

tail (log (exp (x :: s′))) ∼ s′
∼trans

log (exp (x :: s′)) ∼ x :: s′
∼intro

∀s. log (exp s) ∼ s
λ(x :: s′)

∀s. log (exp s) ∼ s
cofix π

Guardedness of the corecursive call π s′ is here obstructed by the application of
∼trans, transitivity of ∼. We explain why we cannot do without ∼trans in this case.
In order to prove that tail (log (exp (x ::s′))) is bisimilar to s′ we cannot use Coq’s
native evaluation, for example because exp is not a defined function. Instead we
proceed by rewriting using the coinduction hypothesis π s′, the assumption for
exp and the lemma (8), as follows:

tail (log (exp (x :: s′)))
exp→ tail (log (x :: dup (exp s′)))

log→
tail (x :: log (odd (dup (exp s′))))

tail→ log (odd (dup (exp s′)))
(8)→ log (exp s′)

π→ s′

All these rewrite steps are connected by applications of ∼trans. The proof tree
above arises from splitting this rewrite sequence at the term log (exp s′) (the
middle term in the displayed application of ∼trans). In whatever way we split
the sequence, the coinduction hypothesis is argument of at least one application

8 We use the syntax λ(x :: s′). t to denote abstraction and pattern matching at once.

8 Endrullis, Hendriks and Bodin

of ∼trans, resulting in an unguarded proof term.
This can be fixed with coinduction loading, thereby turning the above proof

of (9) into a guarded proof of the equivalent statement ∀s, t1, t2.(t1 ∼ log (exp s) ⇒
s ∼ t2 ⇒ t1 ∼ t2), as follows:

d′ (π s′ (tail t1) (tail t2) d1 d2) : tail t1 ∼ tail t2
t1 ∼ t2

∼intro

t1 ∼ log (exp (x :: s′)) ⇒ x :: s′ ∼ t2 ⇒ t1 ∼ t2
λγ1, γ2

∀s, t1, t2. (t1 ∼ log (exp s) ⇒ s ∼ t2 ⇒ t1 ∼ t2)
λ(x :: s′), t1, t2

∀s, t1, t2. (t1 ∼ log (exp s) ⇒ s ∼ t2 ⇒ t1 ∼ t2)
cofix π

We note that λ-abstractions (introductions of ∀ and ⇒) do not obstruct guard-
edness. We ignore the term d′ : head t1 = head t2 which is a modification of
d : head (log (exp (x ::s′))) = x using the hypotheses γ1 : t1 ∼ log (exp (x ::s′)) and
γ2 : s ∼ t2. The other subtrees, d1 and d2, are given by the trees below. Here
comptail is an instance of compf referring to the compatibility of a unary stream
function f, i.e., f s ∼ f t whenever s ∼ t. In Coq, compatibility cannot be proved
for arbitrary f, but for concrete instances this forms no problem.

γ1 : t1 ∼ log (exp (x :: s′))

tail t1 ∼ tail (log (exp (x :: s′)))
comptail

e

d1 : tail t1 ∼ log (exp s′)
∼trans

γ2 : x :: s′ ∼ t2
d2 : s′ ∼ tail t2

comptail

Instead of giving a more formal definition of the transformation suggested
by the above example, we continue our exposition with incorporating bisim-
ulation-up-to techniques. The transformation described above will turn out to
be an instance of the theory of bisimulation-up-to, namely as bisimulations up
to transitivity and bisimilarity.

4 Circular Coinduction

We introduce a proof system for circular coinduction [12,15,19,21]. For the sake
of presentation, we focus on streams over {0, 1}, but it is straightforward to
generalize the method to infinite terms (ranked trees).

