
Fast Leader Election in Anonymous Rings
with Bounded Expected Delay

Rena Bakhshia,∗, Jörg Endrullisa, Wan Fokkinka, Jun Pangb

aVrije Universiteit Amsterdam, Department of Computer Science, The Netherlands
bUniversité du Luxembourg, Computer Science and Communications, Luxembourg

Abstract

We propose a probabilistic network model, called asynchronous bounded expected de-
lay (ABE), which requires a known bound on the expected message delay. In ABE
networks all asynchronous executions are possible, but executions with extremely long
delays are less probable. Thus, the ABE model captures asynchrony that occurs in
sensor networks and ad-hoc networks.

At the example of an election algorithm, we show that the minimal assumptions of
ABE networks are sufficient for the development of efficient algorithms. For anony-
mous, unidirectional ABE rings of known size n we devise a probabilistic election
algorithm having average message and time complexity O(n).

Key words: distributed computing, design of algorithms, analysis of algorithms

1. Introduction

The two commonly used network models are synchronous and asynchronous. In
synchronous network all nodes proceed simultaneously in global rounds. While this
model allows for efficient algorithms, the assumptions are typically too strict for prac-
tical applications. The (fully) asynchronous network model, on the other hand, requires
only that every message will eventually be delivered. The assumptions of this model
are generally too weak to study the time complexity of algorithms.

For the development of practically usable, efficient algorithms we need to find a
golden mean between synchronous and asynchronous networks. A possible approach
is asynchronous bounded delay (ABD) networks [7, 21], where a fixed bound on the
message delivery time is assumed. ABD networks are generally closer to synchronous
than to fully asynchronous networks. The ABD model is a nice theoretical framework,
but the assumption of a bounded message delay is often hard to satisfy in real-life
networks.

We propose a probabilistic model, that we call asynchronous bounded expected de-
lay (ABE) networks. The ABE network model requires a known bound on the expected

∗Corresponding author
Email addresses: rbakhshi@few.vu.nl (Rena Bakhshi), joerg@few.vu.nl (Jörg Endrullis),

wanf@cs.vu.nl (Wan Fokkink), jun.pang@uni.lu (Jun Pang)

Preprint submitted to Information Processing Letters June 7, 2011

message delay. Thus, we strengthen the asynchronous network model with a minimal
requirement for analysing the time complexity of algorithms.

We elaborate on the advantage of ABE over the ABD network model. A strong
point in favour of the ABE network model is its probabilistic nature. A probabilistic
treatment of the message delay is for example crucial to analyse protocols that employ
a timeout mechanism like in the TCP/IP protocol. The assumption of the known bound
on the expected message delay allows for deriving a lower bound on the probability
that a message will arrive within a given time limit (before the timeout). In contrast, it
is impossible to evaluate algorithms with timeout mechanism on the basis of the ABD
network model. The only assumption of the ABD network model is a fixed bound on
the message delay. If the timeout is greater or equal to this bound, then all messages
will arrive in time, rendering the timeout mechanism useless. If the timeout is smaller
than the bound on the message delay, it is impossible to estimate how many messages
will arrive before the timeout (all messages could arrive after the timeout).

Moreover, messages sent via a physical channel may get lost or corrupted, for ex-
ample, due to material imperfections or signal inferences. Since message transmission
is unreliable, all we can settle for is a probability p of successful transmission. To en-
sure that a message arrives at its destination, it may need to be retransmitted (possibly
multiple times) until the transmission has been successful. The number of necessary
retransmissions for a message cannot be bounded: with probability (1−p)k a message
requires more than k retransmissions, and thus the message delay is unbounded. While
the message delay cannot be bounded, from the probability p we can derive the average
number of needed retransmissions and thereby the average message delay. In particu-
lar, the average number of transmissions is kavg =

∑∞
k=0(k + 1) · (1 − p)k · p = 1

p .
Assuming that a successful transmission takes one time unit, the average message de-
lay is 1

p as well. Assuming that we know the exact value of p for physical channels may
already be an unrealistic assumption. However, frequently a lower bound plow ≤ p on
p can be derived from material properties in combination with the maximum strength
of inference signals in a given environment. Such a lower bound on p is sufficient
to derive an upper bound on the expected message delay, and this suffices for ABE
networks.