We assume that the signature is declared in Coq. We emphasize that the
terms introduced below are just a notation for Coq terms. We have sorts B and S
for {0, 1} and streams over {0, 1}, respectively. A signature Σ is a set of symbols
each having a fixed type in {B,S}∗ × {B,S}. We write f : t1 × . . . × tn → s
whenever f ∈ Σ has type 〈〈t1, . . . , tn〉, s〉. LetΣ be a signature, and X = XB∪XS

be a set of variables such that X ∩Σ = ∅. The set of data terms TB and stream
terms TS over Σ and X are inductively defined by the grammar:

Ts ::= x | f(Ts1 , . . . , Tsn) (x ∈ Xs, f ∈ Σ, f : s1 × . . .× sn → s)

for s ∈ {B,S}. We write T for TB ∪TS. A substitution is a mapping σ : X → T
that respects the sorts, that is, σ(x) ∈ TB for every x ∈ XB, and σ(x) ∈ TS for
every x ∈ XS. We write {x1 7→ t1, . . . , xn 7→ tn} to abbreviate the substitution
defined by σ(x1) = t1, . . . , σ(xn) = tn and σ(x) = x for every x 6∈ {x1, . . . , xn}.

Circular Coinduction in Coq Using Bisimulation-Up-To Techniques 9

For terms s ∈ T and substitutions σ, we define sσ inductively by f(t1, . . . , tn)σ =
f(tσ1 , . . . , t

σ
n) and xσ = σ(x). A stream context C is a term of sort S over Σ and

X ∪ {2} where 2 is a fresh variable of sort S. For terms s ∈ TS and contexts
C, we write C[s] for the term C27→s.

We define bisimilarity up to depth n on stream terms inductively as follows:

s ∼0 t

head s = head t tail s ∼n tail t

s ∼n+1 t

A causal context is a context C such that for all stream terms s, t we have:

s ∼n t ⇒ C[s] ∼n C[t] , for all n ∈ N.

Examples of causal contexts are dup 2, exp 2, and log (exp 2); examples of non-
causal contexts are tail 2, odd 2, and log 2, (see previous section). Note that for
every causal context C we have that tail C[a :: 2] is again causal.

Definition 2. The set Π of (circular coinduction) proof terms is inductively
defined as follows (the superscript ‘cc’ stands for circular coinduction):

Π ::= ∼cc
hyp γ C σ | ∼cc

cut γ Π Π | ∼cc
cohyp δ D σ | ∼cc

coin δ E Π |
∼cc

refl s | ∼cc
sym Π | ∼cc

trans Π Π | ∼cc
caseB

x Π Π | ∼cc
caseS

y Π

where γ, δ are names for hypotheses, s ∈ TS is a stream term, x ∈ XB and
y ∈ XS are variables of type B and S, respectively, σ : X → T is a substitution,
and C,D ∈ T are stream contexts, with D causal. The class E of equational
proofs on data terms (equality of the heads) is left implicit.

The constructor ∼cc
coin represents the combination of the Coq constructs cofix

and ∼intro introduced earlier. We leave universal quantification implicit. That is,
for stream terms s, t that contain variables x1, . . . , xn, and for a relation R on
stream terms, we write s R t to denote ∀x1, . . . , xn. s R t.

We now define ‘typing judgments’ for proof terms depending on two proof
contexts Γ and ∆, consisting of triples written as γ : s ∼cc t. Here Γ contains
assumptions, and ∆ contains the coinduction hypotheses that are introduced in
the construction of the proof. The intuition is that Γ,∆ ` d : s ∼cc t means
that for all n ∈ N, if all pairs in Γ are (fully) bisimilar, and all pairs in ∆ are
bisimilar up to depth n, then s is bisimilar to t up to depth n+1. The semantics
for judgments, will be given in Section 5 where we translate them into Coq
bisimilarity.

Definition 3. Let Γ,∆ be sets of triples γ : u ∼cc v, where every name γ appears
at most once in Γ ∪∆. Let d ∈ Π be a proof term, and s, t stream terms. We
define the judgment Γ,∆ ` d : s ∼cc t inductively by the rules in Figure 1.

Next we introduce rewriting as a syntax for constructing proof terms.

Definition 4. Let γ : u ∼cc v ∈ Γ and δ : u ∼cc v ∈ ∆. Let C be a context, σ a
substitution, and abbreviate s = C[uσ] and t = C[vσ]. Then we define

s
γ→ t = (∼cc

hyp γ C σ) s
γ← t = (∼cc

sym (∼cc
hyp γ C σ))

10 Endrullis, Hendriks and Bodin

Γ,∆ ` (∼cc
hyp γ C σ) : C[sσ] ∼cc C[tσ]

(γ : s ∼cc t) ∈ Γ

Γ,∆ ` (∼cc
cohyp δ D σ) : D[sσ] ∼cc D[tσ]

(δ : s ∼cc t) ∈ ∆, D is causal

Γ,∆ ` (∼cc
refl s) : s ∼cc s

Γ,∆ ` d : t ∼cc s

Γ,∆ ` (∼cc
sym d) : s ∼cc t

Γ,∆ ` d1 : s ∼cc u Γ,∆ ` d2 : u ∼cc t

Γ,∆ ` (∼cc
trans d1 d2) : s ∼cc t

Γ ` d0 : (head s = head t) Γ,∆ ∪ {δ : s ∼cc t} ` d′ : (tail s ∼cc tail t)

Γ,∆ ` (∼cc
coin δ d0 d

′) : s ∼cc t
δ 6∈ ∆

Γ,∆ ` d0 : (s ∼cc t)x 7→0 Γ,∆ ` d1 : (s ∼cc t)x7→1

Γ,∆ ` (∼cc
caseB

x d0 d1) : s ∼cc t
x ∈ XB

Γ,∆ ` d : (s ∼cc t)x 7→y::z

Γ,∆ ` (∼cc
caseS

x d) : s ∼cc t
y ∈ XB, z ∈ XS fresh for s, t; and x ∈ XS

Γ ∪ {γ : u ∼cc v},∆ ` d1 : s ∼cc t Γ,∅ ` d2 : u ∼cc v

Γ,∆ ` (∼cc
cut γ d1 d2) : s ∼cc t

γ 6∈ Γ

Fig. 1. Proof rules for circular coinduction for stream terms.

s
δ→ t = (∼cc

cohyp δ C σ) s
δ← t = (∼cc

sym (∼cc
cohyp δ C σ))

where in the case of
δ→ and

δ←, C is additionally required to be a causal context.

Furthermore, let Ξ = { γ→, γ← | γ ∈ Γ} ∪ { δ→, δ← | δ ∈ ∆}. Then for every ↔ ∈ Ξ
the judgment Γ,∆ ` s ↔ t : s ∼cc t holds. We define s0 ↔1 s1 ↔2 . . . ↔n sn
inductively by (∼cc

trans (s0 ↔1 s1) (s1 ↔2 . . . ↔n sn)) where ↔i ∈ Ξ for
1 ≤ i ≤ n.

For uniformity we work with assumptions only, but functions specified by
guarded corecursion (like log in Section 3) can of course be taken as definitions
in Coq, and then rewriting comes ‘for free’, i.e., are not reflected in the proof
tree.

The following example illustrates the use of the syntax of Definition 4.

Example 5. Given the assumptions9 Γ = {γ1 : z1 ∼cc (0::z2), γ2 : z2 ∼cc (0::z1)},
our goal is to construct a proof term witnessing z1 ∼cc z2. As usual we first apply
the ∼cc

coin-rule, i.e., we assume what we have to prove as a coinduction hypothesis
δ : z1 ∼cc z2, and then construct terms d0 and d′ so that

Γ ` d0 : head z1 = head z2 Γ, {δ : z1 ∼cc z2} ` d′ : tail z1 ∼cc tail z2

Γ,∅ ` (∼cc
coin δ d0 d

′) : z1 ∼cc z2
∼cc

coin

9 These mutual corecursive equations can actually be taken as definitions in Coq.

Circular Coinduction in Coq Using Bisimulation-Up-To Techniques 11

By rewriting we obtain

d0 = head z1
γ1→ head (0 :: z2)

γhead→ 0
γhead← head (0 :: z1)

γ2← head z2

d′ = tail z1
γ1→ tail (0 :: z2)

γtail→ z2
δ← z1

γtail← tail (0 :: z1)
γ2← tail z2

So the proof tree corresponding to d′ is as follows, where we write s′ to denote
tail s, and where we omit contexts and proof terms:

γ1 : z1 ∼cc (0 :: z2)

z′1 ∼cc (0 :: z2)′
∼cc

hyp

γtail : (x :: s)′ ∼cc s

(0 :: z2)′ ∼cc z2
∼cc

hyp

δ : z1 ∼cc z2
z1 ∼cc z2

∼cc
cohyp

z2 ∼cc z1
∼cc

sym

γtail : (x :: s)′ ∼cc s

(0 :: z1)′ ∼cc z1
∼cc

hyp

z1 ∼cc (0 :: z1)′
∼cc

sym

γ2 : z2 ∼cc 0 :: z1
z′2 ∼cc (0 :: z1)′

∼cc
hyp

(0 :: z1)′ ∼cc z′2
∼cc

sym

z1 ∼cc z′2
∼cc

trans

z2 ∼cc z′2
∼cc

trans

(0 :: z2)′ ∼cc z′2
∼cc

trans

z′1 ∼cc z′2
∼cc

trans

Next, we give a detailed example of a proof by circular coinduction, i.e.,
using the system introduced in Definition 3. In Section 5 we discuss how this
proof is translated into a proof that Coq accepts. Consider the following guarded
equations (here taken as assumptions) of functions D,T,+

γD : D s ∼cc s+ tail s γT : T s ∼cc head s :: T (D s)

γ+ : (x :: s) + (y :: t) ∼cc (x+ y) :: (s+ t)

where 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1 + 0 = 1.
Our goal is to prove by circular coinduction that T is an involution, that is,

T (T s) ∼ s, for all stream terms s. For this we use some easily proven facts
about addition, and distribution of D over +:

γ+ass : x+ (y + z) ∼cc (x+ y) + z γ+com : x+ y ∼cc y + x

γ+id : x+ zeros ∼cc x γ+ann : x+ x ∼cc zeros

γDdistr : D (x+ y) ∼cc D x+ D y

and we let Γ = { γhead , γtail , γ+ , γD , γT , γ+ass , γ+com , γ+id , γ+ann , γDdistr }.
Another lemma that we need, is distributivity of T over +. This in turn uses

distributivity of D over +, which in Coq would destroy guardedness by invoking
transitivity. The proof of T (x+ y) ∼cc T x+ T y has the following shape:

d0

d′ : tail (T ((a :: x′) + (b :: y′))) ∼cc tail (T (a :: x′) + T (b :: y′))

tail (T ((a :: x′) + y)) ∼cc tail (T (a :: x′) + T y)
∼cc

caseS

tail (T (x+ y)) ∼cc tail (T x+ T y)
∼cc

caseS

T (x+ y) ∼cc T x+ T y
∼cc

coin δ

We ignore the proof d0 of head (T (x+ y)) ∼cc head (T x+ T y), but define d′ by
rewriting, using the coinduction hypothesis δ : T (x+ y) ∼cc T x+ T y :

tail (T ((a :: x′) + (b :: y′)))
γ+→γT→γtail→ T (D (x′ + y′))

γDdistr→ T (D x′ + D y′)

δ→ T (D x′) + T (D y′)
γtail←γ+←γT←γT← tail (T (a :: x′) + T (b :: y′))

Thus we have shown that the following judgment holds using the proof system

12 Endrullis, Hendriks and Bodin

for circular coinduction given in Figure 1:

Γ,∅ ` (∼cc
coin δ (∼cc

caseS
x (∼cc

caseS
y d′))) : T (x+ y) ∼cc T x+ T y

We now continue with showing that T is an involution. Let Γ ′ = Γ ∪{γTdistr :
T (x+ y) ∼cc T x+ T y}, i.e., we take up the lemma we have just proved as an
assumption. The proof again starts by:

e0 : head (T (T s)) ∼cc head s e′ : tail (T (T s)) ∼cc tail s

T (T s) ∼cc s
∼cc

coin δ

and the proof term e′ witnessing bisimilarity of tail (T (T s)) and tail s is con-
structed by the following rewrite sequence:

tail (T (T s))
γT→ · γtail→ T (D (T s))

γD→ T (T s+ tail (T s))
γT→ · γtail→ T (T s+ T (D s))

γTdistr→ T (T s) + T (T (D s))
δ→ s+ T (T (D s))

δ→ s+ D s
γD→ s+ (s+ tail s)

γ+ass→ (s+ s) + tail s
γ+ann→ zeros + tail s

γ+id→ tail s

Here we have used the coinduction hypothesis δ twice. The first application (from
left to right) under the causal context 2+ T (T (D s)), and the second under the
causal context s+ 2.