Although the assumptions of ABE networks are minimal, it is possible to devise
efficient algorithms. We demonstrate this on an example of an election algorithm for
anonymous, unidirectional ABE rings having (average) linear time as well as message
complexity. So its efficiency is comparable to the most optimal election algorithms
known for anonymous, synchronous rings [16].

Election is the problem of determining a unique leader in a network, in the sense
that the leader (process or node) knows that it has been elected and the other processes
know that they have not been elected. This is a fundamental problem in distributed
computing and has many applications. For example, it is an important tool for break-
ing symmetry in a distributed system. By choosing a process as the leader it is possible
to execute centralised protocols in a decentralised environment. Election can also be
used to recover from token loss for token-based protocols, by making the leader re-
sponsible for generating a new token when the current one is lost. There exists a broad
range of election algorithms; see e.g. the summary in [21, 17]. These algorithms have
different message complexity in the worst and/or average case. Furthermore, they vary

2

in communication mechanism (asynchronous vs. synchronous), process names (unique
identities vs. anonymous), and network topology (e.g. ring, tree, complete graph).

Classical (deterministic) election algorithms are [14, 11, 20, 8] for asynchronous
rings with worst-case message complexity O(n log n), and [12] for synchronous uni-
directional rings with worst-case message complexity O(n). Without additional as-
sumptions, Ω(n log n) is the lower bound on the average message complexity for asyn-
chronous rings [19, 6].

In an anonymous network, processes do not carry an identity. As the number of
processes in a network increases, it may become difficult to keep the identities of all
processes distinct, or a network may accidentally assign the same identity to differ-
ent processes. In some situations, transmitting identities may be too expensive (e.g.,
FireWire bus, cf. [18]). Since deterministic election is impossible in an anonymous
network [1]; randomisation is used to break the symmetry.

If the network size is known, it is possible to construct a randomised election algo-
rithm that terminates with probability one, e.g. [15]. It exhibits infinite traces, but the
probability that such an infinite trace is executed is zero. For unknown network size,
the presence of an oracle for leader detection is required, e.g. [9]. In the absence of
an oracle, there are several impossibility results for anonymous rings. No randomised
algorithms can elect a leader in an anonymous ring if the ring size is known only within
a factor of two [1]. Furthermore, algorithms for computing the ring size always have a
positive probability of computing the wrong result [21]. Thus, there is no randomised
algorithm that can elect a leader in an anonymous ring of unknown size.

We study the problem of election in anonymous, asynchronous rings. For such
rings, the best known election algorithms are [15, 10, 13, 5] with average message com-
plexity Θ(n log n). Itai and Rodeh [16] have proposed an algorithm for synchronous
unidirectional anonymous rings; its average message complexity is O(n). The algo-
rithm strongly depends on the notion of rounds, even though the idea of the activation
parameter in this algorithm is similar to ours. The algorithm proceeds multiple elec-
tions, each of which consist of exactly n rounds. Both central ideas of the algorithm
crucially depend on synchronous networks: the synchronous sending of the messages
in the beginning of the election as well as determining the number of active nodes by
counting the messages passed through in n rounds. Thus, the similarities between our
algorithm and that of Itai-Rodeh are limited to the activation parameter, which is a
very natural choice in probabilistic systems. Hence, the Itai-Rodeh algorithm cannot
be adapted for ABE networks; however, our algorithm works in synchronous networks.

Contribution and outline. The ABD model assumes that there is a fixed bound on
message delay. In Sec. 2 we propose a probabilistic network model, called asyn-
chronous bounded expected delay (ABE) networks, that allows for an unbounded mes-
sage delay, and assumes a known bound on expected message delay. This model is
closer to the fully asynchronous network model than ABD networks.

For anonymous, unidirectional ABE rings of known ring size n, we devise a prob-
abilistic election algorithm with average message complexity O(n); see Sec. 3. Pre-
viously, election algorithms with linear time and message complexity have only been
known for network models with a strict bound on the message delay, i.e., synchronous
networks and ABD networks. In Sec. 4 and 5, we prove the correctness, the average

3

linear complexity of our algorithm, and optimize the activation parameter.

2. Asynchronous Bounded Expected Delay Networks

We describe the model of ABE networks, briefly announced in [4], which strength-
ens asynchronous networks with the assumption of a known bound on the expected
message delay. This strengthening allows one to analyse the (average) time complexity
of algorithms.

At first glance it may appear superfluous to consider a bound on the expected delay,
instead of the expected delay itself. We briefly motivate our choice. First, when deter-
mining the expected delay for real-world networks, one needs to take into account pa-
rameters such as material properties, environmental radiation, electromagnetic waves,
etc. Frequently, these values change over time, or cannot be calculated precisely. Thus
we have to cope with ranges for each of these parameters, and consequently, the best
we can deduce is an upper bound on the expected message delay. Second, the links
in a network are typically not homogeneous and often have different expected delays.
Then the maximum of these delays can be chosen as an upper bound, instead of having
to deal with different delays for every link.

Definition 1. We call a network asynchronous bounded expected delay (ABE) if:
1. A bound δ on the expected message delay (network latency) is known.
2. Let t be a real time. We assume that bounds 0 < slow ≤ shigh on the speed of

the local clocks are known. That is, for every node A the following holds for the
local clock CA: slow · (t2 − t1) ≤ |CA(t2)− CA(t1)| ≤ shigh · (t2 − t1) .

3. A bound γ on the expected time to process a local event is known.

In comparison with ABD networks, the ABE network model relieves the assump-
tion of a strict bound on the message delay. The assumption is weakened to a bound on
the expected message delay. Thereby we obtain a probabilistic network model which,
as discussed above, covers a wide range of real-world networks to which the ABD net-
work model is not applicable. For this reason, we advocate the model of ABE networks
as a natural and useful extension of the fully asynchronous network model.

Example 1. The known upper bound on the expected message delay δ allows for de-
riving a lower bound p(t) on the probability that a message will be delivered with a
delay less or equal to t. From δ ≥ t · (1−p(t)) it follows that p(t) ≥ 1− δ/t for t > δ.
If δ = 1, then p(2) = 0.5, p(5) = 0.8, etc. As a consequence we also obtain that long
message delays are less probable (but possible).

To conclude this section, we discuss synchronisers for ABE networks. A synchro-
niser is an algorithm to simulate a synchronous network on another network model.
A well-known impossibility result [2] states that fully asynchronous networks cannot
be synchronised with fewer than n messages per round (every node needs to send a
message every round). This of course destroys the message complexity when running
synchronous algorithms in a fully asynchronous network. The more efficient ABD
synchroniser by Tel et al. [22] relies on knowledge of the bounded message delay. As
in fully asynchronous networks the message delay in ABE networks is unbounded (al-
though we assume a bound on the expected delay). In a slogan: every execution of a

4

fully asynchronous network is also an execution of an ABE network. The difference is
that huge message delays in ABE networks are less probable. Hence, the impossibility
result [2] for fully asynchronous networks carries over to ABE networks as follows:

Corollary 1. ABE networks of size n cannot be synchronised with fewer than n mes-
sages per round.

Hence, we cannot run synchronous algorithms in ABE networks without losing the
message complexity. Although ABE networks are very close to fully asynchronous
networks, it turns out the model allows for the development of efficient algorithms. We
show this at the example of a surprisingly robust and efficient leader election algorithm
with Θ(n) average time and message complexity.

3. Fast Leader Election with Bounded Expected Delay

We present an election algorithm for anonymous, unidirectional ABE rings. The
algorithm is parameterised by a base activation parameter A0 ∈ (0, 1). The order
of messages is arbitrary between any pair of nodes. For simplicity, we assume that
the expected time to process a local event is 0, that is, γ = 0. However, all results
presented in this paper can be generalised straightforwardly for expected value γ > 0.

The algorithm presented below actually does not require continuous clocks. It suf-
fices that every node has a local timer ticking once per (local) time unit. Obviously such
a discrete timer can be simulated using continuous clocks, thus, w.l.o.g. we assume that
every node has a timer in the sequel.