The above example illustrates several features of circular coinduction that
cannot be captured by the method of coinduction loading introduced in the
previous section (and certainly not by guarded corecursion). Without further
generalizing, the method of coinduction loading cannot deal with more than one
application of the coinduction hypothesis, and also does not allow for the use of
the coinduction hypotheses under causal contexts.

The next section shows how to translate circular coinduction into Coq proofs.

5 Bisimulation-Up-To

To avoid the problems with guardedness in constructing a corecursive proof
term for proving s ∼ t, the user can instead define a relation R on stream
terms with 〈s, t〉 ∈ R, and then show that R is a bisimulation. This suffices to
obtain a proof of s ∼ t in Coq, as follows: let h : ∀s, t : Aω. s R t ⇒ head s =
head t∧ (tail s) R (tail t), witnessing that R is a bisimulation. A (Coq) proof term
of type ∀s, t. s R t⇒ s ∼ t is

cofix δ (λs, t : Aω. λγ : s R t. (∼intro d0 (δ (tail s) (tail t) d′)))

where d0 = pj1 (h s t γ) and d′ = pj2 (h s t γ), with pji : p1 ∧ p2 → pi (i = 1, 2).
However, it is often cumbersome to construct such bisimulations. The reason

is that for a relation R to be a bisimulation, it needs (a) to be closed under
taking tail, (b) include all lemmas, and (c) all compositions of the required causal
contexts. This typically gives rise to a large, or infinite relation.

We borrow a solution from process algebra [16,18], namely the method of
bisimulation-up-to. A bisimulation-up-to is a relation which is included in a
bisimulation, but which typically is not a bisimulation itself. A relation R is

Circular Coinduction in Coq Using Bisimulation-Up-To Techniques 13

a bisimulation-up-to U if for every s R t we have head s = head t and tail s U(R)
tail t. For suitable U , it is possible to prove that U(R) is a bisimulation when-
ever R is a bisimulation-up-to U . Since R can be substantially smaller than the
enclosing bisimulation U(R), this may save a lot of work, because less pairs have
to be checked.

Definition 6. Let R, R′ be relations on stream terms. Then R progresses to R′

if for every s R t we have head s = head t and tail s R′ tail t.

Definition 7. Let S, T ⊆ TS×TS, C a stream context and σ a substitution. We
define C[S] = {〈C[s], C[t]〉 | 〈s, t〉 ∈ S}, and Sσ = {〈sσ, tσ〉 | 〈s, t〉 ∈ S}. For x ∈
XB we let SgenB(x) = {〈s, t〉 | 〈sx 7→i, tx7→i〉 ∈ S for all i ∈ {0, 1}}, and for x ∈ XS,
SgenS(x) = {〈s, t〉 | 〈sx 7→y::z, tx7→y::z〉 ∈ S for some y ∈ XB, z ∈ XS fresh for s, t}.
We abbreviate Sgen =

⋃
x∈XB

SgenB(x) ∪
⋃
x∈XS

SgenS(x). Also, we let S−1 =
{〈s, t〉 | 〈t, s〉 ∈ S} and S · T = {〈s, t〉 | 〈s, u〉 ∈ S, 〈u, t〉 ∈ T}.

Definition 8. Let R ⊆ TS × TS. We define U(R) inductively by the grammar

U(R) ::= R | ∼ | U(R)σ | C[U(R)] | U(R)−1 | U(R) · U(R) | U(R)gen

where C is a causal context. R is a bisimulation-up-to U if R progresses to U(R).

In words, U(R) is the smallest relation that contains R and ∼, and is closed
under substitution, causal contexts, symmetry, transitivity and generalization.
Actually, the clauses for substitution and generalization are immediate in Coq,
as there the pairs in U(R) are explicitly universally quantified.

Theorem 9 (Soundness). If R is a bisimulation-up-to U , then U(R) is a
bisimulation.