During execution of the algorithm every node is in one of the following states: idle,
active, passive or leader; in the initial configuration all nodes are idle. Moreover, every
node A stores a number d(A), initially 1. The messages sent between the nodes are
of the form 〈hop〉, where hop ∈ {1, . . . , n} is the hop-counter of the message. Every
node A executes the following algorithm:
• If A is idle, then at every clock tick, with probability 1− (1−A0)d(A), A becomes
active, and in this case sends the message 〈1〉.
• IfA receives a message 〈hop〉, it sets d(A) = max(d(A), hop). In addition, depend-

ing on its current state, the following actions are taken:
(i) If A is idle, then it becomes passive and sends the message 〈d(A) + 1〉.

(ii) If A is passive, then it sends the message 〈d(A) + 1〉.
(iii) If A is active, then it becomes leader if hop = n, and otherwise it becomes

idle, purging the message in both cases.
In other words, messages travel along the ring and ‘knock out’ all idle nodes on

their way. That is, idle and passive nodes forward messages; by forwarding a message,
idle nodes are turned passive. If a message has knocked out an idle node (at any point
during its lifetime), we refer to the message as knockout message. If a message hits an
active node, then it is purged, and the active node becomes idle, or is elected leader if
hop = n (that is, if the node itself is originator of the message). We say that a node
has woken up when it transits from the idle to the active state.

The value d(A) stores the highest received hop-count for every node. It indicates
that d(A)−1 predecessors are passive. A higher value of d(A) increases the probability

5

that a node A becomes active. By taking 1− (1−A0)d(A) as wake-up probability for
nodes A, we achieve that the overall wake-up probability for all nodes stays constant
over time. This ensures that the algorithm has linear time and message complexity.

Note that we forward messages 〈hop〉 as 〈d(A) + 1〉 instead of 〈hop + 1〉. This is
used since the channels exhibit non-FIFO behaviour. Consider the following scenario.
A message 〈h〉 with high hop-count overtakes a message 〈`〉 with low hop-count, and
then 〈h〉 is purged by an active node A. Then d(A) = h and when 〈`〉 passes by A
its hop-count will be increased to h + 1 (as if the overtaking would never have taken
place). Using 〈hop + 1〉 instead of 〈d(A) + 1〉, there exist scenarios where all nodes
are passive except for one idle node B, and d(B) = 2. That is, d(B) is much lower
than the actual number of passive predecessors of B, and as a consequence the overall
wake-up probability would not stay constant over time.

We briefly elaborate on why the framework of ABE networks is essential for this
election algorithm. The bound on the expected delay is necessary for proving that
the algorithm terminates with probability one, and that the average time and message
complexity are Θ(n). To the best of our knowledge, the algorithm is the first leader
algorithm with the linear average time and message complexity in the settings of asyn-
chronous anonymous rings without a fixed bound on the message delay.

4. Correctness

Our election algorithm has terminated when all nodes are either passive or leader,
and no messages are in transit. Our algorithm satisfies the following invariants:

Lemma 2. For every node A at least d(A)− 1 predecessors are passive.

Proof. Initially, the claim holds since d(A) = 1. Assume the claim would be wrong,
then consider the first event invalidating the claim. By definition of the algorithm,
d(A) is the maximum hop-count of all messages received by A, and passive nodes stay
passive forever. Therefore, we can restrict attention to the case that a node A receives a
message 〈x〉, but fewer than x−1 predecessors ofA are passive. The message 〈x〉must
have been sent by the predecessor B of A. The case of B being non-passive is trivial,
since then it must have sent the message 〈1〉. If B is passive, then x ≤ d(B) + 1,
and since the invariant holds for B, d(B) − 1 predecessors of B are passive. Then
d(B) = x− 1 predecessors of A are passive.

Lemma 3. When a leader node is elected, all other nodes are passive.

Proof. According to the algorithm, an active nodeA is elected leader, when it receives
the message 〈n〉. Then d(A) = n, so by Lem. 2, all n− 1 other nodes are passive.

Lemma 4. There are always as many messages in the ring as active nodes.

Proof. Initially all nodes are idle and the lemma holds. Let us consider all possible
scenarios. If an idle or passive node receives a message 〈hop〉, it will relay the message
further. Thus, the number of messages and active nodes remains unchanged. If an
active node receives a message, it changes its state to either idle or leader. In both
cases, the message is purged. Thus, both messages and active nodes decrease by 1. If

6

an idle node becomes active, it sends out a message. Thus, the number of messages
and the number of active nodes both increase by 1.Finally, note that when an active
node receives the message 〈n〉, and becomes leader, by Lem. 3, all other nodes are
passive, so that there are no other messages in the ring. Hence, in all cases the invariant
is preserved.

Lemma 5. Always at least one node is not passive.

Proof. Only idle nodes A can become passive, after receiving a message 〈hop〉. This
message will be passed on as 〈d(A)+1〉. Hence, there is at least one message travelling
in the network, and, by Lem. 4, at least one active node in the network.

Using these invariants, we can show that our algorithm is correct.

Theorem 6. Upon termination, exactly one leader has been elected.

Proof. Termination without elected leader is not possible, since by Lem. 5, there is
always a non-passive nodeA (ifAwould be active there would be a message travelling
by Lem. 4). By Lem. 3, if a leader has been elected, all other nodes are passive. Hence,
upon termination there is a unique leader.

Theorem 7. The election algorithm terminates with probability one.

Proof. There exist only a finite number of network configurations C. For every non-
terminated configuration c ∈ C, there is a probability P (c) > 0 such that for every
possible non-deterministic choice the probability of the next scenario is at least P (c):
• no idle node becomes active until all messages in the network are forwarded and

received by active nodes (by Lem. 4 there are as many messages as active nodes
in the network);

• next, exactly one idle node A (which exists by Lem. 5) becomes active, and its
message travels around the whole ring without any other node becoming active.
When A receives its own message, it is elected leader and we have termination.

Taking ζ = min{P (c) | c ∈ C} we obtain that from every possible non-terminated
configuration the probability of termination is at least ζ > 0. Hence the algorithm
terminates with probability one.

5. Complexity

In this section, we show that our algorithm has linear time and message complexity.
First, we give an intuition behind the linear complexity of the algorithm. The crux is
the choice of a suitable activation parameter A0(n). To achieve a linear complexity
it suffices to take (the non-optimal) A0(n) = 1 − n

√
(n− 1)/(n+ 1). We briefly

elaborate on this choice. For simplicity we assume slow = shigh = 1 and δ = 1 for
this sketch. If all nodes gamble once, the probability that any of the nodes wakes up is
1− (1−A0(n))n = 2/(n+ 1). The bound δ on the expected message delay allows us
to derive a bound R(n) on the expected time for a message to travel through the whole
ring: R(n) = δ · n = n. Then the probability W (n) of any node waking up during
R(n) time is 1−(1−2/(n+1))n which converges to: W (n)→ 1−e−2, for n→∞.

7

This is the crucial observation yielding linear time and message complexity: the time
R(n) for a round trip of a message is linear in n, and the probability W (n) of any node
waking up during this time is constant (i.e. asymptotically independent of n).

Omitting the simplification slow = shigh = δ = 1, we have R(n) = δ · n = n, and
we employ the lower (upper) bound slow (shigh) on the clock speed to derive a lower
(upper) bound on the probability of any node waking up during the time.

We define the activation count w(A) as the number of times node A has woken up.
We now show the properties of the activation count.

Lemma 8. Let A and B be active or idle nodes such that the path from A to B visits
only passive nodes. Then the number of messages between A and B is

w(A)− w(B) + active(B)

where active(B) is 1 if B is active, and 0 otherwise.

Proof. Initially all nodes are idle and the lemma holds. That is, active(B) = 0; more-
over, w(A) = w(B) = 0 and there are no messages in the ring. For a node A we
denote p(A) and s(A) as the first active or idle predecessor and successor of A, re-
spectively. First, consider the case: A = B. Then all nodes except for A are passive,
and by Lem. 4 there is a message in the ring iff A is active. For the remainder of the
proof we assume A 6= B, that is, A 6= s(A) and A 6= p(A). We consider all possible
events. If a passive node receives a message 〈hop〉, it relays the message further. Thus,
the number of messages between active or idle nodes remains unchanged.