Proof. Let R be a bisimulation-up-to U , and let s, t be terms such that s U(R) t.
We prove head s = head t and tail s U(R) tail t by induction on the definition of
s U(R) t. We distinguish the following cases:

(i) s R t : follows from R being a bisimulation-up-to U ;

(ii) s ∼ t : head s = head t and tail s ∼ tail t, and so tail s U(R) tail t;

(iii) s U(R)
σ
t : for some u, v ∈ TS, we have s = uσ, t = vσ and u U(R) v. By

the induction hypothesis (IH) we have head u = head v and so head s = head t;
also tail u U(R) tail v by IH and so tail s U(R)

σ
tail t;

(iv) s C[U(R)] t : for some u, v ∈ TS, s = C[u], t = C[v], and u U(R) v. Then
head s = head t follows from IH and causality of C; moreover, tail s D[U(R)]
tail t follows from causality of D = tail C[head u :: 2] and IH;

(v) s U(R)
−1

t : direct from IH;

(vi) s U(R) u U(R) t : direct from IH;

(vii) s U(R)
genB(x)

t : then sx 7→i U(R) tx7→i for i ∈ {0, 1} and so by IH head s =

head t for all possible values of x ∈ XB, and tail s U(R)
genB(x)

tail s by IH;

(viii) s U(R)
genS(x)

t : similar to previous case.

14 Endrullis, Hendriks and Bodin

From a proof using circular coinduction, we extract a bisimulation-up-to U :

Definition 10. Let d : Γ,∆ ` s ∼cc t be a proof using circular coinduction. We
define Rd to consist of all pairs (u, v) such that the proof d contains a sub-proof
of the form ∼cc

coin . . . : u ∼cc v.

In what follows, we assume all contexts to be compatible with bisimilarity,
i.e., u ∼ v ⇒ C[u] ∼ C[v]. This is used in item (i) of the proof of Theorem 12
below. In practice, this assumption can be dropped as proving it for concrete C
forms no problem.

Lemma 11. If R progresses to R, and S progresses to S, then R∪S progresses
to R ∪ S. ut

Theorem 12. Assume Γ,∆ ` d : s ∼cc t and u ∼ v for all pairs γ : u ∼cc v
in Γ . Let R = Rd ∪∆. Then s U(R) t and Rd progresses to U(R).

Proof. The proof proceeds by induction on the structure of Γ,∆ ` d : s ∼cc t
(see Figure 1), as follows. In each case, we let R abbreviate Rd ∪∆. In the first
three cases, we have Rd = ∅ and so Rd trivially progresses to U(R).

(i) Γ,∆ ` d : C[uσ] ∼cc C[vσ] with d = ∼cc
hyp γ C σ. Then (γ : u ∼cc v) ∈ Γ ,

and uσ ∼ vσ by assumption. Hence, by compatibility we have C[uσ] ∼ C[vσ]
and, using ∼ ⊆ U(R) we get C[uσ] U(R) C[vσ].

(ii) Γ,∆ ` d : D[uσ] ∼cc D[vσ] with d = ∼cc
cohyp δ D σ, and D a causal context.

Then (δ : u ∼cc v) ∈ ∆ and so u R v, uσ U(R) vσ and D[uσ] U(R) D[vσ].

(iii) Γ,∆ ` d : u ∼cc u with d = ∼cc
refl u. Then u U(R) u by reflexivity of ∼ and

∼ ⊆ U(R).

(iv) Γ,∆ ` d : u ∼ v with d = ∼cc
sym d1 and Γ,∆ ` d1 : v ∼ u. Then v U(R) u by

the induction hypothesis (IH), and u U(R) v by symmetry of U(R). Also,
Rd progresses to U(R) by IH, because Rd = Rd1 .

(v) Γ,∆ ` d : u ∼cc v with d = ∼cc
trans d1 d2 , and Γ,∆ ` d1 : u ∼cc w and

Γ,∆ ` d2 : w ∼cc v for some stream term w. We conclude u U(R) v from
u U(R) w, and w U(R) v by IH and transitivity of U(R). By IH we have
that Rd1 progresses to U(Rd1 ∪∆), and Rd2 progresses to U(Rd2 ∪∆). By
Lemma 11 Rd = Rd1 ∪Rd2 progresses to U(R).