If an idle node A receives a message 〈hop〉, it becomes passive and relays the
message further. Then, the number of messages between p(A) and s(A) is:

(w(p(A))− w(A) + 0) + (w(A)− w(s(A)) + active(s(A)))

= w(p(A))− w(s(A)) + active(s(A))

If an idle node A becomes active, it sends out a message. The same holds for the
number of messages between A and s(A). Then w(A), and so w(A) − w(s(A)) +
active(s(A)), increases by 1. The number of messages between p(A) and A remains
unchanged: w(p(A))−w(A)+active(A), both w(A) and active(A) increase by 1 and
thereby equal each other out.

Finally, if an active node A receives a message, it changes its state to either idle or
leader. In both cases, the message is purged. The number of messages between A and
s(A) remains unchanged: w(A)−w(s(A)) + active(s(A)). The number of messages
between p(A) andA decreases by 1. The same holds forw(p(A))−w(A)+active(A),
since active(A) decreases by 1. Hence, in all cases the lemma holds.

Lemma 9. Let A and B be nodes such that A is not passive, the path from A to B
visits only passive nodes, and there are no knockout messages between A and B. Then
the number of nodes between A and B (not counting B) is d(B)− 1. (Note, if A = B,
we assume the path around the whole ring)

Proof. Let ρ(C) be the number of passive predecessors of C (not counting C). We say
that a node C is informed if d(C)−1 = ρ(C). Likewise, a messageM with hop-count
h is called informed if exactly h− 1 nodes preceding M are passive.

8

We prove by induction over the number of events: for all nodes A and B such
that A is not passive, and the path from A to B visits only passive nodes, either B is
informed, or there is an informed knockout message between A and B. By Lem. 2
we have d(B) − 1 ≤ ρ(B). Initially all nodes are informed. We consider all possible
events. If an informed (knockout) message is relayed by a passive node, the message
stays informed and the node becomes informed.

If a message knocks out an idle node A, then either the node was informed and
hence sends out an informed knockout message, or (by induction hypothesis) there
must be an informed knockout message M before A. In the latter case, if M was the
message received, then the node becomes informed.

If an active node A purges an informed knockout message, it becomes informed.
Finally, if an idle node A becomes active, it sends out a (non-knockout) message.
Hence, in all cases the lemma holds.

As a direct consequence we obtain the following corollary stating that the overall
wakeup probability of all nodes in the ring stays basically constant.

Corollary 10. Whenever there are no knockout messages travelling in the ring,

1− (1−A0)n = 1−
∏

A is idle or leader

(1−A0)d(A)

Proof. There are two possible scenarios, where no knockout messages travel in the
ring; (i) there are only idle and passive nodes, or (ii) node A is leader and the other
n − 1 nodes are passive. Then we can divide the ring in chains of passive nodes
followed by an idle or leader node A, and by Lem. 9 we have d(A) is the length of the
chain plus 1. As a consequence we obtain:

∑
A is idle or leader d(A) = n.

In other words, the overall wakeup probability (for idle and active nodes) may only
decrease as long as a knockout message travels through the ring. This means that there
is a message in the ring that has turned nodes from idle to passive and did not yet
encounter an active node (and hence did not complete a round trip). As soon as this
message is purged by an active node A, the node updates its counter d(A) representing
the number of passive predecessors, thereby restoring the overall wakeup probability.

Lemma 11. If an active node A with activation count w(A) receives a message while
all other nodes have activation count smaller than w(A), then A is elected as leader.

Proof. Assume, towards a contradiction, that there are at least two idle or passive nodes
in the ring. By Lem. 8 there are no messages between A and its first active or idle
predecessor, unequal to A. Hence, A can receive a message only if all other nodes are
passive. By Lem. 9 it follows that after A received this message, d(A) − 1 = n − 1.
Hence A must have received the message 〈n〉, and thus is elected leader.

Theorem 12. The election algorithm has linear time and message complexity.

Proof. First, we prove the linear time complexity. Recall that the timer of every node
ticks ones per unit of local time. Thus, within 1/slow global time the timer of every
node ticks at least once. By Lem. 10, 1− (1−A0)n is a lower bound on the probability

9

for at least one node waking up in 1/slow time. Hence, an upper bound F on the
expected time until the first node becomes active can be obtained as follows:

F =
1

slow
·
∞∑
i=0

(i+ 1) · (1−A0)ni · (1− (1−A0)n) =
1

slow
· 1

1− (1−A0)n

The expected time for a message to travel around the entire ring is R = n · δ. An
upper bound W on the probability of any node waking up during R time is W =
1− (1−A0)n·R·shigh .

The first node A gets active after expected time F . Then with probability 1 −W
no other nodes wakes up while the message of A travels around the ring, and in this
case, after expected timeR the nodeAwill be elected as leader. With probability≤W
another node wakes up while the message ofAmakes a round trip. Then after expected
time R all non-passive nodes in the ring will have activation count at least one. This
can be seen as follows. The message ofA travels along the ring, knocking out all nodes
with activation count < w(A), until it is purged by an active node B. Then B must
have become active after A, and itself sent out a message. We continue with tracing
this message of B, and successively apply the same reasoning until we have finished
one round trip, and are back to A.

In case another node has woken up while the message of A was travelling around
the ring, the described scenario repeats. For this it is important to observe that by
Lem. 10 the overall wakeup probability of all nodes stays constant. As a consequence,
after expected time F a node B will wake up, and get the highest activation count
w(B). By Lem. 11, after expected timeR either (i)B will be elected leader (probability
1−W), or (ii) all non-passive nodes in the network have at least activation count w(B)
(probability W). This leads to the upper bound on the expected time of termination

∞∑
i=0

(i+ 1) · (F +R) ·W i · (1−W) =
1 +R · slow − (1−A0)n ·R · slow
(1− (1−A0)n) · (1−W) · slow

(1)

For A0 we choose the following expression depending on n: A0 = 1− n

√
n−1
n+1 . Using

this activation parameter time complexity is linear with respect to the ring size n. The
derivation of this parameter will be explained in the next subsection. Substituting the
expression for A0 into (1), we obtain:

1
slow

+ (1− (1−A0)n) · n · δ
(1− (1−A0)n) · (1−A0)n

2·δ·shigh
=

1
slow

+ 2
n+1 · n · δ

2
n+1 · (

n−1
n+1)n·δ·shigh

=
1
slow
· n+1

2 + n · δ
(n−1n+1)n·δ·shigh

Noting that limn→∞(n−1n+1)n·δ·shigh = (1
e2)δ·shigh , we obtain that the time complexity

(i.e. the expression above) is Θ(n).
Now, we prove the linear message complexity. Since the time complexity is linear,

here is ξ > 0 such that the average execution time of the algorithm ≤ ξ · n. A lower
bound on the expected time until a node becomes active is: Flow = 1

shigh
· 1
1−(1−A0)n

.
Thus, the expected number of nodes “waking up” during the algorithm execution is
≤ ξ·n

Flow
= ξ · n · shigh · (1 − (1 − A0)n) = ξ · shigh · 2·n

n+1 . Since every “wake up”
gives rise to at most n messages (once around the ring) and by the expression above,
the algorithm has linear message complexity.

10

The concept of message complexity differs from bit complexity. The message com-
plexity refers to the expected number of messages until termination, while bit complex-
ity is the total number of bits transmitted. Our algorithms has Θ(n) message complex-
ity, and Θ(n · log n) bit complexity as the messages are log n in size.

Optimal Value for A0. The crux of the algorithm is the activation parameter A0 influ-
encing both the time and message complexity. We optimise A0 with respect to time
complexity in dependence on the network size n. For simplicity we assume δ = 1,
slow = shigh = 1. We conclude this section with a discussion of the general case.

The value for A0 (depending on n) derived from the optimisation is applied in the
proof of Thm. 12. This shows that the obtained activation parameter results in linear
time and message complexity for arbitrary values for δ, slow and shigh , although the
analysis does not take these values into account.

For the purpose of optimisation, we consider average-case scenarios instead of
worst-case scenarios as used in the proof of linear time and message complexity (Thm. 12).
Let α = 1 − A0. Then, the average number of attempts before a first node becomes
active is (1−αn) ·1+(1−αn) ·αn ·2+ . . . = 1

1−αn . The probability β that a message

of this first node completes its round-trip is αn−1 · αn−2 · . . . · α = α
n(n−1)

2 since the
expected time for a round-trip is n · δ = n. Note that in the proof of Thm. 12 we used
an upper bound on the worst case for β, namely αn

2

. Thus, the average time required
to elect a leader is

β · 1

1− αn
+ (1− β) · β · 2

1− αn
+ (1− β)2 · β · 3

1− αn
+ . . . =

1

β · (1− αn)
.