(vi) Γ,∆ ` d : u ∼cc v with d = ∼cc
coin δ d0 d

′ and Γ ` d0 : head u = head v,
and Γ,∆′ ` d′ : tail u ∼cc tail v where ∆′ = ∆ ∪ {δ : u ∼cc v}. Note
that Rd = Rd′ ∪ {δ : u ∼cc v} and so R = Rd ∪ ∆ = Rd′ ∪ ∆′. From
the IH we obtain that Rd′ progresses to U(Rd′ ∪ ∆′) = U(R). Moreover,
{δ : u ∼cc v} progresses to U(R) since d0 is a proof of head u = head v, and
tail u U(R) tail v by IH. With Lemma 11 we conclude that Rd progresses to
U(R). Furthermore, u U(R) v by 〈u, v〉 ∈ Rd ⊆ R ⊆ U(R).

(vii) Γ,∆ ` d : u ∼cc v with d = ∼cc
cut γ d1 d2 and Γ ′, ∆ ` d1 : u ∼cc v, and Γ,∅ `

d2 : q ∼cc r for some stream terms q, r, where Γ ′ = Γ ∪{γ : q ∼cc r}. We note
that q ∼ r holds by Theorem 9, since by IH we have q U(Rd2) r, and Rd2

Circular Coinduction in Coq Using Bisimulation-Up-To Techniques 15

progresses to U(Rd2). Hence Γ ′ ⊆ ∼, and by IH we obtain u U(Rd1 ∪∆) v
and we conclude u U(R) v from Rd = Rd1 ∪ Rd2 (clearly, U is a monotone
function with respect to ⊆). Moreover, by IH Rd1 progresses to U(Rd1 ∪∆),
and Rd2 progresses to U(Rd2). So by Lemma 11 we obtain that Rd = Rd1 ∪
Rd2 progresses to U(R).

(viii) Γ,∆ ` d : u ∼cc v with d = ∼cc
caseB

x d0 d1 and Γ,∆ ` di : (u ∼cc v)x 7→i for
i ∈ {0, 1} and x ∈ XB. By IH we get ux 7→i U(R) vx7→i for i ∈ {0, 1}, hence
u U(R) v by U(R)genB ⊆ U(R). Furthermore, Rd = Rd0 ∪Rd1 progresses to
U(R) by IH and Lemma 11.

(ix) Γ,∆ ` d : u ∼cc v with d = ∼cc
caseS

x e and Γ,∆ ` e : ux 7→y::z ∼cc

vx7→y::z. From IH we obtain ux 7→y::z U(R) vx 7→y::z. So u U(R) v follows
from U(R)genS ⊆ U(R). Furthermore, Rd = Re progresses to U(R) by IH.

From Theorems 9 and 12 it follows that every proof by circular coinduction
can be transformed to a bisimilarity proof accepted by Coq. We have formalized
Theorem 9 in Coq, see [10]. We are currently working on automating the trans-
lation of circular coinductive proofs as produced by the prover Circ [12,15], or
Streambox [21] into Coq proofs.

Corollary 13. If Γ,∅ ` d : s ∼cc t, then Rd is a bisimulation-up-to U and
s U(Rd) t. Hence s ∼ t is provable from Γ in Coq. ut

6 Discussion

Generally speaking, for programming with infinite objects, translating a pro-
ductive specification into a guarded definition may take considerable effort. In
doing so, the elegance and ‘directness’ of the original specification is often lost,
thereby complicating further processing of the defined object. For programming,
we therefore believe that alternative approaches are favorable. Here one may
think of implementing a more flexible productivity checker by using a type-
based approach as advocated in [13,1,20]. It would also be convenient if Coq
would allow productivity of the corecursive program to be proved separately
(for recursive programs, wellfoundedness can be proved separately in Coq). This
then would open the door for more advanced tactics based on methods as de-
scribed in [7,8,9].

However, for reasoning about infinite objects the situation is different, as we
have shown. The reason is that for bisimilarity proofs the coinduction hypoth-
esis is usually not subject to further pattern matching. This is in contrast to
programming where recursive calls are usually manipulated further.