We take (1 − β) as the probability of fail trial for the message to make a round-trip.
We now derive an optimal value for A0. Optimal here means that the average time
to elect the leader is as low as possible. That is, we minimise 1

β·(1−αn) by taking the

derivative: (n−1) ·α 1
2n(n−1)− (n+1) ·α 1

2n(n+1) = 0. Hence,A0 = 1− n

√
n−1
n+1 . For

large ring sizes n, the optimal activation parameter A0 is approximately 1 − n2
√

1
e2 .

The optimal value of the activation parameter is supported by simulation experiments,
and by model checking [3].

References

[1] D. Angluin. Local and global properties in networks of processors. In Proc. of
STOC, pages 82–93. ACM, 1980.

[2] B. Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823,
1985.

[3] R. Bakhshi, J. Endrullis, W. J. Fokkink, and J. Pang. Asynchronous bounded
expected delay networks. Technical Report arXiv:1003.2084, CoRR, 2010.

[4] R. Bakhshi, J. Endrullis, W. J. Fokkink, and J. Pang. Brief announcement: Asyn-
chronous bounded expected delay networks. In Proc. of PODC. ACM, 2010.

11

[5] R. Bakhshi, W. J. Fokkink, J. Pang, and J. C. van de Pol. Leader election in
anonymous rings: Franklin goes probabilistic. In Proc. of TCS, volume 273 of
IFIP, pages 57–72. Springer, 2008.

[6] H.L. Bodlaender. New lower bound techniques for distributed leader finding and
other problems on rings of processors. Theor. Comput. Sci., 81:237–256, 1991.

[7] C. T. Chou, I. Cidon, I. S. Gopal, and S. Zaks. Synchronizing asynchronous
bounded delay networks. IEEE Trans. Comm., 38(2):144–147, 1990.

[8] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) unidirectional algorithm for
extrema finding in a circle. J. of Algorithms, 3(3):245–260, 1982.

[9] M. Fischer and H. Jiang. Self-stabilizing leader election in networks of finite-state
anonymous agents. In Proc. of OPODIS, volume 4305 of LNCS, pages 395–409.
Springer, 2006.

[10] W. J. Fokkink and J. Pang. Variations on Itai-Rodeh leader election for anony-
mous rings and their analysis in PRISM. J. UCS, 12(8):981–1006, 2006.

[11] R. Franklin. On an improved algorithm for decentralized extrema finding in cir-
cular configurations of processors. Commun. ACM, 25(5):336–337, 1982.

[12] G. N. Frederickson and N. A. Lynch. Electing a leader in a synchronous ring. J.
ACM, 34(1):98–115, 1987.

[13] L. Higham and S. Myers. Self-stabilizing token circulation on anonymous mes-
sage passing. In Proc. of OPODIS, pages 115–128. Hermes, 1998.

[14] D.S. Hirschberg and J.B. Sinclair. Decentralized extrema-finding in circular con-
figurations of processors. Commun. ACM, 23(11):627–628, 1980.

[15] A. Itai and M. Rodeh. Symmetry breaking in distributive networks. In Proc. of
FOCS, pages 150–158. IEEE, 1981.

[16] A. Itai and M. Rodeh. Symmetry breaking in distributed networks. Inform. and
Computation, 88(1):60–87, 1990.

[17] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[18] S. Maharaj and C. Shankland. A survey of formal methods applied to leader
election in IEEE 1394. J. UCS, 6(11):1145–1163, 2000.

[19] J. K. Pachl, E. Korach, and D. Rotem. Lower bounds for distributed maximum-
finding algorithms. J. ACM, 31(4):905–918, 1984.

[20] G. Peterson. An O(n log n) unidirectional algorithm for the circular extrema
problem. ACM Trans. Program. Lang. Syst., 4(4):758–762, 1982.

[21] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,
2000.

[22] G. Tel, E. Korach, and S. Zaks. Synchronizing ABD networks. IEEE/ACM Trans.
Netw., 2(1):66–69, 1994.

12