References

1. A. Abel. Termination and Productivity Checking with Continuous Types. In Proc.
6th Conf. on Typed Lambda Calculi and Applications (TLCA 2003), volume 2701
of LNCS, pages 1–15. Springer, 2003.

16 Endrullis, Hendriks and Bodin

2. The Agda team. The Agda Wiki, 2011. http://wiki.portal.chalmers.se/agda.
3. J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Gener-

alizations. Cambridge University Press, New York, 2003.
4. The Coq development team. The Coq Proof Assistant Reference Manual. LogiCal

Project, 2012. http://coq.inria.fr, version 8.3.
5. Th. Coquand. Infinite Objects in Type Theory. In Postproc. Workshop on Types for

Proofs and Programs (TYPES 1993), volume 806 of LNCS, pages 62–78. Springer,
1994.

6. N. A. Danielsson. Beating the Productivity Checker Using Embedded Languages.
In Proc. Workshop on Partiality and Recursion in Interactive Theorem Provers
(PAR 2010), volume 43 of EPTCS, pages 29–48, 2010.

7. J. Endrullis, C. Grabmayer, and D. Hendriks. Data-Oblivious Stream Productivity.
In Proc. Conf. on Logic for Programming Artificial Intelligence and Reasoning
(LPAR 2008), volume 5330 of LNCS, pages 79–96. Springer, 2008.

8. J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productivity
of Stream Definitions. Theoretical Computer Science, 411, 2010.

9. J. Endrullis and D. Hendriks. Lazy Productivity via Termination. Theoretical
Computer Science, 412(28):3203–3225, 2011.

10. J. Endrullis, D. Hendriks, and M. Bodin. Coq Formalization for Circular Coinduc-
tion, 2012. Available at http://www.cs.vu.nl/~diem/research/up_to.tgz.

11. E. Giménez. Codifying Guarded Definitions with Recursive Schemes. In Postproc.
Workshop on Types for Proofs and Programs (TYPES 1993), volume 806 of LNCS,
pages 39–59. Springer, 1994.

12. J. Goguen, K. Lin, and G. Roşu. Circular Coinductive Rewriting. In Proc. of
Automated Software Engineering, pages 123–131. IEEE, 2000.

13. J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Sys-
tems Using Sized Types. In Symposium on Principles of Programming Languages
(POPL 1996), pages 410–423, 1996.

14. C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The Power of Parameterization
in Coinductive Proof. In Proc. Symp. on Principles of Programming Languages
(POPL 2013), pages 193–206. ACM, 2013.

15. D. Lucanu and G. Roşu. Circular Coinduction with Special Contexts. In Proc.
Int. Conf. on Formal Methods and Software Engineering (ICFEM 2009), pages
639–659. Springer, 2009.

16. R. Milner. Communication and Concurrency. Prentice-Hall International Series in
Computer Science. Prentice-Hall, 1989.

17. E. L. Post. Formal Reductions of the General Combinatorial Decision Problem.
American Journal of Mathematics, (65):197–215, 1943.

18. D. Pous and D. Sangiorgi. Enhancements of the Coinductive Proof Method. In
D. Sangiorgi and J. J. M. M. Rutten, editors, Advanced Topics in Bisimulation
and Coinduction, volume 52 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2011. Chapter 6.

19. G. Roşu and D. Lucanu. Circular Coinduction: A Proof Theoretical Foundation.
In Proc. Conf. on Algebra and Coalgebra in Computer Science (CALCO 2009),
volume 5728 of LNCS, pages 127–144. Springer, 2009.

20. P. Severi and F.-J. de Vries. Pure Type Systems with Corecursion on Streams: From
Finite to Infinitary Normalisation. In Proc. Int. Conf. on Functional Programming
(ICFP 2012), pages 141–152. ACM, 2012.

21. H. Zantema and J. Endrullis. Proving Equality of Streams Automatically. In Proc.
Conf. on Rewriting Techniques and Applications (RTA 2011), volume 10 of LIPIcs,
pages 393–408. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.

http://wiki.portal.chalmers.se/agda
http://coq.inria.fr
http://www.cs.vu.nl/~diem/research/up_to.tgz

	Circular Coinduction in Coq Using Bisimulation-Up-To Techniques

